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Recently, motor imagery brain-computer interfaces (MI-BCIs) with stimulation

systems have been developed in the field of motor function assistance

and rehabilitation engineering. An e�cient stimulation paradigm and

Electroencephalogram (EEG) decoding method have been designed to

enhance the performance of MI-BCI systems. Therefore, in this study, a

multimodal dual-level stimulation paradigm is designed for lower-limb

rehabilitation training, whereby visual and auditory stimulations act on the

sensory organ while proprioceptive and functional electrical stimulations are

provided to the lower limb. In addition, upper triangle filter bank sparse spatial

pattern (UTFB-SSP) is proposed to automatically select the optimal frequency

sub-bands related to desynchronization rhythm during enhanced imaginary

movement to improve the decoding performance. The e�ectiveness of the

proposed MI-BCI system is demonstrated on an the in-house experimental

dataset and the BCI competition IV IIa dataset. The experimental results show

that the proposed system can e�ectively enhance the MI performance by

inducing the α, β and γ rhythms in lower-limb movement imagery tasks.

KEYWORDS

brain-computer interface, motor imagery, stimulation, group lasso, common spatial

pattern

1. Introduction

Brain-computer interfaces (BCIs) allow people to communicate or control external

devices directly by using information from the brain without relying on the peripheral

nervous system and muscles (Bulárka and Gontean, 2016; Abiri et al., 2019; Jin et al.,

2021; Sun et al., 2021). The BCI technology has exhibited tremendous potential in motor

function assistance and rehabilitation engineering for disabled or stroke patients (Bai

et al., 2020; Mane et al., 2020; Miao et al., 2020). In particular, motor imagery (MI)

BCI systems with stimulation, referred as enhanced MI-BCI, are receiving increasing
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attention in the rehabilitation field because MI-BCI systems

with stimulation can provide a non-invasive and active way to

analyze the relationship between the limbs stimulation and brain

activities (Hwang et al., 2009; Herrador Colmenero et al., 2018;

Vourvopoulos et al., 2019). In the development of the enhanced

MI-BCI system, two major challenges are the paradigm design

of the stimulation and EEG decoding methods.

The performance of a enhanced MI-BCI system is highly

dependent on the stimulation paradigm design. Many external

stimuli, such as visual, auditory, proprioceptive, and functional

electrical stimulation (FES), can provide stimulation from

external devices to the human body and cortex. The remaining

problem is how to design a stimulation paradigm for disabled

or stroke patients to improve the performance of rehabilitation

training (Foong et al., 2019). In recent years, various stimulation

methods have been proposed for motor imagery rehabilitation

training. For instance, in Boord et al. (2010), lower limb

movement imagery BCI with visual stimulation was proposed

to strengthen the desynchronization rhythm during imaginary

movement by watching a video of the legs being raised in

lower limb movement imagery. In McCreadie et al. (2014),

an MI-BCI with auditory stimulation was proposed to explore

the difference in feedback between visual and auditory stimuli,

suggesting that auditory stimulation is the equivalent substitute

of visual stimulation. In Chatterjee et al. (2007), an MI-BCI

with tactile stimulation was designed to help subjects regulate

contralateral imaginary tasks. In Do et al. (2012), a closed-loop

BCI with FES stimulation was used to improve foot function in

stroke survivors. FES stimulation can produce a more accurate

and stronger neural function activation effect in the motor

cortex under the action of patients’ subjective motor imagery.

Furthermore, MI-BCI systems with multimodal stimulation

have also been applied for MI training. In Wang et al. (2019),

a BCI game with visual stimulation and auditory stimulation

was designed to improve patients’ attention focus during

lower-limb rehabilitation training. In Vukelić and Gharabaghi

(2015), a closed-loop BCI with stimulation from visual, haptic,

and proprioceptive modalities was designed to strengthen the

activation characteristics of the sensorimotor cortex of the

brain. In Ono et al. (2018), an MI-BCI system with visual

and proprioceptive stimulation was proposed to enhance motor

imagery ability. This shows that the motor imagery event-related

desynchronization (MI-ERD) power of the subjects accepting

multimodal stimulation, significantly increased after training.

