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Abstract

Temporal modeling and analysis and more specifically, temporal ordering are very important problems within the fields of
bioinformatics and computational biology, as the temporal analysis of the events characterizing a certain biological process
could provide significant insights into its development and progression. Particularly, in the case of cancer, understanding
the dynamics and the evolution of this disease could lead to better methods for prediction and treatment. In this paper we
tackle, from a computational perspective, the temporal ordering problem, which refers to constructing a sorted collection of
multi-dimensional biological data, collection that reflects an accurate temporal evolution of biological systems. We
introduce a novel approach, based on reinforcement learning, more precisely, on Q-learning, for the biological temporal
ordering problem. The experimental evaluation is performed using several DNA microarray data sets, two of which contain
cancer gene expression data. The obtained solutions are correlated either to the given correct ordering (in the cases where
this is provided for validation), or to the overall survival time of the patients (in the case of the cancer data sets), thus
confirming a good performance of the proposed model and indicating the potential of our proposal.
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Introduction

The progresses from the last decades in the field of biology have

resulted in an exponential increase in the amount of biological

information. Depending on the type and purpose of biological

experiments, the gathered data may vary from nucleotide or

protein sequences, structures or functions, to molecular interac-

tions and metabolic pathways. Analysis of this data reveals

important insights into different biological processes and eventu-

ally leads to a better understanding of living organisms.

Biological processes are mostly dynamic and therefore, in order

to accurately characterize them, scientists need dynamic informa-

tion. However, most existing data is static, because it is often more

difficult and challenging to follow a certain process over its full

development. For instance, in the case of a disease, in certain

situations it is only possible to extract data from a current pool of

patients, rather than following the same patients over the full

course of the disease. Therefore, the need to extract dynamic

information from static data appears and a possible way of

achieving this goal would be to infer temporal orderings to this

data.

In this paper we tackle, from a computational perspective, the

biological temporal ordering (TO) problem, which refers to constructing

a sorted collection of multi-dimensional biological data, collection

that reflects an accurate temporal evolution of a certain biological

process. Cell division and growth, development, cell lineage,

metabolism, or, more particular, certain classes of diseases (like

cancer) are just some examples of such dynamical biological

processes. The multi-dimensional input data may be the result of

various biological experiments: protein expression, DNA micro-

arrays, SNP arrays, chromosomal copy number alterations,

comparative genome hybridization. In this work, we restrict to

considering data sets consisting of samples derived from micro-

array gene expression experiments.

The temporal ordering problem addressed in this paper will be

defined in the following, and the importance of the problem will be

emphasized. We also present several related approaches for

solving the TO problem, already existing in the literature.

The Problem Statement and Relevance
Temporal modeling and analysis and more specifically,

temporal ordering is an important research direction within

multiple fields. From a machine learning perspective, in many

situations, ordering a given data set of instances in time provides

more significant information than assigning them to certain

classes. Therefore, the general problem of temporal ordering is

comparable, as importance, to the classification problem [1].

Within the bioinformatics and computational biology frame-

work, the temporal ordering problem can be expressed in various

forms. One definition of this problem refers to determining and

describing the sequence of events that characterize a biological

process. If the process in question is cancer, for instance, the goal is

to find a temporal order for the genetic and pathway alterations

that occur during the genesis and evolution of this disease. It is

known that most tumors develop on account of malfunctioning of

the complex signaling networks, which is the result of mutations

that appear in certain key genes (oncogenes or tumor suppressor
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genes) [2]. Therefore, studying the order in which these mutations

happen could lead to a better understanding of the evolution of

cancer. Several works exist in the literature that approach the

temporal ordering problem as it was described above and these

will be presented in the following subsection.

The temporal ordering problem can also be formulated as the

problem of constructing a sorted collection of multi-dimensional

biological data, collection that reflects an accurate temporal

evolution of a certain biological process. The final goal is to find

certain patterns in the input data that vary over time and use them

efficiently in order to be able to offer a proper characterization of

the process in question. In what concerns this direction of study,

there are mainly two works that have approached this problem

and these will also be discussed in the following subsection. We

mention that we tackle the temporal ordering problem, formulated

in this second manner.

One of the most significant applications of this problem is within

the field of cancer research. The majority of human cancer

experiments provide data with no temporal information, because

often it is too difficult, or even impossible, to follow the same

patients over the full development of the disease. Instead,

experimental samples are collected from current pools of patients,

whose diseases are at different stages of advancement and

consequently each sample reflects a different degree of cancer

progression. The construction of a correct temporal series of these

samples could, on the one hand, provide meaningful information

about the complex process of cancer evolution. On the other hand,

the temporal order could be used for the prediction of survival

times of newly diagnosed patients: assuming that for the patients in

the initial input data set survival times would be provided, when

new patients, with unknown survival times are added to the data

set, the recovered temporal order for the entire set of samples

(including the newly added ones) could offer information on the

overall life expectancies of the new patients.

Literature Review
The general TO problem is known to be NP-complete [1],

meaning that exact solutions are very difficult to obtain and

therefore various heuristic methods have been applied to solve it.

The general problem has mostly been approached by researchers

of the artificial intelligence community (machine learning, data

mining) [1,3]. Within the data mining field, there are many studies

that extract temporal information from different types of texts

(general, medical, newspaper articles) [4–7]. Other applications

include sorting photos of cities in order to observe their

development over time [8] or building archaeological chronologies

from various artefacts [9].

From the point of view of bioinformatics and computational

biology, different forms of the TO problem have been studied and

a significant number of researches focus on various forms of

cancer. Due to the fact that this disease is an evolutionary process,

which is driven by mutations and alterations of cell behaviour [10],

one important line of work deals with developing models and

inferring temporal orders to describe changes in cancer cells DNA

as well as to determine the order in which gene mutation events

and pathway variations happen during the evolution of cancer.

Several probabilistic models have been proposed in order to

retrieve the temporal and casual order in which mutations happen

on the level of genes and pathways, during cancer progression

[10–12]. In the work of Hjelm et al. [11], the goal is to study

chromosomal evolution in cancer cells by introducing and using

graphical generative probabilistic models. Gerstung et al. [10]

propose a probabilistic model based on bayesian networks, more

specifically on a class of graphical models called Hidden

Conjunctive Bayesian Networks (H-CBNs), which were previously

proposed to study the accumulation of mutations and their

interdependencies in cancer progression [12]. The tests were made

on data sets containing cross-sectional mutation data belonging to

different types of cancer (colorectal, pancreatic and primary

glioblastoma) and the conclusions are that these H-CBNs provide

an intuitive model of tumorigenesis [10].

A different approach to this problem is based on builduing tree

models of possible gene mutation events [13–17]. Desper et al.

