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Abstract

Modern scientific research has become largely a cooperative activity in the Internet age. We

build a simulation model to understand the population-level creativity based on the heuristic

ant colony algorithm. Each researcher has two heuristic parameters characterizing the

goodness of his own judgments and his trust on literature. We study how the distributions of

contributor heuristic parameters change with the research problem scale, stage of the

research problem, and computing power available. We also identify situations where path

dependence and hasty research due to the pressure on productivity can significantly impede

the long-term advancement of scientific research. Our work provides some preliminary

understanding and guidance for the dynamical process of cooperative scientific research in

various disciplines.

Introduction

Cooperative scientific research is a new trend in the science community nowadays due to the

growth of number of researchers [1–3], the faster propagation of knowledge through the Inter-

net [4–7] and the many new interdisciplinary research topics [8, 9], etc. Research groups rang-

ing from a few scientists to international institutions can study related problems and build

upon each other’s works. In the early pioneering days, the activity of scientific research was the

solitary work of a few geniuses of the world and the spirits of independent thinking and skepti-

cism were highly valued. In modern days, we are seeing more and more scientific achieve-

ments made by the progressive efforts of many researchers [10]. This paradigm shift

accompanies the development of complexity science itself [8, 9, 11]. Scientists in the Internet

age work like a highly cooperative ant colony connected by pheromone, i.e., research publica-

tions, and exhibit population-level creativity which requires modeling to understand. Recent

observations on the slow-down of innovation and productivity spurred questions on how to

optimize the process of innovative research in today’s science communities. [12–16].

Previous studies on scientific research and collective intelligence have discussed various

aspects of this topic including the citation system [17–21], evaluation and funding system [22–

24], game theory competition and cooperation [25–28], complex networks [29, 30], team size

and composition management [31–33], and so on [34–39]. In this paper, we build a simplified
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model inspired by the ant colony optimization (ACO) algorithm [40–42] to study the dynam-

ical process of cooperative scientific research by computer simulations. Compared with previ-

ous works on the “science of science”, our work offers a new perspective of viewing scientific

production as running an optimization algorithm and improving ways of doing science as

improving the algorithm. This viewpoint bridges knowledge from various disciplines and can

help gain deeper understanding about the influencing factors of scientific production, comple-

menting regressive models of real-world statistical data. More specifically, our ant colony

model can obtain the optimal research styles for various types of scientific problems, e.g., sim-

ple (elemental) v.s. complex, new v.s. old (long-standing), etc., and study the influence of com-

puting power and different survival rules on selecting researchers for the community.

We suppose that in the ant community, each scientific problem they study is a randomly

generated traveling salesman problem (TSP) [43] with N vertices, where N controls the com-

plexity of the problem. A researcher’s effort on such a problem is modeled as making small

decisions step by step to connect the vertices and find a plausible path. He will then pass on the

knowledge by publications, i.e., leaving pheromone on the edges visited. The shorter the total

path, the more pheromone will be assigned. Every decision made is governed by two heuristic

parameters: α characterizing the researcher’s trust on published literature, i.e., the pheromone

left on all edges, and β characterizing his trust on the greedy local distance measure, i.e., the

researcher’s own sense of direction. The procedure is iterated as generations of researchers

attempt for better solutions. Finally, the accumulated pheromone concentrates on the shortest

TSP path found by the community, which represents the currently best answer known to the

scientific problem.

Two essential ingredients of our ant colony model are the NP-hardness of TSP and the

pheromone mechanism in ACO. Since TSP is NP-hard, it is easy to evaluate and compare path

lengths and exclude the longer path as ‘wrong’, but difficult to know if the shorter path is

indeed shortest, which is similar to open questions in science that satisfy the falsifiability crite-

rion. The pheromone is a population-level information sharing mechanism that enables

researchers to work out difficult scientific problems cooperatively. Our ant colony model

develops the ACO in that we have improved the pheromone update rules and allow the heuris-

tic parameters α, β to differ individually and change by evolution. We can then study the equi-

librium distributions of α, β given different problem scales N and different numbers of ACO

iterations that distinguish between new and old problems. The influence of computing power

will be modeled by introducing the Hamiltonian cycle speedup [44] that mimics the role of

computers.