However, the above stimulation paradigms mainly focus on

improving the ability of motor imagery and performance of

enhance MI-BCIs, few of them considering the combination of

multimodal stimulation and effect of stimulation on α, β , and γ

rhythms, respectively.

On the other hand, the effective decoding of EEG signal

is also very important for the enhanced MI-BCI system

performance. Common space pattern (CSP) is one of the most

widely used methods for feature extraction in motor imagery

EEG signal decoding (Blankertz et al., 2007; Barachant et al.,

2010). CSP is designed to learn a spatial filter to extract low-

dimensional features by maximizing the variance of one class

while minimizing the variance of the others. Many extensions

of CSP have been proposed to optimize and improve the

performance of CSP. For example, the filter bank CSP (FBCSP)

was designed to learn spatial filters from multiple frequency

sub-bands and to select the most significant features based

on mutual information (Ang et al., 2008). A regularized CSP

(RCSP) was proposed to obtain more discriminative features

by considering the prior information of the covariance matrices

as regularization criteria (Lotte and Guan, 2010). A sparse CSP

(sCSP) method was designed to learn sparse filters by a greedy

search based generalized eigenvalue decomposition approach

and subset of channels contributes to feature extraction (Goksu

et al., 2011). The correlation-based channel selection RCSP was

designed to select the channels containing the most relevant

information based on Pearson’s correlation coefficient and

efficient spatial features were extracted using regularized general

spatial patterns (Jin et al., 2019). The Riemannian CSP was

proposed to learn spatial features by replacing the Euclidean

mean in the original CSP with the Riemannian mean (Barachant

et al., 2010). Recently, deep learning methods with strong fitting

ability for mass data have been developed for the rapid decoding

of EEG signals using MI-BCI systems (Lawhern et al., 2018).

Graph convolutional neural networks (GCNs-Net) was designed

to filter EEG signals based on functional topological relationship

to learn generalized features using graph convolutional layers

(Lun et al., 2020). Scout EEG source imaging (ESI) with

convolutional neural network (CNN) was proposed to solve

the EEG forward and inverse problems using the technique of

scout EEG source imaging (ESI) to extract features from the

time series of scouts based on the Morlet wavelet approach

(Hou et al., 2020). Both CSP-based methods and deep learning

methods can learn efficient features from EEG signals. However,

the enhanced MI-BCI system, employing a few of the above

methods, can not correctly identify the frequency sub-bands

relevant to the stimulation, which can result in a biased analysis

of stimulation effects.

Although many stimulation paradigms and decoding

methods in MI-BCI systems have been proposed to improve the

performance of motor function rehabilitation, they are mainly

designed for single-modal stimulation or multimodal mixed

stimulations, and only a few of these methods can select the

best frequency sub-bands related to stimulation to classify the

EEG signal. In view of the shortcomings of the above two

challenges, in this study, a multimodal dual-level lower-limb

MI-BCI system is proposed for rehabilitation training, and

an upper triangle filter bank sparse spatial pattern (UTFB-

SSP) is designed to select the optimal frequency sub-bands

and improve the decoding performance. As shown in Figure 1,

the multimodal dual-level stimulation paradigm consists of

the four types of stimulation: visual, auditory, FES, and
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FIGURE 1

The framework of the multi-modal dual-level stimulation paradigm. The visual and auditory stimulations act on the sensory organ while the FES

and tactile stimulations act on the lower limb.

proprioceptive. Notably, the visual and auditory stimulations

directly act on the sensory organ (sensory stimulation), while

FES and proprioceptive stimulations act on the lower limb

(limbs stimulation). In addition, to achieve high decoding

performance, the proposedUTFB-SSPmethod utilizes the group

lasso to automatically select the optimal frequency sub-bands

from the upper triangle filter bank. Recently, similar MI-BCI

systems with multimodal stimulation have also been proposed

for lower-limb rehabilitation training (Ren et al., 2020). In such

systems, the FES was adopted as an additional enhancement

mode to improve the subject’s attention on the associated

lower limb, while the virtual reality (VR) was designed to

provide visual guidance on enhancing imagery abilities. FBCSP

was applied to decode the EEG signal. The main difference

between the proposed method and other similar methods is

that the proposed system can provide a complex and efficient

stimulation paradigm in the form of a dual-level instead of

an overlap-level form. The contributions of this study are

as follows:

• A multimodal stimulation paradigm was designed to

enhance the MI performance. Visual, auditory, FES, and

proprioceptive stimuli were performed on the sensory

organ and lower limb, respectively.