[13,14] propose a tree model for oncogenesis and by using

comparative genome hybridization data they show that, under

certain assumptions, their algorithm infers the correct tree of

events (where an event is seen as a loss or a gain on a certain

chromosome arm). Their approach is based on the idea of a

maximum-weight branching in a graph. This proposed method-

ology was further developed by Beerenwinkel et al., whose model

include multiple oncogenetic trees, corresponding to multiple

temporal sequences of events that can lead to cancer [15,16].

Pathare et al. [17] analyze oral cancer progression using both

models: distance trees introduced by Desper et al. [14] and the

mixture of oncogenetic trees introduced by Beerenwinkel et al.

[15,16].

Mathematical approaches have also been proposed to tackle the

problem of identifying the temporal sequence of mutations leading

to cancer progression [18,19]. Attolini et al. [18] introduce an

evolutionary mathematical approach called Retracing the Evolu-

tionary Steps in Cancer (RESIC), in order to identify the temporal

order of gene mutations in cancer development and they test it on

several colorectal cancer, glioblastoma and leukemia data sets.

This method was further developed in [19] in order to

incorporate, besides genetic alterations, modifications of the

molecular signaling pathways by which cancer progresses.

Another important research direction focuses on a different

formulation of the TO problem. Within this line of work, the

problem is to construct a sorted collection of multi-dimensional

biological data that reflects an accurate temporal evolution of a

biological process. We tackle the TO problem from the point of

view of this second definition. To our knowledge, there are mainly

two works that approach the biologiocal TO problem as

formulated above, both of them using gene expression data

obtained from microarray experiments. These will be briefly

presented in the following.

The first technique, which uses cancer gene expression data, is

introduced by Gupta and Bar-Joseph [20]. The authors formally

prove that, under certain biological assumptions on the input data

set, the unique solution of the traveling salesman problem (TSP)

represents the correct temporal ordering, with a high probability.

The TSP is defined using the samples composing the input data

set, which are characterized by multi-dimensional gene expression

data, as vertices and the distances between them are computed

using the Manhattan (L1) metric. The method is applied on a data

set of 50 glioma patients and the results show a good correlation

with the survival duration of the patients. Furthermore, a classifier

that uses the obtained ordering is defined, which proves to

outperform other classifiers developed for the considered task and

key genes that are associated to cancer are identified.

The second study that approaches this form of the biological

TO problem is introduced by Magwene et al. [21] and the

proposed method is based on minimum spanning trees and PQ-

trees. The minimum spanning tree algorithm is applied on a

weighted, undirected graph, where each node is represented by

one instance of the data set, represented by multi-dimensional

microarray data. The efficacy of this method is proven by testing

Temporal Ordering Using Reinforcement Learning
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the algorithms on artificial data sets, as well as on time-series gene

expression data sets derived from DNA microarray experiments.

The main contribution of this paper is that it introduces a novel

approach to the TO problem, formulated as the problem of

constructing a sorted collection of multi-dimensional biological

samples, based on reinforcement learning. Reinforcement learning

[22] is an approach to machine intelligence in which an agent [23]

can learn to behave in a certain way by receiving punishments or

rewards on its chosen actions. To the best of our knowledge, the

TO problem has not been addressed in the literature using

reinforcement learning, so far. Several experiments performed on

different DNA microarray data sets show that the proposed

reinforcement learning based approach successfully identifies

accurate temporal orderings of the given biological samples.

Methods

In this section we introduce our reinforcement learning based

proposal for identifying a temporal ordering of a series of

biological samples. Even though in this study we restrict to gene

expression data obtained from microarray experiments, the

applicability of our method is more general and it can be used

with different types of multi-dimensional biological data.

We start by presenting the fundamentals of reinforcement learning,

then we detail our approach.

Reinforcement learning. Background
The goal of building systems that can adapt to their

environments and learn from their experiences has attracted

researchers from many fields including computer science, math-

ematics, cognitive sciences [22]. Reinforcement Learning (RL) [24] is

an approach to machine intelligence that combines two disciplines

to successfully solve problems that neither discipline can address

individually: Dynamic programming and Supervised learning. In the

machine learning literature, RL is considered to be the most

reliable type of learning, as it is the most similar to human

learning.

Reinforcement learning deals with the problem of how an

autonomous agent that perceives and acts in its environment can

learn to choose optimal actions to achieve its goals [25]. The field

of intelligent agents [26] is an important research and development

area in the artificial intelligence field, agents being considered new

important means in conceptualization and implementation of

complex software systems. An agent is a computational entity such

as a software system or a robot, situated in a certain environnment,

that is able to perceive and act upon its environment and is

capable to act autonoumously in order to meet its design

objectives. Agents are acting in behalf of users, are flexible [27],

meaning that they are reactive (able to respond to changes that

occur in their environment), pro-active (able to exhibit goal directed

behavior) and also have a social ability (are capable of interacting

with other agents).

Reinforcement learning is useful in a lot of practical problems,

such as learning to control autonoumous robots [28], learning to

optimize operatons in factories or learning to play board games. In

all these problems, an artificial agent has to learn (by reinforce-

ment) to choose optimal actions in order to achieve its goals.

In a reinforcement learning scenario, the learning system selects

actions to perform in the environment and receives rewards (or

reinforcements) in the form of numerical values that represent an

evaluation of the selected actions [29]. In RL, the computer is

simply given a goal to achieve. The computer then learns how to

achieve that goal by trial-and-error interactions with its environ-

ment. Reinforcement learning is learning what to do - how to map

situations to actions - so as to maximize a numerical reward. The

learner is not told which actions to take, as in most forms of

machine learning, but instead must discover which actions yield

the highest reward by trying them. In a reinforcement learning

problem, the agent receives the reward as a feedback from the

environment; the reward is received at the end, in a terminal state,

or in any other state, where the agent has correct information

about what he did well or wrong. The agent will learn to select

actions that maximize the received reward.

The agent’s goal, in a RL task is to maximize the sum of the

reinforcements received when starting from some initial state and

proceeding to a terminal state.

A reinforcement learning problem has three fundamental parts

[22].

The environment is represented by ‘‘states’’. By interactions with

the environment, a RL system will learn a function that maps

states to actions.

The reinforcement function. The goal of the reinforcement learning

system is defined using the concept of a reinforcement function,

which is the function of reinforcements the agent tries to

maximize. This function maps state-action pairs to reinforcements.

After an action is performed in a certain state, the agent will

receive an evaluation of the action in a form of a scalar reward.

The agent will learn to perform those actions that will maximize

the total amount of reward received on a path from the initial state

to a final state [30].

The value (utility) function is a mapping from states to state values.

The value of a state indicates the desirability of the state and is

defined as the sum of rewards received on a path from that state to

a final state. The agent will learn to choose the actions that lead to

states having a maximum utility [30].

