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Abstract

Background

Arboviruses represent a threat to global public health. In the Americas, the dengue fever is

endemic. This situation worsens with the introduction of emerging, Zika fever and chikungu-

nya fever, causing epidemics in several countries within the last decade. Hotspot analysis

contributes to understanding the spatial and temporal dynamics in the context of co-circula-

tion of these three arboviral diseases, which have the same vector: Aedes aegypti.

Objective

To analyze the spatial distribution and agreement between the hotspots of the historical

series of reported dengue cases from 2000 to 2014 and the Zika, chikungunya and dengue

cases hotspots from 2015 to 2019 in the city of Rio de Janeiro.

Methods

To identify hotspots, Gi* statistics were calculated for the annual incidence rates of reported

cases of dengue, Zika, and chikungunya by neighborhood. Kendall’s W statistic was used to

analyze the agreement between diseases hotspots.

Results

There was no agreement between the hotspots of the dengue fever historical series (2000–

2014) and those of the emerging Zika fever and chikungunya fever (2015–2019). However,

there was agreement between hotspots of the three arboviral diseases between 2015 and

2019.

Conclusion

The results of this study show the existence of persistent hotspots that need to be prioritized

in public policies for the prevention and control of these diseases. The techniques used with

data from epidemiological surveillance services can help in better understanding of the

dynamics of these diseases wherever they circulate in the world.
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1. Introduction

Arboviruses represent a threat to public health across the world. In the Americas, the dengue

fever circulates endemically, simultaneously with the newly emerged diseases, Zika fever and

chikungunya fever, with epidemics recorded in several countries in the last decade [1, 2].

Other arboviral diseases such as West Nile fever, yellow fever, and Mayaro fever, have also

been recorded and have the potential to spread to urban centers causing explosive epidemics

[1].

Among the main vectors of diseases relevant to public health, the Aedes aegypti and Aedes
albopictus mosquitoes stand out. They are capable of transmitting the virus of dengue, Zika,

chikungunya, yellow fever, and others. Present on all continents, there are still several locations

with favorable conditions for the introduction of these species, which have expanded their geo-

graphic distribution around the world [3].

Understanding the dynamics of arboviral diseases in the context of co-circulation repre-

sents a challenge as it involves host factors such as immunity, mobility and behavior, vectors,

viruses, and the environment. Starting from the premise of the heterogeneous distribution

of arboviral diseases and their determining factors, several studies have been carried out

with the objective of investigating spatial, temporal, or spatiotemporal patterns of these dis-

eases [4–12].

Methods that seek to detect spatial clusters are able to identify areas of greater risk and

increase understanding of the dynamics of certain phenomena. This approach has already

been used for investigation of spatial and temporal patterns of dengue fever and its underlying

factors [4, 6], prospective analysis, monitoring and detection of epidemic processes in real

time [7], and detection and overlapping of hotspots of dengue fever, Zika fever, and chikungu-

nya fever [8–10].

In Mérida, Mexico, Bizanzio et al. [8] evaluated the spatiotemporal overlap between dengue,

Zika, and chikungunya cases. They also investigated whether persistent hotspots with histori-

cal dengue data coincided with hotspots of the emerging diseases, Zika, and chikungunya. In a

similar study, Dzul-Mazanlila et al. [9] analyzed hotspots of these three arboviral diseases in

various cities in Mexico. Another study in Dominican Republic, evaluated the temporal pat-

tern of dengue, Zika, and chikungunya epidemics between 2012 and 2018 [11]. In the city of

Fortaleza, Kazazian et al. [12] evaluated the spatiotemporal dynamics of these three diseases

between 2011 and 2017. Areas of persistent dengue risk in populations with different patterns

of mobility and immunity have been investigated in the city of Rio de Janeiro, [4]. The overlap

of dengue, Zika, and chikungunya clusters during the first occurrence of a triple epidemic

have also been analyzed [10].

With the lack of vaccines for most arboviral diseases [13], with the exception of yellow

fever, the main public health strategies related to these diseases involve vector control and the

organization of health care system for diagnosis and management of suspected cases.

Due to the complexity of the factors involved in the transmission and spread of arboviral

diseases, the spatial and temporal dynamics in the context of co-circulation need to be better

understood in order to support actions for the prevention of these epidemics.