• A novel UTFB-SSP method was proposed for the analysis

of EEG signals. The UTFB-SSP can identify the optimal

frequency sub-bands related to stimulation as well as

analyze the effects of different stimulations.

• After combining the stimulation paradigm and decoding

method, a multimodal dual-level lower-limb MI-BCI

system was designed to reveal the relation between brain

activity and lower-limb movements.

The remainder of this paper is organized as follows. In

Section 2, the experimental setup and EEG decoding method

are described. In Section 3, an extensive experimental analysis

is presented to demonstrate the effectiveness of the proposed

system. Finally, some conclusions are presented in Section 4.

2. Materials and methods

2.1. Participants

Ten able-bodied male volunteers (aged 22 ± 3) participated

in the study. All of the participants provided written

informed consent.

2.2. Apparatus and instrumentation

As shown in Figure 2A, the hardware structure of the

multimodal dual-level lower-limb MI-BCI system mainly

includes an EEG signal recording subsystem, dual-level

stimulation subsystem, and data processing subsystem.

2.2.1. EEG recording

A 30-channel active Bio-Signal data acquisition system

(Poseidon, China) was used to acquire the EEG signals. The

electrodes were placed on the scalp at locations overlying the

motor cortices. The Pz electrode was used for positioning

according to the specifications of the International 10-20

Electrode System. The ground electrode was placed on AFz

and the reference electrode was placed on the left earlobe. All
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FIGURE 2

The hardware structure and experimental protocol for the proposed BCI system. (A) Hardware structure. (B) Paradigm of experiment 1. (C)

Paradigm of experiment 2.

impedances were maintained below 20 k� at the onset of each

session. The sampling rate was set to 250 Hz.

2.2.2. Audiovisual stimulation

The visual stimulation consisted of a video of the lower

limbs laid down or being raised while the participant performed

the lower limb movement imagery. Auditory stimulation refers

to the notification sound of “Please raise your legs.” In a

motor imagery task, visual and auditory stimulations were

simultaneously played to notify the participant. The human

brain can directly receive audiovisual stimulation to enhance

rhythm desynchronization during motor imagery, which is

referred to as sensory stimulation in this paper.

2.2.3. Proprioceptive stimulation and FES

Proprioceptive stimulation is a single-of-freedom

mechatronic device installed on a wheelchair. During the

motor imagery task, the participant sitting in a wheelchair

places his right leg on electric pedals. When mechatronic

device receives computer commands, it can actively raise the

participant’s right leg using an electric lift pedal. The FES

includes two pairs of self-adhesive surface electrodes fitted

on the right leg of the participant. The frequency of electrical

stimulation was set to 5 Hz, and the voltage amplitude was

set to 5 V. In the motor imagery task, the proprioceptive and

electrical stimulations were simultaneously performed on the

participant’s right legs. They are referred to as limbs stimulation.

2.3. Experimental protocol

To evaluate the performance of multimodal stimulation,

two experiments were designed for a fair comparison. The

lower limb motor imagery experiment without stimulation

was regarded as the control group. The experiment of

lower-limb motor imagery with multimodal stimulation is an

experimental group.