We find that cooperative scientific research is a good way to tackle complex scientific prob-

lems. The effects of using computers or lab robots are also found to be positive. The main

drawback factors of scientific production found in this model are path-dependence and hasty

research. Our results suggest that these issues can be improved by adopting better organiza-

tions, evaluation systems and incentive policies. For example, parallel development of several

independent communities can reduce path dependence and giving more credits to late con-

tributors of long-standing problems can avoid hasty research.

Ant colony model

The core ACO algorithm

In the ACO algorithm, each ant with two heuristic parameters α, β tries to find a TSP path

individually. The ant has its own memory of the set of vertices S that has been visited and has

access to the community-shared information dij, the distance between vertices i, j and τij, the

amount of pheromone on the undirectioned edge i − j. The ant picks a random vertex to start
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the trip. Then each step from vertex i to vertex j is determined by the transition probability

Pi!j /
ð0:01þ tijÞ

a
= dbij; j =2 S;

0; j 2 S:

8
<

:
ð1Þ

The probabilities Pi!j are normalized for all j =2 S to determine the next stop j. Then vertex j is

added to set S so it will not be repeatedly visited. Eq (1) describes the basic rules of the heuristi-

cally biased self-avoiding walk (SAW) [45, 46] of ants in the original ACO algorithm. We have

added a small background value of 0.01 to τij in Eq (1) so that the ants do not get oversensitive

to small amounts of pheromone.

We have also made improvements in the pheromone update rules. After Nants = 50 ants

have finished their TSP paths, we pick the best p(t) percent and allow these winning ants to

leave pheromone over their TSP paths bidirectionally. The amount of pheromone on each

edge is inversely proportional to the total path length and proportional to a linearly decreasing

weight of the path ranking. Long-distance steps on the TSP path gets extra penalties. The pher-

omone on all edges then evaporates by p(t) percent and the above procedure iterates while the

percentage p(t) gradually decreases from 50% to 8% (4 ants) over the iterations.

These improvements mean that initially the ant colony is very eager to accumulate phero-

mone and later, the update rules get tighter as the best-known path of the ant colony becomes

nearly optimal. But any time, an ant who beats the best-known path always immediately

becomes the leader of the top 4 ants and leaves the most pheromone to the whole ant colony.

With the improved pheromone update rules, the pheromone becomes a more useful guide to

the ants and better resembles the literature publication system in academia. More details of the

model can be found in our Matlab code provided upon reasonable request.

Evolution of heuristic parameters

In the original ACO algorithm, the parameters α, β were set manually as hyper-parameters

and applied to all ants. In our model, we allow α, β to take different values for different ants

and evolve the distribution Pα,β by training the ant colony with randomly generated TSP

graphs. During the solution of one graph, Pα,β is kept unchanged and the heuristic parameters

of the ants who found shorter TSP paths than the best-known path are recorded. These ants

are called contributors and their α, β values are used for evolving Pα,β according to

PðnewÞa;b ¼
nc

M
PðcÞa;b þ 1 �

nc

M

� �
PðoldÞa;b : ð2Þ

Here nc is the number of contributors recorded during one graph and M = 4000 is the total

pool of ants out of which the Nants = 50 ants are sampled in each ACO iteration. When equilib-

rium is reached, every ant in the colony is equally likely to become a contributor. More favor-

able (α, β) values will attract more ants and less favorable values will be adopted by fewer ants.

We then consider a more sophisticated situation where the trained distribution Pα,β(t) can

depend on problem stage t. To do this, we record for each contributor not only its α, β values,

but also the number of ACO iterations t performed when its contribution is made. We can

then compare at equilibrium the distributions Pα,β(t) suitable for different problem stages t.

Hamiltonian cycle speedup

The Hamiltonian cycle speedup [44] is often used in conjunction with ACO to speed up its

convergence. In the core ACO algorithm, at every vertex i, the ant heuristically picks a next

vertex j based on Pi!j, which mimics human intuition. The TSP path obtained is called a
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Hamiltonian cycle in graph theory, e.g.,

1! ði � 1Þ ! i! � � � ! j! ðjþ 1Þ ! N ! 1: ð3Þ

The Hamiltonian cycle speedup plays the role of a computer exhaustively checking human

errors. It enumerates all segments i! � � � ! j of the Hamiltonian cycle in Eq (3) and checks if

the cycle length can be made shorter by reversing the segment into j! � � � ! i, which is true if

and only if di−1,i + dj,j+1 > di−1,j + di,j+1. The exhaustive check continues until no such improve-

ments are possible, which is a necessary but not sufficient condition for the optimality of the

TSP path. We examine the influence of the Hamiltonian cycle speedup on the distribution Pα,β

in Fig 2c and 2d and use the simpler model without the speedup elsewhere.