A general RL task is characterized by four components:

1. a state space S that specifies all possible configurations of the

system;

2. an action space A that lists all available actions for the learning

agent to perform;

3. a transition function d that specifies the possibly stochastic

outcomes of taking each action in any state;

4. a reward function that defines the possible reward of taking each

of the actions.

At each time step, t, the learning system receives some

representation of the environment’s state s, it takes an action a
and one step later it receives a scalar reward rt and finds itself in a

new state s’. The two basic concepts behind reinforcement

learning are trial and error, search and delayed reward [31]. The

agent’s task is to learn a control policy, p : S?A, that maximizes

the expected sum E of the received rewards, with future rewards

discounted exponentially by their delay, where E is defined as

r0zc:r1zc2:r2z::: (0ƒcv1 is the discount factor for the future

rewards).

An important aspect in reinforcement learning is the exploration.

The agent has to be able to explore its environment, by trying new

actions (maybe not the optimal ones) that may lead to better future

action selections [32].

There are two basic RL designs to consider:

N The agent learns a utility function (U) on states (or states histories)

and uses it to select actions that maximize the expected utility

of their outcomes.

N The agent learns an action-value function (Q) giving the expected

utility of taking a given action in a given state. This is called Q-

learning.

Temporal Ordering Using Reinforcement Learning
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An agent that learns utility functions [33] must have a model of

the environment in order to make decisions, as it has to know the

states to which its action will lead. In a Q-learning scenario, in which

the agent learns an action-value function, there is no need to have

a model of the environment.

Our approach. Methodology
Let us consider, in the following, that DS is the input data set,

consisting of n (nw1) multi-dimensional samples:

DS~fS1,S2, . . . ,Sng, each sample being identified by a set of

features. For the considered type of data, each feature is

represented by one gene and has as a value a real number,

measuring the expression level of the gene in question. Therefore,

every sample may be encoded by an m-dimensional vector

Si~(gi1,gi2, . . . ,gim), where gij is the expression level of gene j for

the sample Si.

Our approach consists of two steps:

1. Data pre-processing.

2. RL task design.

In the following we will describe these steps.

Data pre-processing. DNA microarrays allow measuring of

thousands of gene expression levels for each sample, thus the

dimensionality of the input data can be extremely high. Besides the

fact that this might lead to inefficiency in computational time and

space, in most cases, many genes can be irrelevant for the ordering

task and can even increase the amount of noise in the data, leading

to a decrease in the performance of the temporal ordering system.

Therefore, the goal of the pre-processing step is the elimination of

the genes that offer no significant information, or, equivalently, the

selection of those genes that are most important for an accurate

temporal ordering.

As the final goal consists in analyzing and temporally ordering

data sets comprising samples extracted from cancer patients, in the

following, we describe a pre-processing method targeting these

particular types of data sets. Such data sets usually offer a series of

information for each sample, besides the actual gene expression

vectors. One of these extra pieces of information that is regularly

found in cancer data sets is the overall survival, meaning the

survival time of the patients, following the moment in which the

samples were taken. Starting from the intuition that, in the general

case, two patients having similar survival times would also be

relatively close within the temporal ordering, we decided to use

this piece of information for identifying a subset of genes that are

relevant for the ordering task.

During the pre-processing step, a statistical analysis is carried

out on the data set DP in order to find a subset of features (genes)

that are relevant for the considered task. The statistical analysis on

the features is performed in order to reduce the dimensionality of

the input data, by eliminating features that are not correlated with

the selected extra biological information for the given data set.

More exactly we aim at identifying genes that do not significantly

influence the temporal ordering identification.

To determine the dependencies between the features and the

given additional biological information, the Pearson correlation

coefficient is used [34]. The Pearson correlation is a statistical

measure of the linear correlation between two random variables

indicating how highly correlated the variables are. A Pearson

correlation of 0 between two variables X and Y indicates that

there is no linear relationship between the variables. A Pearson

correlation of 1 or {1 results when the two variables being

compared are linearly monotonically related. A Pearson correla-

tion [35] of 1 implies that a linear equation describes the

relationship between X and Y , with all data points lying on a line

for which Y increases as X increases. A correlation of {1 implies

that all data points lie on a line for which Y decreases as X

increases.

As mentioned before, the goal of this step is to remove from the

feature set those features (genes) which are very slightly correlated

with the selected supplementary biological information (which is,

in the case of cancer data sets, the survival time). Consequently, we

compute the Pearson correlation coefficient between each gene

and the survival time and we keep only those genes which have the

absolute value of the correlation greater than a certain threshold E
(E is chosen so as to ensure a radical reduction of dimensionality).

The proposed RL task for the TO problem. As indicated

above, the TO problem consists of determining an accurate

temporal ordering of the input samples, which would reflect the

temporal evolution and development of a certain dynamical

biological process (e.g. cancer). From a computational point of

view, the TO problem can be viewed as the problem of generating

a permutation s of f1,2, . . . ,ng that maximizes the overall

similarity Sim of the sequence of samples considered in the order

s: Ss~(Ss1
,Ss2

, . . . ,Ssn
) (nw1). The overall similarity Sim we

consider in this paper sums the similarities over all adjacent

samples and it has to be maximized.

The overall similarity Sim for the sequence of samples

Ss~(Ss1
,Ss2

, . . . ,Ssn
) is defined as in Equation (1):

Sim(Ss)~
Xn{1

i~1

sim(Ssi
,Ssiz1

) ð1Þ

where sim(xi,xj) denotes the similarity between the m-dimension-

al vectors xi and xj and is defined as sim(xi,xj)~Max{dE(xi,xj).

Here by dE we denote the euclidian distance and Max is a large

constant.

We define the RL task associated to the TO problem as follows:

N The state space S (the agent’s environment) will consist of

nnz1{1

n{1
states, i.e. S~fs1,s2,:::, s

nnz1{1

n{1

g. The initial state of

the agent in the environment is s1. A state sik[S

(ik[f1, . . . ,
nnz1{1

n{1
g) reached by the agent at a given

moment after it has visited states s1,si1 ,si2 ,:::sik{1
and has

selected actions ai1 ,ai2 ,:::aik is a terminal (final or goal) state if

the number of states visited by the agent in the current

sequence is nz1 (i.e. k~n) and all the selected actions are

distinct, i.e. aij=aik , V j,k[f1, . . . ,ng j=k.

N The action space A consists of n actions available to the

problem solving agent and corresponding to the n possible

values 1,2, . . . ,n used to represent a solution (permutation of

f1,2, . . . ,ng) , i . e . A~fa1,a2, . . . ,ang, w h e r e ai~i,
V i[f1, . . . ,ng.

N The transition function d : S?P(S) between the states is

defined as in Formula (2).

d(sj)~
[n
k~1

D(sj ,ak), V j[f1, . . . ,
nn{1

n{1
g, ð2Þ

where D(sj ,ak)~sn:j{nz1zk, V k[f1, . . . ,ng. This means that,

at a given moment, from a state s[S the agent can move in n

successor states, by executing one of the n possible actions. We
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say that a state s’[S that is accessible from state s, i.e.

s’[
S

a[A D(s,a), is the neighbor (successor) state of s.