2.3.1. Experiment I: Lower limb motor imagery
without stimulation

The procedure of each trial is shown in Figure 2B. During

the first interval (0–10 s), the screen kept blank. The signal from

the initial 10 s was taken as the baseline. Next, an arrow cue

pointing up or a cross cue presented and kept on the screen for

10–16 s. The cross represented the resting state. The participant

was required to begin imagining the movement of the leg

immediately after the arrow appeared, and participants were

asked to continue with MI until the arrow disappeared from

the screen. The participants rested for a period of 4 s between

the trials. During the trials, they were presented with cues in

random order in blocks of 50 trials, with each cue comprising 25

trials. Each participant completed four blocks, for a total of 100

trials for the arrow and 100 trials for the cross. A single block

lasted for approximately 9 min, and the participant was given

the opportunity to have a 5-min break before proceeding to the

next block of trials. This break allowed the participant to relax

and minimize the potential for fatigue.
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2.3.2. Experiment II: Lower limb motor imagery
with multi-modal stimulation

The structure of each trial is illustrated in Figure 2C. During

the initial interval (0–10 s), the screen remained blank. The

signal from the first 10 s constituted the baseline. Four types

of stimulation were provided during motor imagery. This

stimulation included a video of the leg lift, voice prompt, FES

and pedal lifting the leg. The video of the leg lift appeared

and remained on the screen from 10 to 25 s. The participants

were required to imagine imitating the movement displayed in

the video. The voice prompt was played from 10 to 25 s. The

participant was fitted with two pairs of self-adhesive surface

electrodes on the right lower leg. The FES system provided

electrical stimulation from 10 to 25 s. The electric lift pedal lifted

the right leg from 10 to 25 s. At the end of motor imagery, the

pedal returned to the starting position from 25 to 40 s. Next, a

cross cue appeared and remained on the screen from 40 to 55 s

to allow the participant to rest. The blocks of 40 trials comprised

20 trials for each cue. Each participant completed five blocks, for

a total of 100 trials for the arrow and 100 trials for cross. A single

block lasted for about 15 min, and the participant was given the

opportunity to have a 5-min break before proceeding to the next

block of trials.

2.4. EEG processing algorithm

In this section, a UTFB-SSP is proposed for the decoding

of EEG signals. The UTFB-SSP algorithm is illustrated in

Figure 3. The UTFB-SSP method comprises the following

four progressive stages of feature extraction and classification

for an EEG signal: upper triangle filter bank construction,

spatial feature extraction from each sub-band, feature selection

using the group lasso (GL) (Yuan and Lin, 2006) method,

and classification via the support vector machine (SVM)

classifier.

First, a large frequency band from 4 to 42 Hz is decomposed

into 90 sub-bands, which are arranged in an upper triangle form,

that is,

[4− 8Hz, 4− 12Hz, ..., ..., ..., 4− 42Hz]

[6− 10Hz, 6− 14Hz, ..., ..., 6− 42Hz]

[8− 12Hz, 8− 14Hz, ..., 8− 42Hz]

......

[38− 42Hz].

(1)

The proposed upper triangle filter bank (UTFB) extracts

multiple overlapping sub-bands capturing abundant

information on θ (4–8 Hz), α (8–13 Hz), β (14–30 Hz),

and γ (30–42 Hz) rhythms. Denoting an N-channel

EEG signal recorded from an MI-based BCI system as

X(t) ∈ R
N×L, the X(t) are subsequently bandpass-filtered into

90 subfrequency bands.

For Xi(t) corresponding to the i-th sub-band, CSP was

applied to learn the spatial features. The spatial filter matrix

Wi ∈ R
N×Ns of CSP can be learned by maximizing the

variance of the lower-limb movement trials while minimizing

the variance of resting trials

Max/Min J(Wi) =
tr

(

WiTC1 W
i
)

tr
(

WiTC2 W
i
) (2)

where Cj is the arithmetic mean of the covariance matrices of

Xi(t) belonging to class j. The optimal matrixWi is composed of

the eigenvectors ofC−1
2 C1, that correspond to the first

Ns
2 largest

and Ns
2 smallest eigenvalues. Letting zi denote the CSP features

corresponding to the i-th sub-band

zi = diag
(

WiTXiXiTWi
)

(3)

The CSP features from all sub-bands are then merged into a

high-dimensional vector, u = [z1, z2, . . . , z90].