We aimed to describe and analyze the spatial distribution and overlap of hotspots in the his-

torical series of reported cases of dengue fever from 2000 to 2014 with reported cases of Zika

fever and chikungunya fever in the period from 2015 to 2019 in the city of Rio de Janeiro. In

addition to this first objective, we aimed to describe and analyze the spatial distribution and

overlap of hotspots in the context of the co-circulation of the three diseases in the period from

2015 to 2019 in the city of Rio de Janeiro.

PLOS ONE Dengue, Zika and chikungunya hotspots

PLOS ONE | https://doi.org/10.1371/journal.pone.0273980 September 6, 2022 2 / 11

Funding: The authors received no specific funding

for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0273980


2. Materials and methods

The city of Rio de Janeiro is located at 22˚54’23" south latitude and 43˚10’21" west longitude. It

is the second most populated city in the country and the most populous in the state of Rio de

Janeiro, with an estimated population of 6,747,815 in 2020 [14]

With many tourist attractions, the city is home to the only international airport in the state

and receives visitors from other states and countries. It is characterized by an intense popula-

tion movement from other cities, using road and rail transport networks, in search of work

and access to public and private services.

The territory of the city (Fig 1) is administratively divided into 160 neighborhoods, distrib-

uted into five planning areas (AP), according to environmental, historical, geographic and

land use, and occupation characteristics. The APs are subdivided, according to criteria of

homogeneity, into sixteen planning regions [15], designated as AP.

The city of Rio de Janeiro is marked by social, demographic, and environmental heteroge-

neities (S1 Fig). The city has a high municipal human development index (MHDI) (0.799).

The social development index (SDI) is a composite indicator, similar to the MHDI, that col-

lates data on income, sanitation, and schooling, was equal to 0.609 in 2021. This index ranges

from 0 to 1, with 0 being the worst situation and 1 being the best situation. AP 2.1 had the

highest SDI (0.722), while AP 5.4 had an SDI below 0.50. These data are available on the digital

platform of the municipal government of Rio de Janeiro—DATA.RIO [15]. For additional

information regarding this, see S1 Table in the Supporting information.

Fig 1. Map of the city of Rio de Janeiro. Planning areas and their subdivisions.

https://doi.org/10.1371/journal.pone.0273980.g001
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2.1. Data source

All cases of dengue between 2000 and 2019 and of Zika and chikungunya between 2015 and

2019 that were reported to the Information System on Diseases of Compulsory Declaration

(SINAN) were included in the study. The data is aggregated by neighborhoods and by AP and

is available on the website of the Municipal Health Department (http://www.rio.rj.gov.br/web/

sms). The dengue, Zika, and chikungunya are notifiable diseases in Brazil. All suspected cases

of these diseases, as defined by the Brazilian Ministry of Health [16], must be registered with

SINAN to be investigated for infection, according to laboratory or clinical-epidemiological cri-

teria. Each case is either confirmed or, if suspicions did not prove to be true, discarded.

Despite having mostly symptomatic cases, often without laboratory confirmation, data

from SINAN have been used in several studies [10, 17–19] to describe and analyze the dynam-

ics of infectious diseases in populations. Although the data have limitations, they are still repre-

sentative of the trend of these diseases [10]. The digital cartographic grids and data related to

population, slums boundaries, land use, characterization of neighborhoods, and their subdivi-

sions come from the Brazilian Institute of Geography and Statistics and extracted from the

DATA.RIO platform. Annual incidence rates of dengue fever, Zika fever, and chikungunya

fever, were calculated for the study period, considering the number of cases per 100,000

inhabitants.

2.2. Analyses

2.2.1. Identification of hotspots. Gi� statistics were calculated for the annual incidence

rates of reported cases of dengue, Zika, and chikungunya by neighborhoods. In each year, the

neighborhoods that presented Gi� with statistical significance were categorized as hotspots.

This procedure was performed using the GEODA software.

Getis and Ord created local statistics Gi and Gi� that allow for the detection of pockets of spa-
tial association that may not be evident when using global statistics [20]. The Gi� statistic for

each area is defined by the equation:

Gi� ¼
SjWijyj

Sj yj
ð1Þ

where wij is the weighting matrix defined by distance or other neighborhood criteria, and yj is

the value of the random variable in each spatial unit. The difference between Gi and Gi� is that

Gi� includes the value of the study variable observed in the reference unit in the numerator.