The transitions between the states are equiprobable, the

transition probability P(s,s’) between a state s and each neighbor

state s’ of s is equal to 1=n, as each state from S has n possible

successor states (see Formula (2)).

N The reward function will be defined below (Formula (3)).

Let us consider a path p in the above defined environment from

the initial to a final state, p~(p0p1p2 � � � pn), where p0~s1 and

V k[f0, . . . ,n{1g the state pkz1 is a neighbor of state pk

(pkz1[d(pk)). Considering the RL task defined above, the

environment may be visualized as a tree. In this tree-like

environment, a path p consists of distinct vertices (states) in which

each adjacent pair of vertices is linked by an arc (action).

The sequence of actions obtained following the transitions

between the successive states from the path p will be denoted by

ap~(ap0
ap1

ap2
� � � apn{1

), where pkz1~D(pk,apk
), V k[f0, . . . ,n{1g.

The sequence ap will be referred to as the action configuration

associated to the path p. The action configuration associated to a path

p gives a sequence of samples Seqp~(Sap0
,Sap1

, . . . ,Sapn{1
).

A path p is called valid if all the actions within its action

configuration are distinct and each sample S from the sequence Seqp

is more similar to the sample that immediately follows it in the

ordered sequence than to any other sample, i.e. apj
=apk

,

V j,k[f0, . . . ,n{1g, j=k and sim(S(api
),S(apiz1

))wsim(S(api
),

S(apj
)), V i[f0, . . . ,n{2g, V j[fiz2, . . . ,n{1g.

The action configuration ap associated to a valid path p can be

viewed as a possible order for the input samples, i.e. a permutation

that gives the temporal ordering Sap0
,Sap1

, . . . ,Sapn{1
of the

considered samples, which should be, to a certain degree,

correlated with the survival time, in the case when the samples

are represented by data extracted from cancer patients. Conse-

quently, we can associate to a valid path p, a value denoted by

Sim(Seqp) representing the overall similarity (see Equation (1)) of

the sequence Seqp~(Sap0
,Sap1

, . . . ,Sapn{1
).

The TO problem formulated as a RL problem will consist of

training the agent to find a path p from the initial to a final state

having the maximum associated overall similarity Sim(Seqp).
After the reinforcement learning process, the agent will learn to

execute those transitions that maximize the sum of rewards

received on a path from the initial to a final state.

We aim at obtaining a valid path p having the maximum overall

similarity of the sequence of samples corresponding to the

associated action configuration ap, hence we define the reinforce-

ment function as follows (Formula (3)):

r(pk)~

0 if k~1

{? p is not valid

sim(Sapk{1
,Sapk{2

) otherwise

8>>><
>>>:

ð3Þ

where by r(pk) we denote the reward received by the agent in state

pk, after its history in the environment is

p~(p0~s1,p1,p2, . . . ,pk{1).

The agent receives a negative reward on paths that are not

valid, therefore it will learn to explore only valid paths.

Considering the reward defined in Formula (3), as the learning

goal is to maximize the total amount of rewards received on a path

from the initial to a final state, it can be shown that the agent is

trained to find a valid path p that maximizes the overall similarity

of the associated ordering.

The learning process. During the training step of the

learning process, the agent will determine its optimal policy in the

environment, i.e. the the mapping from states to actions that

maximizes the sum of the received rewards.

For training the TO agent, we propose a Q-learning approach, in

which the agent learns an action value function, denoted by Q,

function giving the expected utility of taking a given action in a

given state [22]. The idea of the training process is the following.

After the Q values are initialized, during some training episodes,

the agent will experiment (using an action selection mechanism)

some (possible optimal) valid paths from the initial to a final state,

updating the Q-values estimations according to the Q-learning

algorithm [36]. At the end of the training process, the Q-values

estimations will be in the vicinity of the exact values.

The general form of the Q{learning algorithm is given in

Algorithm 1. We denote in the following by Q(s,a) the Q-value

estimate associated to the state s and action a, by a the learning

rate and by c the discount factor.

Algorithm 1. The Q-learning algorithm
The action selection mechanism we have used in the proposed

Q-learning algorithm is derived from the E-Greedy mechanism

[22] and it uses a one step look-ahead procedure in order to guide

the exploration of the search space. When selecting an action from

a given state s, the following selection mechanism is used:

E-Greedy selection. With probability 1{E select the action

a that maximizes the Q-value of the reached neighboring state, i.e.

a~argmaxa[AQ(D(s,a),a).
Look-ahead. With probability E, select the action a that gives

the maximum total similarity of the action configuration

corresponding to the current path.

After the training step of the agent has been completed, the

solution learned by the agent is constructed by starting from the

initial state and following the Greedy mechanism until a solution is

reached. From a given state i, using the Greedy policy, the agent

transitions to a neighbor j of i having the maximum Q-value.

Consequently, the solution of the TO problem reported by the RL

agent is a path p~(s1p1p2 � � � pn) from the initial to a final state,

obtained following the policy described above. It has been proven

that the learned Q-values converge to their optimal values as long

as all state-action pairs are visited an infinite number of times [37].

Consequently, the action configuration ap corresponding to the

path p learned by the TO agent converges, in the limit, to the

optimal time ordering of the samples, Sap0
,Sap1

, . . . ,Sapn{1
, having

the maximum associated overall similarity.

Repeat (for each episode)
Select the initial state s of the agent (as s1).
Choose action a from s using an action selection mechanism (detailed

below).
Repeat (for each step of the episode)

Take action a, observe the reward r(s,a) and the next state s’.
Update the table entry Q(s,a) as follows

Q(s,a)~Q(s,a)za:(r(s,a)zc:max
a’

Q(s’,a’){Q(s,a))

s / s’
until s is terminal

Until the maximum number of episodes is reached or the Q-values do not
change
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Results

In this section we aim at experimentally evaluating our RL-

based approach for solving the TO problem. For the computa-

tional experiments developed in order to test the performance of

our method, we firstly used an artificially generated data set and

then we continued our experiments on several real data sets, which

were chosen for the following reasons:

N They are publicly available.

N They resulted from different types of biological experiments

(yeast cells affected by environmental changes [38], Saccharo-

myces cerevisiae yeast a-factor based synchronization [39],

human cells responding to infection by a bacterial pathogen

[40], brain tumor gene expression data [41]).

N They are either time series (therefore the correct order is

known) or they contain survival time information (correspond-

ing to each sample), which gives us the possibility to validate

our results.

N They have been used in other works which tackled the time

ordering problem, thus allowing us to compare our results with

other results existing in the literature.