FIGURE 3

Architecture of UTFB-SSP algorithm. 1) Upper triangle band-pass filter; 2) CSP feature extraction from each sub-band; 3) Extraction of features

via group lasso from all sub-bands of CSP features; 4) Classification via SVM classifier.
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Finally, the group lasso was applied to select the crucial

group of CSP features from the high-dimensional vector

u. The group lasso is an extension of the lasso to do

variable selection on (predefined) groups of variables in

linear regression models. It selects the entire group elements

together and a lasso penalty function is applied to the

L2-norm of the coefficients within each group. It force a

whole set of coefficients to become zero, in other words,

to eliminate a whole set of variables. It has the attractive

property that it does variable selection at the group level and

is invariant under (groupwise) orthogonal transformations like

ridge regression. The loss function of the group lasso is expressed

as follows:

min
a

m
∑

i=1

(

yi − aTui

)2
+ λ

k
∑

i=1

‖aGi‖2 (4)

where m and k denote the number of trials and groups,

respectively. The first term of (4) controls the fit of the model to

the data, while the second term controls sparsity of the group.

The coefficient of a represents the weight of the features of

all trials, and the coefficient of aGi represents the weights of

the i-th group features. The parameter λ is used as the group-

wise regularization penalty. After selecting the crucial group

features us by group lasso, the SVM classifier is applied for

classification. The pseudocode for the UTFB-SSP is provided

in Algorithm 1.

Algorithm 1 Upper triangle filter bank sparse spatial

pattern (UTFB-SSP).

Input: Given training datasets Xtr with known classes;

Input: Given test data Xte with unknown classes;

Output: Label y of test data Xte ;

1: Decompose a given frequency band into multi sub-bands based on the upper

triangle form;

2: Apply Butterworth band-pass filter to each sub-band of training and test data;

3: Use Equation (3) to obtain spatial features from training and test data;

4: Merge all CSP features into a high-dimensional vector u;

5: Use Equation (4) to select crucial features us from u;

6: Identify the selected features of test data using the SVM classifier;

FIGURE 4

The mean time-frequency of the lower limb movement imagery with and without stimulation in CPZ electrodes from subject A09 of the

in-house dataset. (A) The rest state imagery without stimulation. (B) Lower limb movement imagery without stimulation. (C) The rest state

imagery with stimulation. (D) Lower limb movement imagery with stimulation.
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FIGURE 5

The mean time-frequency of the lower limb movement imagery with and without stimulation in CPZ electrodes from all subjects of the

in-house dataset. (A) The rest state imagery without stimulation. (B) Lower limb movement imagery without stimulation. (C) The rest state

imagery with stimulation. (D) Lower limb movement imagery with stimulation.

3. Results and discussion

In this section, initially, the data and competing methods

are briefly reviewed. Subsequently, the effectiveness of the dual-

level stimulation paradigm and the performance of the proposed

UTFB-SSP algorithm are evaluated. Finally, an extensive

discussion is provided on enhanced MI-BCI systems.

3.1. Data and algorithm description

Two datasets were used to demonstrate the effectiveness of

the proposed method: an in-house dataset collected from the

experimental protocol in Section 2 and a public dataset fromBCI

competition IV.

1) An in-house dataset was recorded from ten subjects (A01–

A10) who performed experiment1 and experiment2. The

recorded signals consisted of 30 EEG channels. For each

subject, there were two types of EEG for the lower limb

motor imagery and rest conditions, with 70 training and 30

test trials for each EEG condition. Thus, the overall number

of training/test trials for each subject was 140/60.

2) Dataset IIa of BCI competition IV was recorded from

nine subjects (S01–S09) who performed foot motor

imagery tasks and breaks. The recorded signals consisted

of 22 EEG channels. There were 72 training and 72

test trials for each subject and mental task. Thus, the

overall number of training and test trials for each subject

was 144/144.

To evaluate the performance, four competing algorithms for

EEG decoding were used as follows:

1) CSP+SVM: CSP followed by SVM classifier (Barachant

et al., 2010).

2) FBCSP+SVM: FBCSP decomposes the EEG into multiple

sub-bands, extracting the CSP features at each sub-band,

and selecting features based on mutual information, with

SVM performing the classification (Ang et al., 2008).
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FIGURE 6

The topographic map of the spatial filter for the lower limb movement imagery with and without stimulation from subject A09 of in-house

dataset. (A) The rest state imagery without stimulation. (B) Lower limb movement imagery without stimulation. (C) The rest state imagery with

stimulation. (D) Lower limb movement imagery with stimulation.