Results and discussions

Effect of problem scale

We first examine how the equilibrium distribution Pα,β changes with problem scale N, i.e., the

number of vertices in the TSP graph. The vertices are randomly sampled from a uniform dis-

tribution in a 2D unit square region. We have tried other vertex distributions (Gaussian, trian-

gular) and other region shapes (rectangle, circle) and have found qualitatively the same results.

As shown in Fig 1a–1f, the α peak significantly shifts to larger values as the problem scale N
increases. This indicates that when faced with more difficult problems, the research commu-

nity has to rely more on previous works for guidance to find sophisticated better solutions,

and random trials ignoring literature is not as efficient. The β parameter governs the research-

er’s goodness of local distance measure or sense of direction. For small problems, the optimal

distribution relies heavily on high β values. For larger problems, the weights of high β reach a

plateau and the joint distribution Pα,β develops a positive correlation between α and β, suggest-

ing that the successful research style is a combination of the α and β heuristics. Such research-

ers always keeps up-to-date knowledge of the currently best solution known by the

community (α heuristics) and quickly identifies where potential improvements are possible (β
heuristics) around the community-found path.

Time-dependent distribution

Some difficult problems can persist for years or decades as researchers come and leave. In an

ideal situation, researchers switching from problems to problems specialize to both the appro-

priate scale of complexity and the stage of problem conducive to their own research styles (α, β
values). We therefore consider Pα,β(t) with t being the number of ACO iterations for fixed

problem scale N = 100. We train Pα,β(t) to equilibrium and plot the results in Fig 2a in 4 colors

corresponding to 4 problem stages: newly proposed (t = 1–5, blue), early (t = 6–30, green),

intermediate (t = 31–100, yellow), and late (t = 101–1000, red) periods.

When a problem is newly proposed, the contributors (blue) generally have high β values.

Since there are not many publications to read yet, researchers with low β will move randomly

between the vertices and obtain TSP paths of order OðNÞ, while those with high β will always

greedily choose the closest vertex to move to. The greedy solution can be estimated to be

O
1
ffiffiffiffi
N
p þ

1
ffiffiffiffiffiffiffiffiffiffiffiffi
N � 1
p þ � � � þ 1

� �

¼ Oð
ffiffiffiffi
N
p
Þ; ð4Þ

which is much better than a random self-avoiding walk OðNÞ. Therefore, all contributors of a

newly proposed problem tend to have high β values. After the greedy solution has been found,

the early-stage contributors (green) constitute the upper part of the time-independent
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distribution Pα,β in Fig 1d. The intermediate (yellow) and late-stage (red) contributors then

scan down to the lower part of Pα,β and finally concentrate into a red blob below the mode

peak of Pα,β.

The error curves of the time-dependent Pα,β(t) and time-independent Pα,β distributions are

compared in Fig 2b. We use the relative error ε(t) = L(t)/Lopt − 1 averaged over 500 graphs to

evaluate the goodness of a given research condition, where Lopt is the optimal path length

obtained from the open-source exact TSP solver Concorde [47, 48]. Initially, the greedy solu-

tion of Pα,β(t) (yellow dashed line in Fig 2b) has an advantage over Pα,β (blue line in Fig 2b),

which does not last for very long. The blue and yellow curves nearly coincide when the prob-

lem reaches intermediate to late periods. The residue error at t = 103 remains *1.2%, which is

Fig 1. Effects of problem scale on distributions of α, β. Histograms of heuristic parameters α (blue) and β (red) and

contour plots of their joint distributions (insets) are plotted for TSP graphs with N = 10, 20, 50, 100, 200, and 500

vertices. The “+” sign marks the mode peak.