Synthetic Data
First, in order to test the ability of our algorithm to determine

accurate orderings, we used synthetic data obtained in the

following way. We have artificially generated a sample data set

consisting of 10 samples, DS~fS1,S2, � � � ,S10g. Table 1 indicates

the randomly generated survival times (in days) associated to the

samples and Table 2 illustrates the similarities between the

samples. The similarity measures were generated so as to be

consistent with the given survival times.

Using the values indicated in Table 2, considering the scores

between the samples as a measure of their similarity, we apply our

previously introduced RL approach in order to find a valid

ordering of the samples S1,S2, . . . S10 having a maximum

associated overall similarity (see Equation (1)).

The maximum value for the overall similarity Sim of valid

solutions is 53.01 and it is obtained in two cases: for the orders

S6S3S10S5S7S9S1S8S4S2 and S2S4S8S1S9S7S5S10S3S6. The

first order is the one that is correlated with the generated survival

times. The solutions were obtained using a backtracking algorithm

and are used for evaluating the RL result.

RL model and results. For the example presented in this

section, we built the states and action spaces of our RL model, in

order to be able to identify the temporal ordering that is correlated

with the survival time, i.e. the valid ordering that maximizes the

overall similarity. The states space will consist of
1011{1

9
states,

while the action space will contain 10 actions, corresponding to the

10 given samples.

For applying the RL model introduced above, we have used a

software framework that we have previously introduced for solving

combinatorial optimization problems using reinforcement learning

techniques [42].

We have trained the TO agent as indicated in the Methods

section of this paper. We remark the following regarding the

parameters setting: the discount factor for the future rewards is

c~0:95; the learning rate is a~0:8; the number of training

episodes is 13000; the modified E-Greedy action selection

mechanism was used with E~0:8. The solution reported after

the training of the TO agent was completed is the optimal valid

ordering, it has the maximum associated overall similarity of 53.01

and was determined starting from state s1, following the Greedy

policy. The learned solution is the temporal ordering that is

correlated with the survival time, that is the path having the

Table 1. The artificially generated survival times associated to the samples.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Survival time
(days)

400 650 60 532 125 21 200 480 310 100

Randomly generated survival times (in days) associated to the samples from the synthetic data set.
doi:10.1371/journal.pone.0060883.t001

Table 2. The similarity scores for the samples from the synthetic data set.

similarity S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

S1 – 4 3.67 3.34 2.68 3.67 5 5 6 3.67

S2 4 – 2.67 5 2.34 2.67 3.34 7 4.01 3.01

S3 3.67 2.67 – 1.67 5 7 4.34 3.67 3.34 7

S4 3.34 5 1.67 – 1.67 1.68 3.68 5.01 3.34 2.35

S5 2.68 2.34 5 1.67 – 4 5 2.34 4 6

S6 3.67 2.67 7 1.68 4 – 3.34 3.67 3 6

S7 5 3.34 4.34 3.68 5 3.34 – 3.68 7 3

S8 5 5 3.67 5.01 2.34 3.67 3.68 – 3.34 5.01

S9 6 4.01 3.34 3.34 4 3 7 3.34 – 3.34

S10 3.67 3.01 7 2.35 6 6 3 5.01 3.34 –

doi:10.1371/journal.pone.0060883.t002
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associated action configuration ap~(2 4 8 1 9 7 5 10 3 6). Here, we

remark that the algorithm may recover the correct ordering, or its

reverse, as it has no way of determining which end of the obtained

permutation is actually the first sample. The correct first sample is

subsequently chosen using the given survival time. The solution

was obtained in less than 2 seconds on a PC at 3 GHz with 4 GB

of RAM.

Figure 1 depicts the overall similarity of the solutions obtained

during the training process, from 100 to 13000 training epochs. It

can be seen how, during the training, the learned solution

converges to the optimal one.

The ordering recovered by our algorithm agreed well with the

survival time following the point when samples were taken.

Figure 2 presents the duration patients survived for the identified

ordering.

Time Series Gene Expression Data
In order to test our method on data with known time orderings,

we used several time series data sets. A time series data set is a

collection of data resulted from a specific type of biological

experiment: samples of tissues are extracted from the same

individual at different, known points in time, during the

progression of the biological process. Thus, for a time series data

set, the exact time of each sample is provided and therefore the

ordering is known.

We present, in the following, several time series data sets and

the results we obtained after applying the proposed RL algorithm.

We mention that, for all the data sets we excluded those genes that

had missing expression levels for certain time points and then we

applied the pre-processing procedure that we previously described,

with a slight modification. Instead of computing the Pearson

correlation coefficient between each feature (gene) and the survival

time (which is inexistent information for the time series case), we

use the available information (the given exact points in time of

each sample) in order to compute the correlation. As threshold

value, we considered E~0:6 and therefore all the genes that had

the absolute value of the Pearson correlation below 0.6 were

removed. The threshold value was chosen rather high because we

intended to significantly reduce the dimensionality of the data.

Yeast Time Series Gene Expression Data. We conducted

the first series of experiments on five data sets, composed of gene

expression data measuring the levels of expression of almost every

yeast gene, as yeast cells were affected by various environmental

changes [38]. The authors tested the response of yeast cells for

several environmental stresses [38], from which we only consider

five conditions: heat shock, DTT exposure, amino acid starvation,

nitrogen depletion and diauxic shift. For each of these, sampling

was made at a different number of points in time and at different

periods of time, this being illustrated in Table 3.

Next, we tested our algorithm on a different yeast time series

data set, described by Spellman et al. [39]. The authors present

several experiments conducted with the aim of identifying cell-

cycle regulated genes of the yeast Saccharomyces cerevisiae [39].

Among these, a time series data set referring to a factor-based

synchronization of the yeast cells is also described. The sampling

was made at every seven minutes and samples were taken at

eighteen time points, as illustrated in Table 3.

Human Time Series Gene Expression Data. Following

the yeast time series, we continued to test the RL based algorithm

on four human gene expression data sets, obtained by Baldwin et

al. during the examination of the response of cultured human

intestinal epithelial cells to infection by a bacterial pathogen

(Listeria monocytogenes) [40]. Each data set is composed of gene

expression data collected at six different time points and the

experiments were made for the wild type, as well as for a bacterial

mutant. These data sets are also presented in Table 3.

Evaluation measure. To be able to compare our results with

other results presented in the literature for the same data sets, as

well as in order to quantify the performance of our RL based

algorithm, we introduce an evaluation measure which assesses the

quality of a solution (ordering) obtained for a data set, with regard

to the correct, known ordering. We define a measure, SMD

(Samples Misplacement Degree), which, in our view, expresses the

misplacement degree of samples in a given ordering (solution).

Table 3. Time series data sets.