FIGURE 7

The classification performance of the lower limb movement

imagery with and without stimulation for θ , α, β, and γ rhythms.

3) ESI+CNN: This approach combines the scout EEG source

imaging (ESI) technique with a convolutional neural

network (CNN) for the classification of motor imagery

(MI) tasks (Hou et al., 2020).

4) GCNs-Net: A graph convolutional neural network for

decoding motor imagery signals (Lun et al., 2020).

5) EEGNet: A compact convolutional neural network for

EEG-based BCIs (Lawhern et al., 2018).

In this study, parameter was determined by cross-

validation. For each subject, the number of CSP spatial

filter was set as {11, 6, 6, 4, 10, 2, 6, 2, 2, 3} for in-

house dataset (without stimulation), {3, 8, 5, 13, 4, 3, 6,

2, 2, 6} for in-house dataset (without stimulation), and {3,

2, 2, 6, 2, 3, 2, 2 ,6} for BCI competition IV dataset.

The group-wise regularization penalty λ was set as {0.8,

0.15, 0.5, 0.15, 0.4, 0.2, 0.75, 0.05, 0.5, 0.2} for in-house

dataset (with stimulation), {0.2, 0.05, 0.05, 0.55, 0.05, 0.05,

0.2, 0.05, 0.9, 0.75} for in-house dataset (with stimulation),

and {0.55, 0.2, 0.3, 0.15, 0.1, 0.7, 0.45, 0.05, 0.85} for BCI

competition IV dataset.
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TABLE 1 Comparison of the accuracies (%) between the proposed algorithm and other methods on the in-house dataset (without stimulation).

Method
Mean Subject

Accuracy A01 A02 A03 A04 A05 A06 A07 A08 A09 A10

UTFB-SSD 75.1 78.3 76.6 73.3 70.0 71.6 81.6 76.6 73.3 76.6 73.3

ESI+CNN 70.9 73.3 71.6 68.3 66.6 68.3 78.3 76.6 68.3 73.3 65.0

GCNs-Net 69.7 71.6 68.3 73.3 68.3 63.3 75.0 71.6 66.6 68.3 71.6

EEGNet 68.4 66.6 70.0 68.3 66.6 65.0 71.6 73.3 68.3 71.6 63.3

CSP+SVM 63.1 61.6 63.3 75.0 61.6 58.3 68.3 60.0 61.6 63.3 58.3

FBCSP+SVM 65.2 68.3 66.6 63.3 63.3 58.3 71.6 61.6 65.0 66.6 68.3

TABLE 2 Comparison of the accuracies (%) between the proposed algorithm and other methods on the in-house dataset (with stimulation).

Method
Mean Subject

Accuracy A01 A02 A03 A04 A05 A06 A07 A08 A09 A10

UTFB-SSD 90.4 96.6 83.3 98.3 83.3 96.6 86.6 93.3 95.0 95.0 76.6

ESI+CNN 85.1 83.3 78.3 91.6 86.6 93.3 86.6 88.3 86.6 81.6 75.0

GCNs-Net 81.9 76.6 68.3 93.3 78.3 85.0 88.3 86.6 83.3 90.0 70.0

EEGNet 80.4 81.6 75.0 86.6 81.6 88.3 75.0 81.6 78.3 83.3 73.3

CSP+SVM 74.9 68.3 66.6 85.0 71.6 86.6 76.6 78.3 75.0 76.6 65.0

FBCSP+SVM 80.1 70.0 75.0 88.3 78.3 93.3 83.3 76.6 81.6 86.6 68.3

TABLE 3 Comparison of the accuracies (%) between the proposed algorithm and other methods on the BCI competition IV dataset.