https://doi.org/10.1371/journal.pone.0262933.g001
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likely to result from the path dependence effect [49], i.e., the ant colony gets trapped to a local

minimum found by previous works. If we have two or more independent research communi-

ties (green & purple lines in Fig 2b), which is realized by running the ant colony code multiple

times and keeping the smallest TSP length of the trials at every iteration step t, the relative

error ε(t) has a statistically significant reduction. We use the standard deviations of the data to

determine the significance of the difference between these results at t = 103. Using the standard

deviations of the mean values as error bars, we have the final residues for one group of ants

ε1(t = 103) = (1.21 ± 0.045)%, two groups ε2(t = 103) = (0.82 ± 0.033)%, and four groups

ε4(t = 103) = (0.60 ± 0.026)%. In terms of the t-value, between ε1 and ε2 t12 = 6.99, i.e. their dif-

ference is about 7 times of standard deviation. Between ε2 and ε4, t24 = 5.24. This confirms

that the three sets of scores are significantly different.

Effects of computing power

We then move on to discuss the effects of more computing power, which is mimicked by

introducing the Hamiltonian cycle speedup described previously. When individual researchers

Fig 2. Effects of problem stage and computing power. (a) The Pα,β(t) distribution with t = 1–5, 6–30, 31–100 and 101–1000

scatter plotted in blue to red. (b) Error curves of Pα,β(t) compared with Pα,β and other variations. Panels (c)–(d) compare the

Pα,β distributions with and without the Hamiltonian cycle speedup. Number of vertices N = 100 in all 4 subplots.

https://doi.org/10.1371/journal.pone.0262933.g002
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have computers that help them do exhaustive trials and verifications, our results indicate that

the selectivity effects on both the literature parameter α and the intuition parameter β of the

contributors are significantly reduced. As is shown in Fig 2c and 2d, both the α peak and the β
plateaus are made lower by introducing the Hamiltonian cycle speedup. This means that com-

puters are a chance equalizer which diversifies the heuristic parameter distributions of the con-

tributors. Also, the α peak slightly shifts to smaller values, which is due to the reduction of

effective problem hardness when computers become available. In terms of relative error (red

line in Fig 2b), the introduction of Hamiltonian cycle speedup significantly speeds up the con-

vergence to the optimal TSP path. The residue error at t = 103 iterations *0.4% is made much

smaller than the blue curve but still nonzero, which suggests that the path dependence effect of

ant-colony research cannot be completely eliminated even with more computing power avail-

able to each researcher individually.

Hasty research

We often see in academia that researchers are faced with tight and pressing survival rules,

most of which are achievement-based. We find in our model that sometimes these rules can be

counter-productive to the science community. An important reason why this happens is that

such rules would encourage researchers to focus on new or early-stage problems, leaving the

late-stage problems simply “outdated” rather than solved.

We simulate such a situation and results are shown in Fig 3. Suppose a problem is interest-

ing to the ant colony for only t� 50 iterations, after which the problem becomes old and out

of attention. By training the ant colony using TSP graphs with N = 100 vertices under such

hasty rules, the equilibrium distribution Pαβ is given by the blue dots in Fig 3a. Conversely, if

every graph is solved up to t = 103 iterations but only those contributors after t> 50 are

recorded to update Pαβ, the ant colony will be trained into the distribution of the red dots. The

Fig 3. (a) The equilibrium contributor distribution under the survival rules of t� 50 (blue) and t> 50 (red). Dashed contours are those of the

standard N = 100 distribution in Fig 1d. (b) The error curves ε(t) of different survival rules. Inset shows normally trained contributor distribution in

terms of improvement percentage v.s. problem stage.

https://doi.org/10.1371/journal.pone.0262933.g003
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green contours in Fig 3a show the normally trained distribution where all contributors are

recorded to update Pαβ. Since achievement-based survival rules pick out those contributors

with big improvements of TSP lengths, which, according to the inset of Fig 3b, tend to be

early-stage contributors, the distribution Pαβ shifts to the blue side as a result.