Yeast cells affected by environmental changes [38]

Environmental condition Number of time points Sampling period

Heat shock 8 5, 10, 15, 20, 30, 40, 60, 80 (min)

DTT exposure 8 5, 15, 30, 45, 60, 90, 120, 180 (min)

Amino acid starvation 5 0.5, 1, 2, 4, 6 (h)

Nitrogen depletion 10 0.5, 1, 2, 4, 8, 12, 24, 48, 72, 120 (h)

Diauxic shift 7 9.5, 11.5, 13.5, 15.5, 18.5, 20.5 (h)

a factor-based synchronization of the Saccharomyces cerevisiae yeast cells [39]

Number of time points Sampling period

18 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98, 105, 112, 119, 126 (min)

Response of human cells to infection by Listeria monocytogenes [40]

Condition Number of time points Sampling period

Wild type 1 6 0, 30, 60, 120, 240, 480 (min)

Wild type 2 6 0, 30, 60, 120, 240, 480 (min)

Mutant 1 6 0, 30, 60, 120, 240, 480 (min)

Mutant 2 6 0, 30, 60, 120, 240, 480 (min)

Illustration of the yeast and human time series data sets: the condition the cells were exposed to, the number of time points and the sampling period, in minutes (min)
or hours (h).
doi:10.1371/journal.pone.0060883.t003

Temporal Ordering Using Reinforcement Learning

PLOS ONE | www.plosone.org 7 April 2013 | Volume 8 | Issue 4 | e60883



Through its definition, the SMD measure penalizes solutions in

which samples are not in the correct position in the ordering, with

respect to neighboring samples. Hence, for a reported solution, we

compute the associated evaluation measure as the number of

misplaced samples. A sample is defined as being misplaced if its time

point in the correct ordering is not included in the interval having

as bounds the time points of the sample’s neighbors from the

obtained ordering.

Let us consider in the following that Sp~(Sp1
Sp2

. . . Spn
) is an

ordering of the n initial samples S1,S2 . . . Sn, where

p~(p1,p2, . . . ,pn) is a permutation of the set f1,2, . . . ,ng. For

each sample Si, the time point of the sample is known and is

denoted by TP(Si).
Definition 1. (Samples Misplacement Degree - SMD.) The

misplacement degree of samples in the sequence (ordering)

Sp~(Sp1
Sp2

. . . Spn
), denoted by SMD(Sp), is defined as

SMD(Sp)~
Xn

k~1

mis(Spk
) ð4Þ

where mis(Spk
) is 1 if the sample Spk

is misplaced in the ordering and 0

otherwise.

The misplaced function mis is defined as follows:

- As special cases, for the first and last samples in the ordering, we

consider that the sample is misplaced if its time point is neither 1
nor n, i.e. if k~1 or k~n then

mis(Spk
)~

0, if TP(Spk
)~1 or TP(Spk

)~n

1, otherwise

8><
>:

ð5Þ

- For the rest of the samples (excluding the first and the last ones,

i.e. 1vkvn) the misplaced function is defined as

mis(Spk
)~

1, if sgn(TP(Spk
){TP(Spk{1

))~

~sgn(TP(Spk
){TP(Spkz1

))

0, otherwise

8>>><
>>>:

ð6Þ

By sgn we have denoted the signum function.

Based on Definition 1, it can be simply shown that

SMD(Sp)[½0,n�. The evaluation measure SMD for the correct

solution (known ordering) is zero, as in the correct ordering all the

samples are correctly placed (mis(Spk
)~0,V k[f1, � � � ,ng). If there

are misplaced samples in the sequence, then 0vSMD(Sp)ƒn.

Between two different orderings for the same data set, the best

one will always be the one having a lower value of the evaluation

measure. Consequently, smaller values for the SMD (smaller

numbers of misplaced samples) indicate better orderings, this

meaning that the SMD has to be minimized.

It can also be observed that the functions mis and SMD were

defined so as to take into consideration the case in which the

obtained ordering is the reverse of the correct one. For such a

situation, the evaluation measure will also be zero, because the

solutions are time-reversible (the algorithm cannot distinguish

which of the two ends of the ordering is actually the first, without

additional biological information).

Experimental Results
For applying our RL based approach on the data sets presented

above, we have used a software framework that we have previously

introduced for solving combinatorial optimization problems using

reinforcement learning techniques [42].

Concerning the RL parameters, we used the same values as for

the synthetic data test: the discount factor for the future rewards is

c~0:95; the learning rate is a~0:8; the modified �-Greedy action

selection mechanism was used with E~0:8; the number of training

episodes is 13000. The solutions reported in each case, after the

training of the TO agent was completed are the optimal valid

Figure 2. Synthetic data set results: the recovered ordering and
the corresponding survival times. The ordering recovered by our
algorithm agreed well with the survival time following the point when
samples were taken.
doi:10.1371/journal.pone.0060883.g002

Figure 1. Synthetic data set results: the learning process.
Illustration of the overall similarity of the solutions obtained during the
training process, from 100 to 13000 training epochs. It can be seen how,
during the training, the learned solution converges to the optimal one.
doi:10.1371/journal.pone.0060883.g001
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temporal orderings and they were determined starting from the

first state, following the Greedy policy.

For each of the time series data sets described above, Table 4

presents the solution obtained by our RL based temporal ordering

algorithm, the evaluation measure SMD of the ordering, the

computational time, as well as other orderings obtained in the

literature for the same data sets and their corresponding evaluation

measures. The last column of these tables specifies whether our

method leads to better solutions (in terms of correct known

ordering, or of lower values of the evaluation measure), compared

to those that have already been reported in the literature.

We mention that for each of the ten data sets, the correct

orderings are the ones starting with the first sample (corresponding

to the sample extracted at the first point in time) and increasing

consecutively up to the sample which was acquired last. It can be

observed that our algorithm obtained the correct orderings for

seven out of the ten data sets.

Regarding the yeast time series data taken from [38], we remark

that our algorithm retrieved the correct time orderings for four out

of the five considered experiments. For the case when the ordering

was not correct (‘‘nitrogen depletion’’), the algorithm recovered

two blocks, the internal ordering within each of these being

correct. This behaviour could probably be explained by the fact

that the first four samples have been harvested at very close

periods in time (see Table 3), meaning that only very small changes

were displayed with regard to the initial time point. This data set

was also used in the study of Gupta and Bar-Joseph [20]. Out of

the five yeast stress response time series, the results reported in [20]

are correct for three cases. The TSP approach obtained the same

(incorrect) ordering as our RL algorithm for the ‘‘nitrogen

depletion’’ experiment, but for the ‘‘heat shock’’ experiment the

results reported in [20] did not indicate the accurate ordering (but

still retrieved two correctly internally ordered blocks), while our

approach led to the correct result. Therefore, we may conclude

that for this data set our RL based technique outperforms the TSP

heuristic.

Our algorithm was less performant for the Saccharomyces cerevisiae

yeast data set [39]. As can be seen in Table 4, the algorithm

successfully separated the first and the second half of the ordering.