Method
Mean Subject

Accuracy S01 S02 S03 S04 S05 S06 S07 S08 S09

UTFB-SSD 77.1 81.9 79.1 81.2 90.9 58.3 68.7 93.0 72.2 69.4

ESI+CNN 74.1 79.8 70.1 76.3 86.8 56.2 75.6 83.3 65.9 72.9

GCNs-Net 74.8 74.3 72.9 80.5 81.9 61.1 74.3 88.1 73.6 67.3

EEGNet 73.3 75.6 71.5 76.3 88.8 62.5 70.1 80.5 66.6 68.0

CSP+SVM 71.2 70.1 71.8 74.3 74.3 65.2 72.9 81.9 65.2 65.9

FBCSP+SVM 72.6 76.3 67.3 75.0 79.8 61.8 68.7 82.6 70.1 72.2

TABLE 4 T-test results for the proposed method vs. competing

method.

Paired T-test
Table 1 Table 2 Table 3

p-value p-value p-value

UTFB-SSD vs. ESI+ CNN †† * ∼

UTFB-SSD vs. GCNs-Net †† † ∼

UTFB-SSD vs. EEGNet †† †† *

UTFB-SSD vs. CSP+ SVM †† †† *

UTFB-SSD vs. FBCSP+ SVM †† † *

∼ nonsignificant, *p ≤ 0.05, †p ≤ 0.005, and ††p ≤ 0.001.

3.2. E�ectiveness of dual-level
stimulation paradigm

To demonstrate the benefits of the multimodal dual-level

stimulation paradigm as a powerful tool for enhancing MI

performance, a comparison is provided to analyze the effects of

the proposed stimulation paradigm. Figures 4, 5 shows the time-

frequency diagram of lower limb movement imagery with and

without stimulation. θ waves lie within the range of 4–8 Hz, α

with a rate of change lies between 8 and 13 Hz, β , the rate of

change lies between 13 and 30 Hz. β is the brain wave usually

associated with active thinking, active attention, focus on the
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FIGURE 8

The group coe�cient distribution learned by the proposed method from a typical subject. (A) the subject A09 from in-house dataset without

stimulation. (B) the subject A09 from in-house dataset with stimulation. (C) the subject S07 from BCI competition dataset IIa.

outside world or solving concrete problems and finally the γ

waves which lie within the range of 30 Hz and up. It is thought

that this band reflects the mechanism of consciousness. In this

study, the filtering range cover θ , α, β , and γ rhythms. These

rhythms are the best frequency bands for motor imagery. And

They aremarked in time-frequency diagrams. In the comparison

of (a,b), it is observed that the α rhythm appears in the lower

limb movement imagery without stimulation. In (c,d), it is

observed that the α, β , and γ rhythms appear simultaneously in

the lower limbmovement imagery withmultimodal stimulation.

Combining the results of (a–d), the designed paradigm with

visual, auditory, FES, and proprioceptive stimulations could

greatly enhance the α, β , and γ rhythms to help the brain better

understand lower limb movement imagery.

To enrich the comparison, a topographic map of the

spatial filter was also presented for lower-limb movement

imagery with and without stimulation in Figure 6. Compared

with the spatial filter learned from pure motor imagery

in Figures 6A,B, it is observed that the spatial filter from

the stimulation (Figures 6C,D) has a larger difference in
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FIGURE 9

2D feature distribution of each selected sub-band corresponding to the first and second coe�cient in Figure 8 from a typical subject. (A) the

subject A09 from in-house dataset without stimulation. (B) the subject A09 from in-house dataset with stimulation. (C) the subject S07 from BCI

competition dataset IIa.

the surrounding CPZ electrode area, which is dedicated to

the lower limb imagery movement. More specifically, the

classification performance of lower limb movement imagery

with and without stimulation in θ , α, β , and γ rhythms, is

further demonstrated. Figure 7 shows the mean accuracy of

the A01–A10 subjects on the in-house dataset with respect

to the four rhythms. As shown in Figure 7, the accuracies on

movement imagery with stimulation are significantly higher

than the accuracies on movement imagery without stimulation.

These results reveal that the proposed multimodal stimulation

paradigm can effectively enhanceMI performance in lower-limb

movement imagery.

3.3. Performance of UTFB-SSP algorithm

In this section, the classification performance of the

proposed UTFB-SSP algorithm was further tested for lower-

limb movement imagery decoding. Tables 1, 2 present the

classification accuracies of all the algorithms studied for
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FIGURE 10

The topographic map learned by the three selected sub-bands corresponding to the top three group coe�cients from subjects A01–A10 of the

in-house dataset with stimulation.

lower limb movement imagery with and without stimulation.