We then plot in Fig 3b the error curves ε(t) of different Pαβ distributions averaged over 500

graphs. The blue distribution has short-term benefits but long-term costs. A “hasty” ant colony

adapted to early-stage problems would lack those ants with heuristic parameters conducive to

making breakthroughs on long-standing problems and therefore become inefficient as prob-

lems approach late stages. Comparing the blue solid line (t� 50) and the green solid line (nor-

mally trained) in Fig 3b, their final residues are εnormal = (1.18 ± 0.048)%, εt � 50 =

(1.46 ± 0.049)%, significantly different with a t-value of t = 4.1. In reality, the combined effect

of making the researcher community both inefficient and not interested in solving long-stand-

ing problems could be even worse, which can be mimicked by reducing Nants = 50e−(t−50)/200

after t> 50 (blue dashed line in Fig 3b). The residue error at t = 103 reaches* 2%. More inter-

estingly, the normally trained N = 100 distribution (green line in Fig 3b) can be outperformed

by the red distribution (red line in Fig 3b) in the long run, which suggests the importance of

giving more weights to the late contributors.

Conclusion and discussion

We have established an ant-colony research model which enables us to understand the dynam-

ical process of cooperative scientific research in various disciplines. Based on our model, we

have made several interesting findings. First, as the problem scale increases, the contributors

tend to have more cooperative heuristic parameters than those of simpler problems. Therefore,

the cooperative mode of scientific research is a consequence of complexity science itself. Sec-

ond, different problem stages will require different research styles. In the beginning, simple

intuitive thinking can help lay down the general framework. Later, improvements become

harder and require deeper thinking and more trials and errors. Third, the introduction of

computers or any other advanced technology (such as lab robots) that enables exhaustive trials

and verifications can give the human researcher more freedom, diversify the contributor pop-

ulation and make the scientific results more accurate and objective.

In addition to demonstrating the power of cooperative scientific research, our model can

also simulate non-ideal situations and identify how things might go wrong. First is path depen-

dence. As scientists build upon each other’s works, there is inevitably some degree of path

dependence. Parallel development of several independent communities, technological meth-

ods, or schools of thoughts can be better than having one unified community stuck with pre-

established ideas and paradigms. This will require the science community to be more willing

to publish currently suboptimal but new ideas. Second is hasty research. Putting pressure on

productivity or individual achievements can lead to hasty research. It is important to give

more credits to late contributors and solvers of long-standing problems for the long-term

progress of science.

More future works can be done following our ant-colony model. For example, in the cur-

rent version of our model, the ant colony works out independent TSP graphs with no shared

vertices or edges, which can be added to model interrelated problems in different research

fields. The ant colony can be broken down into smaller communities working on different

TSP paths with limited communication. More heuristic parameters can be added and the

model can be combined with genetic and/or memetic algorithms to test more ways of organiz-

ing the science community.

PLOS ONE A model for cooperative scientific research inspired by the ant colony algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0262933 January 27, 2022 8 / 11

https://doi.org/10.1371/journal.pone.0262933


Acknowledgments

We thank the helpful discussions with colleagues in Department of physics at Caltech. T. Z.

acknowledges support by the Cecil and Sally Drinkward Fellowship.

Author Contributions

Conceptualization: Zhuoran He.

Software: Zhuoran He.

Validation: Tingtao Zhou.

Writing – original draft: Zhuoran He.

Writing – review & editing: Tingtao Zhou.

References
1. Bloom N, Jones CI, Van Reenen J, Webb M. Are ideas getting harder to find? American Economic

Review. 2020; 110(4):1104–44.

2. Larson RC, Ghaffarzadegan N, Xue Y. Too many PhD graduates or too few academic job openings:

The basic reproductive number R0 in academia. Systems research and behavioral science. 2014; 31

(6):745–750. https://doi.org/10.1002/sres.2210 PMID: 25642132

3. Gibbons M, Yoder BL, Roy J. Engineering by the Numbers. In: American Society for Engineering Edu-

cation; 2009, 2012, 2018. p. 37.