The interpretation of this statistic is given through the standardized variable Z(Gi�):

Z Gi�ð Þ ¼
Gi� � EðGi�Þ

DPðGi�Þ
ð2Þ

where E(Gi�) is the expected value of Gi� and DP(Gi�) is its standard deviation. Positive and

significant values of Gi� indicate areas with high values for a given variable surrounded by

neighbors with high values (hotspots). Negative and significant values of Gi� indicate areas

with low values surrounded by neighbors with low values (coldspots) [20]. Thematic maps

were constructed indicating the classification of neighborhoods, according to the number of

hotspots and coldspots per period. These procedures were performed using QGIS 3.10.4

software.

2.2.2. Agreement analyses. Kendall’s W statistic assesses the agreement among ordinal

variables and can range from 0 (no agreement) to 1 (perfect agreement) [21]. Kendall’s W sta-

tistic was calculated for the following analyses:
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• Analyzing the overlap between the hotspots of the dengue fever historical series (2000 to

2014) with the Zika fever and chikungunya fever hotspots (2015 to 2019)

• Analyzing the overlap between the hotspots of the dengue fever historical series (2000 to

2014), considering only the epidemic years in this period, with the Zika fever and chikungu-

nya fever hotspots (2015 to 2019)

• Analyzing the overlap between dengue, Zika, and chikungunya diseases hotspots during the

co-circulation period (2015 to 2019)

Analyses were performed using the ‘kendall’ command (correct option) from the irr pack-

age of the R software, version 4.0.5.

3. Results

In the city of Rio de Janeiro, between 2000 and 2014, the highest peaks of dengue fever notifi-

cations were observed in 2002, 2008, 2011, and 2012, which corresponded to the epidemic

years (Fig 2). In 2015, there was an increase in dengue cases, and at the end of this year an

increase in Zika cases with an epidemic peak in 2016. This also coincided with the increase in

dengue and chikungunya cases. After 2016, Zika transmission reduced and remained low. In

2019, there was a new increase in chikungunya and dengue cases (Fig 3). See S2 Table for

more information.

Fig 4 shows the presence of dengue incidence rate hotspots in the period between 2000 and

2014 in the following programmatic areas: AP3 (3.1—Ramos, 3.3—Madureira and 3.7 –Ilha

do Governador); AP5 (5.1—Bangu, 5.2—Campo Grande and 5.3—Santa Cruz); AP4 (4.1—

Jacarepaguá, 4.2—Barra da Tijuca); and AP1 (Centro). The S2 Fig shows the spatial distribu-

tion of annual dengue fever hotspots in this period.

Fig 2. Epidemic curve of reported cases of dengue fever in the city of Rio de Janeiro by date of onset of symptoms

2000–2014.

https://doi.org/10.1371/journal.pone.0273980.g002
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Between 2015 and 2019, the presence of dengue, Zika, or chikungunya hotspots was

observed predominantly in neighborhoods located in APs 3 and 5. The neighborhoods that

had the highest number (3 or 4) of hotspots in this period by disease were: dengue—Guaratiba,

(AP 5); chikungunya—Rocha, Jacarezinho, Riachuelo, and Sampaio (AP3); and Zika–Guara-

tiba (AP 5), Grumari (AP4) and Ribeira (AP3) (Fig 5 and S3 Fig).

Table 1 presents Kendall’s W statistic for the hotspot count of dengue incidence rates from

2000 to 2014, as well as for only the dengue epidemic years in the same period. Also presented

in Table 1 is Kendall’s W statistic for the hotspot count of dengue, Zika, and chikungunya inci-

dence rates by neighborhood in the city of Rio de Janeiro from 2015 to 2019. There was no sig-

nificant agreement between the dengue hotspots (historical series from 2000 to 2014) and the

Zika and chikungunya hotspots from 2015 to 2019. However, there was agreement with bor-

derline significance between dengue hotspots from 2000 to 2014 and dengue hotspots between

2015 and 2019 (p = 0.09). There was agreement between the dengue hotspots in the epidemic

years from 2000 to 2014 with the Zika hotspots in the period from 2015 to 2019 (p = 0.09).

There was also a significant agreement between dengue hotspots form the epidemic years in

2000–2014 and the dengue hotspots from 2015–2019 (p = 0.04). There was significant agree-

ment between the hotspots of the incidence rates of dengue, Zika, and chikungunya in the con-

text of co-circulation of the three arboviral diseases in the period from 2015 to 2019 (p<0.001;

Table 1).