The proposed UTFB-SSP achieved mean accuracies of 75.1

and 90.4% for in-house dataset, which are higher than

the four competing algorithms, namely, ESI+CNN, GCNs-

Net, EEGNet, CSP+SVM, and FBCSP+SVM. Especially, in

comparing Tables 1, 2, the accuracies of movement imagery

with stimulation are still higher than the accuracies of

movement imagery without stimulation. It is thus inferred

that multimodal stimulation can help improve the motor

imagery classification performance. In addition, to enhance the

performance comparison, the classification accuracies of the

studied methods are also presented on the public dataset, such

as dataset IIa of BCI competition IV. As shown in Table 3,

the proposed UTFB-SSP algorithm has higher classification

accuracy than the four competing algorithms on the public

dataset. The t-test analysis of Tables 1–3 are shown in Table 4.

Based on the results of the in-house and public datasets, it is

concluded that the proposed UTFB-SSP has higher decoding

ability than the other state-of-the-art algorithms. This high

performance might be attributable in part to the ability of group

lasso in the UTFB-SSP method used to automatically select the

optimal frequency sub-bands from the upper triangle filter bank.

To reveal the method of optimal frequency sub-band

selection using group lasso, an experiment was conducted to

show the group coefficient in sparse selection and 2D feature

distribution. Figure 8 displays the group coefficient distribution

learned by the proposed method from typical subjects A09 and

S07. It is observed that the proposed method can precisely select

a few key frequency sub-bands from the filter bank. For instance,

the sub-bands of 16–28 Hz and 10–24 Hz correspond to subject

A09 with stimulation; sub-bands of 8–12 Hz and 16–20 Hz

correspond to subject A09 without stimulation; and sub-bands

of 8–12 Hz and 12–28 Hz correspond to subject S07 selected by

group lasso in the proposed method. To make it more intuitive,

the discriminative spatial features learned from the selected sub-

bands are presented. Figure 9 shows the 2D feature distribution

of each selected sub-band. For a fair comparison, the full-bands

of 4–42 Hz were also included in the comparison. It is observed

that the feature distribution of the proposed method has a larger

between-class scatter and smaller within-class scatter compared

to the full band of 4–42 Hz. These results indicate that the

features learned by the proposed method have high separability,

supporting the possibility of high classification performance, as

shown in Tables 1–3.

3.4. Relationship of stimulation paradigm
and UTFB-SSP

Finally, the relationship between the stimulation paradigm

and UTFB-SSP method is discussed. Figure 10 shows the

topographic map learned by three selected sub-bands

corresponding to the top three group coefficients from

subjects A01–A10 of the in-house dataset with stimulation. The
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results in Figure 10 indicate that the UTFB-SSP method can

automatically select the optimal frequency sub-bands to cover

the α, β , and γ rhythms. An interesting result in Figure 10 is that

some of the sub-bands selected by the group lasso stretch over

the two rhythms. For example, 10–18 Hz of A02 stretches over

α (8–13 Hz) and β (14–30 Hz). In the previous results, it was

proven that the designed stimulation paradigm can effectively

enhance MI performance by inducing α, β , and γ rhythms

in lower limb movement imagery tasks. Now, the UTFB-SSP

method is recognized for selecting the sub-bands related to the

α, β , and γ rhythms. Therefore, the proposed MI-BCI system

can provide high performance for motor function rehabilitation

after combining the designed stimulation paradigm and the

UTFB-SSP method.

4. Conclusion

In this study, a multimodal dual-level stimulation paradigm

was designed to enhance MI performance and the UTFB-SSP

algorithm was proposed to obtain high decoding performance.

Compared with other competing methods, the proposed UTFB-

SSP method can automatically select the optimal frequency

sub-bands using group lasso. The experimental results on the

in-house dataset and BCI competition dataset IIa demonstrate

the effectiveness of the proposed system. However, rehabilitation

experiments were not considered in this study. Future work

will involve applying the proposed system to patients with

disabilities or stroke patients.
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