4. Ginsparg P. ArXiv at 20. Nature. 2011; 476(7359):145–147. https://doi.org/10.1038/476145a PMID:

21833066

5. Goodrum AA, McCain KW, Lawrence S, Giles CL. Scholarly publishing in the Internet age: a citation

analysis of computer science literature. Information Processing & Management. 2001; 37(5):661–675.

https://doi.org/10.1016/S0306-4573(00)00047-9

6. Holmberg K, Thelwall M. Disciplinary differences in Twitter scholarly communication. Scientometrics.

2014; 101(2):1027–1042. https://doi.org/10.1007/s11192-014-1229-3

7. Hurd JM. The transformation of scientific communication: A model for 2020. Journal of the American

society for information science. 2000; 51(14):1279–1283. https://doi.org/10.1002/1097-4571(2000)

9999:9999%3C::AID-ASI1044%3E3.0.CO;2-1

8. Yin GZ, Zhang WB, Cheng SZD. Giant molecules: where chemistry, physics, and bio-science meet.

Science China Chemistry. 2017; 60:338–352. https://doi.org/10.1007/s11426-016-0436-x

9. Bazzani A, Giorgini B, Rambaldi S. In: Meyers RA, editor. Traffic and Crowd Dynamics: The Physics of

the City. New York, NY: Springer New York; 2009. p. 9411–9429. Available from: https://doi.org/10.

1007/978-0-387-30440-3_561.

10. Wang D, Barabási AL. The Science of Science. Cambridge University Press; 2021.

11. Anderson PW. More is different. Science. 1972; 177(4047):393–396. https://doi.org/10.1126/science.

177.4047.393 PMID: 17796623

12. Chu JSG, Evans JA. Slowed canonical progress in large fields of science. Proceedings of the National

Academy of Sciences. 2021; 118(41). https://doi.org/10.1073/pnas.2021636118 PMID: 34607941

13. Boeing P, Hünermund P. A global decline in research productivity? Evidence from China and Germany.

Economics Letters. 2020; 197:109646. https://doi.org/10.1016/j.econlet.2020.109646

14. Structural approach to assessing the innovativeness of new drugs finds accelerating rate of innovation.

ACS Medicinal Chemistry Letters. 2020; 11:2114–2119. https://doi.org/10.1021/acsmedchemlett.

0c00319 PMID: 33209190

15. The productivity growth slowdown and Kaldor’s growth facts. Journal of Economic Dynamics and Con-

trol. 2021; 130:104200. https://doi.org/10.1016/j.jedc.2021.104200

16. Gold ER. The fall of the innovation empire and its possible rise through open science. Research Policy.

2021; 50(5):104226. https://doi.org/10.1016/j.respol.2021.104226 PMID: 34083844

17. Fortunato S, Bergstrom CT, Börner K, Evans JA, Helbing D, Milojević S, et al. Science of science. Sci-

ence. 2018; 359 (6379). https://doi.org/10.1126/science.aao0185 PMID: 29496846

18. Garfield E. Citation indexes for science. Science. 1955; 122(3159):108–111. https://doi.org/10.1126/

science.122.3159.108 PMID: 14385826

PLOS ONE A model for cooperative scientific research inspired by the ant colony algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0262933 January 27, 2022 9 / 11

https://doi.org/10.1002/sres.2210
http://www.ncbi.nlm.nih.gov/pubmed/25642132
https://doi.org/10.1038/476145a
http://www.ncbi.nlm.nih.gov/pubmed/21833066
https://doi.org/10.1016/S0306-4573(00)00047-9
https://doi.org/10.1007/s11192-014-1229-3
https://doi.org/10.1002/1097-4571(2000)9999:9999%3C::AID-ASI1044%3E3.0.CO;2-1
https://doi.org/10.1002/1097-4571(2000)9999:9999%3C::AID-ASI1044%3E3.0.CO;2-1
https://doi.org/10.1007/s11426-016-0436-x
https://doi.org/10.1007/978-0-387-30440-3_561
https://doi.org/10.1007/978-0-387-30440-3_561
https://doi.org/10.1126/science.177.4047.393
https://doi.org/10.1126/science.177.4047.393
http://www.ncbi.nlm.nih.gov/pubmed/17796623
https://doi.org/10.1073/pnas.2021636118
http://www.ncbi.nlm.nih.gov/pubmed/34607941
https://doi.org/10.1016/j.econlet.2020.109646
https://doi.org/10.1021/acsmedchemlett.0c00319
https://doi.org/10.1021/acsmedchemlett.0c00319
http://www.ncbi.nlm.nih.gov/pubmed/33209190
https://doi.org/10.1016/j.jedc.2021.104200
https://doi.org/10.1016/j.respol.2021.104226
http://www.ncbi.nlm.nih.gov/pubmed/34083844
https://doi.org/10.1126/science.aao0185
http://www.ncbi.nlm.nih.gov/pubmed/29496846
https://doi.org/10.1126/science.122.3159.108
https://doi.org/10.1126/science.122.3159.108
http://www.ncbi.nlm.nih.gov/pubmed/14385826
https://doi.org/10.1371/journal.pone.0262933