Within the first block, the internal order is correct, but for the

second half it is only partially accurate (samples 10,11,12,13). The

results obtained by Magwene et al. [21] on the same data set are

better: they do not retrieve the correct ordering, but their PQ-tree

method separates the first and the second half of the time course,

each half containing correctly internally ordered samples. These

are also reflected in the values of the evaluation measure, as the

ordering that we retrieved has a higher degree of misplacement of

the samples (5) than the one retrieved in [21] (2).

For the human time series gene expression data set [40], the RL

based approach that we proposed proved to obtain better

orderings than the TSP heuristic presented in [20]. As can be

seen in Table 4, our algorithm obtained the correct orderings in

three out of the four cases (‘‘Wild type 1’’, ‘‘Wild type 2’’, ‘‘Mutant

2’’), while the TSP based algorithm retrieved the known accurate

temporal orderings for only one case (‘‘Wild type 1’’). For the other

three experiments, the TSP algorithm successfully separated the

two halves of the time course, but the internal orderings are not all

accurate. Concerning the experiment ‘‘Mutant 1’’, neither our

approach, nor the TSP method retrieved the correct ordering, but

in terms of the evaluation measure that we have previously

defined, our RL algorithm reported a slightly better solution.

Regarding the computational time, for the smaller data sets

(those containing less than, or exactly 10 samples), our RL based

algorithm obtained the solutions within very short amounts of

time, less than 2 seconds, on a PC at 3 GHz with 4 GB of RAM, in

all nine cases (Table 4). The computational time of our algorithm

Table 4. Results for the time series data sets.

Yeast cells affected by environmental changes

Data set RL recovered ordering (S) SMD (S) Comp. time (sec.)a Ordering recovered
in literature (S’)

SMD (S’) Imprvb

Heat shock 1, 2, 3, 4, 5, 6, 7, 8 0 v2 1, 8, 7, 6, 5, 4, 3, 2 [20] 2 Yes

DTT exposure 1, 2, 3, 4, 5, 6, 7, 8 0 v2 1, 2, 3, 4, 5, 6, 7, 8 [20] 0 Same

Amino acid starvation 1, 2, 3, 4, 5 0 v2 1, 2, 3, 4, 5 [20] 0 Same

Nitrogen depletion 4, 3, 2, 1, 5, 6, 7, 8, 9, 10 2 v2 4, 3, 2, 1, 5, 6, 7, 8, 9,
10 [20]

2 Same

Diauxic shift 1, 2, 3, 4, 5, 6, 7 0 v2 1, 2, 3, 4, 5, 6, 7 [20] 0 Same

a factor-based synchronization of the Saccharomyces cerevisiae yeast cells

1, 2, 3, 4, 5, 6, 7, 8, 9, 17,
14, 15, 16, 18, 10, 11, 12, 13

5 *5 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 18, 17, 16, 15, 14,
13, 12, 11 [21]

2 No

Response of human cells to infection by Listeria monocytogenes

Wild type 1 1, 2, 3, 4, 5, 6 0 v2 1, 2, 3, 4, 5, 6 [20] 0 Same

Wild type 2 1, 2, 3, 4, 5, 6 0 v2 3, 2, 1, 5, 4, 6[20] 4 Yes

Mutant 1 1, 4, 2, 3, 5, 6 2 v2 1, 3, 2, 6, 5, 4 [20] 4 Yes

Mutant 2 1, 2, 3, 4, 5, 6 0 v2 1, 2, 3, 4, 6, 5 [20] 2 Yes

Presentation of the results obtained by our RL based temporal ordering algorithm, the value of the evaluation measure SMD of the ordering, the computational time,
other orderings obtained in the literature for the same data sets and their corresponding evaluation measures. The last column specifies specifies whether our method
leads to better solutions (in terms of correct known ordering, or of lower values of the evaluation measure), compared to those that have already been reported in the
literature.
aComputational time of our algorithm, in seconds.
b‘‘Imprv.’’ is the abbreviation for ‘‘Improvement’’, specifying whether our method obtained an improvement compared to the other methods existing in the literature.
doi:10.1371/journal.pone.0060883.t004
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for the data set composed of 18 samples [39] was low as well -

approximately 5 seconds (Table 4).

As shown in Table 4, the results that we obtained are

comparable with the existing ones and in four cases they are

better than the results that were reported, so far. Moreover,

another advantage of our RL based approach is the low

computational time.

Cancer Expression Data
We also tested our RL based algorithm on a cancer gene

expression data set [41], consisting of high-grade glioma samples:

28 glioblastomas and 22 anaplastic oligodendrogliomas. For each

sample of these two subsets, we are given a series of information:

the gene expression levels for 12625 genes, the vital status of each

patient (alive or dead) and the survival time following the initial

diagnosis or, for living patients, the survival is given to time of last

follow-up [41].

For each of the two subsets (glioblastomas and anaplastic

oligodendrogliomas), we tried to find a separate ordering. Before

testing the RL algorithm, we applied the pre-processing step,

meaning that the Pearson correlation coefficient was computed

between each gene and the survival time, using the same threshold

value as in the case of the time-series data sets: E~0:6. Following

this step, the dimensionality of the input data was significantly

reduced: the input vectors for glioblastoma reached a dimension-

ality of 28 features (genes), while those corresponding to anaplastic

oligodendrogliomas were limited to 41 features. Feature dimen-

sionality reduction methods have also been used in the original

study providing the high-grade glioma samples [41], where the

authors identify a total number of 20 features (10 for each type of

glioma) which are highly correlated with the class distinction of

either glioblastoma or anaplastic oligodendroglioma.

The TO agent was trained using the following parameter

setting: the discount factor for the future rewards is c~0:95; the

learning rate is a~0:8; the number of training episodes is 3:105;

the modified E-Greedy action selection mechanism was used with

E~0:8. Following the training step, the ordering for each glioma

subset was retrieved starting from the first state and following the

Greedy policy. Figure 3 presents the obtained solutions and

indicates the correlation between the orderings and the survival

time of the patients. As mentioned before, the solutions are time-

reversible: the algorithm cannot distinguish which of the two ends

of the ordering is actually the first, therefore this can be

determined using the additional biological information (the

survival time). The orderings are illustrated so that the first sample

is always on the left and the last one on the right. It can be

observed that in both cases the recovered orderings are, up to a

certain extent, well correlated with the overall survival: the

samples in the right half of each graph belong to patients whose

survival times are lower, while the ones in the left half belong to

patients having higher survival times. This is also illustrated in

Table 5, which shows that for both the glioblastomas and the

anaplastic oligodendroglioma data sets the average survival time

value of the left half is significantly higher than the average value

of the right half. The last column of this table indicates the

computational times of out RL algorithm. We mention that the

experiments were conducted on the same hardware configuration,

a PC at 3 GHz with 4 GB of RAM.