19. Leydesdorff L. Theories of citation? Scientometrics. 1998; 43(1):5–25. https://doi.org/10.1007/

BF02458391

20. Hirsch JE. Does the h index have predictive power? Proceedings of the National Academy of Sciences.

2007; 104(49):19193–19198.

21. Fong EA, Wilhite AW. Authorship and citation manipulation in academic research. PloS one. 2017; 12

(12):e0187394. https://doi.org/10.1371/journal.pone.0187394 PMID: 29211744

22. Hicks D. Performance-based university research funding systems. Research policy. 2012; 41(2):251–

261. https://doi.org/10.1016/j.respol.2011.09.007

23. Muscio A, Quaglione D, Vallanti G. Does government funding complement or substitute private

research funding to universities? Research Policy. 2013; 42(1):63–75.

24. Packalen M, Bhattacharya J. NIH funding and the pursuit of edge science. Proceedings of the National

Academy of Sciences. 2020; 117(22):12011–12016. https://doi.org/10.1073/pnas.1910160117 PMID:

32430336

25. Lim IS, Wittek P. Satisfied-defect, unsatisfied-cooperate: An evolutionary dynamics of cooperation led

by aspiration. Physical Review E. 2018; 98(6):062113. https://doi.org/10.1103/PhysRevE.98.062113

26. Tiokhin L. Competition for priority harms the reliability of science but reforms can help. Nature Human

Behaviour; 20(XX).

27. Sonubi A, Arcagni A, Stefani S, Ausloos M. Effects of competition and cooperation interaction between

agents on networks in the presence of a market capacity. Physical Review E. 2016; 94(2):022303.

https://doi.org/10.1103/PhysRevE.94.022303 PMID: 27627313

28. Axelrod R. The complexity of cooperation: Agent-based models of competition and collaboration. vol.

3. Princeton university press; 1997.

29. Barrat A, Barthelemy M, Pastor-Satorras R, Vespignani A. The architecture of complex weighted net-

works. Proceedings of the national academy of sciences. 2004; 101(11):3747–3752. https://doi.org/10.

1073/pnas.0400087101 PMID: 15007165

30. Newman MEJ. Clustering and preferential attachment in growing networks. Phys Rev E. 2001;

64:025102(R). https://doi.org/10.1103/PhysRevE.64.025102 PMID: 11497639

31. Milojević S. Principles of scientific research team formation and evolution. Proceedings of the National

Academy of Sciences. 2014; 111(11):3984–3989. https://doi.org/10.1073/pnas.1309723111

32. Massey C, Alpass F, Flett R, Lewis K, Morriss S, Sligo F. Crossing fields: The case of a multi-disciplin-

ary research team. Qualitative Research. 2006; 6(2):131–147. https://doi.org/10.1177/

1468794106062706

33. Wu L, Wang D, Evans JA. Large teams develop and small teams disrupt science and technology.

Nature. 2019; 566(7744):378–382. https://doi.org/10.1038/s41586-019-0941-9 PMID: 30760923

34. Goldman AI, Shaked M. An economic model of scientific activity and truth acquisition. Philosophical

Studies. 1991; 63(1):31–55. https://doi.org/10.1007/BF00375996

35. Kealey T, Nelson RR. The economic laws of scientific research. Macmillan London; 1996.

36. Wu ZX, Rong Z, Yang HX. Impact of heterogeneous activity and community structure on the evolution-

ary success of cooperators in social networks. Physical Review E. 2015; 91(1):012802. https://doi.org/

10.1103/PhysRevE.91.012802 PMID: 25679652

37. Wakeling J, Bak P. Intelligent systems in the context of surrounding environment. Physical Review E.

2001; 64(5):051920. https://doi.org/10.1103/PhysRevE.64.051920 PMID: 11735981

38. Karamched B, Stickler M, Ott W, Lindner B, Kilpatrick ZP, Josić K. Heterogeneity improves speed and

accuracy in social networks. Physical Review Letters. 2020; 125(21):218302. https://doi.org/10.1103/

PhysRevLett.125.218302 PMID: 33274999

39. Durve M, Piro L, Cencini M, Biferale L, Celani A. Collective olfactory search in a turbulent environment.

Physical Review E. 2020; 102(1):012402. https://doi.org/10.1103/PhysRevE.102.012402 PMID:

32794953

40. Dorigo M. Optimization, learning and natural algorithms. PhD Thesis, Politecnico di Milano. 1992;.

41. Dorigo M, Colorni A, Maniezzo V. Distributed optimization by ant colonies; 1991. https://doi.org/10.

1111/j.1476-5381.1991.tb12519.x PMID: 1810600

42. Dorigo M, Maniezzo V, Colorni A. Ant system: optimization by a colony of cooperating agents. IEEE

Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics). 1996; 26(1):29–41. https://doi.

org/10.1109/3477.484436 PMID: 18263004

43. Flood MM. The traveling-salesman problem. Operations research. 1956; 4(1):61–75. https://doi.org/10.

1287/opre.4.1.61

PLOS ONE A model for cooperative scientific research inspired by the ant colony algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0262933 January 27, 2022 10 / 11

https://doi.org/10.1007/BF02458391
https://doi.org/10.1007/BF02458391
https://doi.org/10.1371/journal.pone.0187394
http://www.ncbi.nlm.nih.gov/pubmed/29211744
https://doi.org/10.1016/j.respol.2011.09.007
https://doi.org/10.1073/pnas.1910160117
http://www.ncbi.nlm.nih.gov/pubmed/32430336
https://doi.org/10.1103/PhysRevE.98.062113
https://doi.org/10.1103/PhysRevE.94.022303
http://www.ncbi.nlm.nih.gov/pubmed/27627313
https://doi.org/10.1073/pnas.0400087101
https://doi.org/10.1073/pnas.0400087101
http://www.ncbi.nlm.nih.gov/pubmed/15007165
https://doi.org/10.1103/PhysRevE.64.025102
http://www.ncbi.nlm.nih.gov/pubmed/11497639
https://doi.org/10.1073/pnas.1309723111
https://doi.org/10.1177/1468794106062706
https://doi.org/10.1177/1468794106062706
https://doi.org/10.1038/s41586-019-0941-9
http://www.ncbi.nlm.nih.gov/pubmed/30760923
https://doi.org/10.1007/BF00375996
https://doi.org/10.1103/PhysRevE.91.012802
https://doi.org/10.1103/PhysRevE.91.012802
http://www.ncbi.nlm.nih.gov/pubmed/25679652
https://doi.org/10.1103/PhysRevE.64.051920
http://www.ncbi.nlm.nih.gov/pubmed/11735981
https://doi.org/10.1103/PhysRevLett.125.218302
https://doi.org/10.1103/PhysRevLett.125.218302
http://www.ncbi.nlm.nih.gov/pubmed/33274999
https://doi.org/10.1103/PhysRevE.102.012402
http://www.ncbi.nlm.nih.gov/pubmed/32794953
https://doi.org/10.1111/j.1476-5381.1991.tb12519.x
https://doi.org/10.1111/j.1476-5381.1991.tb12519.x
http://www.ncbi.nlm.nih.gov/pubmed/1810600
https://doi.org/10.1109/3477.484436
https://doi.org/10.1109/3477.484436
http://www.ncbi.nlm.nih.gov/pubmed/18263004
https://doi.org/10.1287/opre.4.1.61
https://doi.org/10.1287/opre.4.1.61
https://doi.org/10.1371/journal.pone.0262933


44. Croes GA. A Method for Solving Traveling-Salesman Problems. Operations Research. 1958; 6(6):791–

812. https://doi.org/10.1287/opre.6.6.791

45. Slade G. Self-avoiding walk on the complete graph; 2019.

46. Li Z. Positive speed self-avoiding walks on graphs with more than one end. Journal of Combinatorial

Theory, Series A. 2020; 175:105257. https://doi.org/10.1016/j.jcta.2020.105257

47. Applegate D, Bixby R, Chvatal V, Cook W. Concorde TSP solver; 2006.
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