Discussion

In this paper we have tackled the biological temporal ordering

problem, defined as the problem of building a temporal ordering

of a set of input samples, characterized by multi-dimensional data,

so as to reflect the evolution and dynamics of a certain biological

process. We have proposed a reinforcement learning based

technique to address this problem, which is generally applicable

to data sets containing instances represented by multi-dimensional

data, that can be temporally ordered.

To experimentally evaluate our approach, we selected a series of

data sets that have already been used in the literature [20,21]. The

results that we obtained are comparable, or in some cases even

better than the results that were reported, so far. Firstly, we tested

our technique on several time series gene expression data sets, in

which the exact time of extraction of each sample is provided and

the temporal orderings are known. The time series data sets we

used belong to yeast and human cells, which are affected by

various external conditions [38–40]. The first two data sets were

also experimented on by Gupta and Bar-Joseph [20], while the

third one was used in the work of Magwene et al. [21]. In order to

quantify and compare our results with the ones existing in the cited

studies, we have also introduced an evaluation measure, which

expresses the degree in which samples are misplaced in a given

ordering.

We note that our RL based algorithm obtained the correct

orderings for seven out of the ten data sets. For three of the data sets

(‘‘yeast cells: heat shock’’, ‘‘human cells - Wild type 2’’ and

‘‘human cells - Mutant 2’’) our approach recovered the correct

ordering, contrary to the one reported by the TSP approach

introduced by Gupta and Bar-Joseph [20]. Moreover, for the

situations when the RL recovered ordering is not the correct one,

we remark that in the case of the ‘‘human cells - Mutant 1’’

experiment, our RL algorithm reported a slightly better solution

than the TSP algorithm, in terms of the evaluation measure we

defined. The only case in which our solution is less performant is

the Saccharomyces cerevisiae yeast data set [39].

Secondly, we evaluated our RL based method on two cancer

gene expression data sets: one composed of 28 glioblastomas and

the second cotaining 22 anaplastic oligodendrogliomas [41]. Based

on an intuitive correlation between the advancement of the disease

and overall survival time of the patients (as cancer progresses, the

life expectancy decreases), we have chosen the survival time as a

measure of validation for the obtained temporal orderings.

Although for the anaplastic oligodendrogliomas data set this

Table 5. Results for the high-grade glioma data sets.

Data set
Number of samples
(time points)

Average of the left
half of the ordering

Average of the right
half of the ordering Computational time (min)

Glioblastomas 28 696.64 288.14 ,30

Anaplastic oligodendrogliomas 22 1057.00 418.90 ,20

For both the glioblastomas and the anaplastic oligodendroglioma data sets the average survival time value of the left half is significantly higher than the average value
of the right half. The last column of this table indicates the computational times of out RL algorithm.
doi:10.1371/journal.pone.0060883.t005
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correlation is stronger, we may state that in both cases, the

retrieved orderings are, up to a certain extent, well correlated with

the survival time.

Regarding the Q-learning based approach that we introduced

for solving the temporal ordering problem, we remark the

following. Considering that the TO agent performs an intelligent

action selection mechanism (the look-ahead procedure), the training

process during an episode has a time complexity of h(n2), where n
is the number of samples considered in the ordering process.

Consequently, assuming that the number of training episodes is k,

the overall complexity of the algorithm for training the TO agent

is h(k:n2). We mention that if the number n of the samples

considered in the temporal ordering problem is large and

consequently the state space becomes very large, in order to store

the Q values estimates, we should use a function approximation

method (e.g. neural network, support vector machine).

Concerning the computational time, we remark that our Q-

learning based approach has a complexity of h(n2), for each

episode, while the TSP approximation algorithm used by Gupta

and Bar-Joseph [20] finds the optimal ordering in O(n3) time,

where n is the number of samples. As in the work of Magwene et al.

[21] an asymptotic analysis of the time complexity is not given, we

cannot provide a detailed comparison.

The methodology that we introduced is general, it can be used

with various types of multi-dimensional biological data, not being

restricted to microarray data. In this work, for the data pre-

processing step, we use certain additional biological information

(given correct ordering - for time series or survival time - for the

cancer sets), but in case these are not available, other types of

biological information may be employed, or, in certain situations,

this step could even be neglected.

The solution to the temporal ordering problem can be used for

a dual purpose. On the one hand, when given a set of data

associated to a certain biological system, a temporal ordering of

this data could offer new insights into the development of the

considered processes. On the other hand, our approach could also

be used to find the correct time points of some given new samples

in a pre-ordered data set. One application for this is within the

field of cancer research: assuming an ordered set of cancer

patients, together with their overall survival time predictions are

given, when new patients, with yet unknown survival times are

added to the data set, a temporal ordering of the new set (including

the new patients) could reveal important information regarding

their life expectancies.

As disadvantages of our approach, we mention that the only

way to reduce the noise that could affect the input data is the pre-

processing step, that uses ‘‘a-priori’’ knowledge on the problem

(i.e. the correct temporal ordering or the given overall survival

time for the biological samples). Another drawback may be the fact

that a large number of training episodes has to be considered for

large problems (large values of n) in order to obtain accurate

results and this leads to a slow convergence. But, as the

experimental results have shown, in order to speed up the

convergence process, good local search mechanisms may be

successfully used. Still, we think that the direction of using

reinforcement learning techniques in solving the temporal

ordering problem is worth being studied and further improve-

ments can lead to more valuable results.

Conclusions

In this paper we have approached, from a computational point

of view, the biological temporal ordering problem and we

proposed a reinforcement learning based approach for solving it.

To our knowledge, this problem has not been addressed in the

literature using reinforcement learning, so far. We have empha-

sized the potential of our proposal, highlighting its advantages and

drawbacks.

We plan to extend the evaluation of the proposed RL model for

some other data sets, to further test its performance. The efficiency

of using different similarity measures between the samples, to

consider different types of biological information, as well as the

problem of noisy data will be analyzed in the future.

From a computational point of view, we will investigate possible

improvements of the RL-based model by: using different

reinforcement functions; adding various local search mechanisms

in order to increase the model’s performance; using function

Figure 3. Recovered temporal orderings and survival times for the high-grade glioma data set. The figure on the left corresponds to the
glioblastomas data set, while the one on the right illustrates the results for the anaplastic oligodendroglioma data set. It can be observed that, in both
cases, the samples in the right half belong to patients whose survival times are lower, while the ones in the left half belong to patients having higher
survival times.
doi:10.1371/journal.pone.0060883.g003
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approximation methods (e.g. neural networks, support vector

machines) to approximate the Q values, for the cases when the

state space becomes very large; considering a decreasing �-Greedy

strategy for the action selection mechanism. An extension of the

TO model to a distributed RL approach will be also considered.
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