Fig 3. Epidemics curves of reported cases of dengue fever, Zika fever, and chikungunya fever, by date of onset symptoms in the city of Rio de

Janeiro. 2015–2019.

https://doi.org/10.1371/journal.pone.0273980.g003
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4. Discussion

In this study, using data provided by epidemiological surveillance services and a set of spatial

analysis techniques, it was possible to identify agreement between the location of hotspots of

the incidence rates of the three diseases (dengue, Zika, and chikungunya) in the period from

2015 to 2019. No agreement was found between the hotspots of the annual incidence rates of

the dengue historical series (2000 to 2014) with the incidence rates of Zika and chikungunya

from 2015 to 2019.

Some authors also found differences between spatial patterns of a historical series of dengue

and other emerging arboviral diseases. Kazazian et al [12] found differences in the spatial pat-

tern of chikungunya with a previous pattern of dengue. Another study carried out in the

Dominican Republic observed spatiotemporal asynchronicity between the three diseases and

concluded that the spatial pattern of dengue cannot be used to predict the location of emerging

arboviral diseases [11]. The authors suggested that in the emergence of a new arbovirus, popu-

lation susceptibility to the virus exerts a greater influence on the occurrence of cases than

other factors associated with the vector, such as meteorological factors. In the city of Rio de

Janeiro, when the co-circulation of dengue, Zika, and chikungunya diseases was recorded for

the first time, it was believed that the entire population would be susceptible to the chikungu-

nya and Zika arboviruses; however, several locations in the city had immunity to dengue due

to the previous circulation of the four serotypes of the virus. Yet Bizanzio et al [8] found a dif-

ferent result in the city of Mérida in Mexico. These authors observed that the first cases of

emerging diseases Zika and chikungunya were recorded in census tracts where dengue hot-

spots were observed in previous years.

Fig 4. Hotspots of the annual incidence rates of reported cases of dengue fever by neighborhood in the city of Rio de Janeiro from

2000 to 2014.

https://doi.org/10.1371/journal.pone.0273980.g004
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From 2000 to 2011, in the years considered an epidemic, different serotypes of the dengue

virus predominated—2002: DENV-3, 2008: DENV-2, 2011: DENV-1 [4]. However, the annual

dengue hotspots in this period were mainly concentrated in AP5 and AP4. In 2012, with the

introduction of the DENV-4 serotype, there was a predominance of hotspots in AP3

Fig 5. Hotspots of the annual incidence rates of reported cases of dengue fever, Zika fever, and chikungunya fever, by neighborhood in the city of Rio de

Janeiro from 2015 to 2019. A–Number of hotspots. B–Hotspots observed by disease and co-circulation.

https://doi.org/10.1371/journal.pone.0273980.g005

Table 1. Kendall’s W statistics for the hotspot count of dengue incidence rates from 2000 to 2014; dengue epidemic years for the same period; and dengue, Zika,

and chikungunya incidence rates by neighborhood in the city of Rio de Janeiro from 2015 to 2019.

Zika Chikungunya Dengue

(2015–2019) (2015–2019) (2015–2019)

Hotspots Dengue 0.53 0.51 0.577

(2000–2014) p = 0.29 p = 0.47 p = 0.09

Dengue (epidemic years) 0.58 0.5 0.6

(2000–2014) p = 0.09 p = 0.30 p = 0.04

Dengue 0.72 0.75

(2015–2019) p = 0.00 p = 0.00

Chikungunya 0.74

(2015–2019) p = 0.00

https://doi.org/10.1371/journal.pone.0273980.t001
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neighborhoods. A study pointed out that during epidemics with a predominance of one sero-

type in human cases, the other serotypes remain circulating in the vector population [22]. In

this way, the accumulation of people susceptible to a particular dengue virus serotype in a

locality can favor an increase in cases of the disease [4] and the occurrence of new epidemics.

Regarding the analysis of the overlap from the first record of the triple epidemic from 2015

to 2019, our study found a similar result with two other studies carried out in cities in Mexico,

in which overlap of the clusters of the three arboviral diseases was observed [8, 9]. Other

authors, however, did not find any overlap between the diseases [10–12]. This indicates that

during co-circulation, each arboviral disease would possibly predominate in distinct regions

and that, even if there is an overlap of hotspots in space on an annual scale, these clusters

would have occurred in different months [12]. Although, on a finer temporal scale, these dis-

ease clusters occurred in different months, our analysis suggests the existence of areas with

persistent presence of the vector, predominantly in AP3 and AP5 districts of the city of Rio de

Janeiro.

One study found a predominance of dengue, Zika, and chikungunya clusters in areas of

high population density and low socioeconomic status in the municipality of Rio de Janeiro

[10]. Another study found a negative association between vegetation cover and dengue inci-

dence rates in Bhutan [23]. In the present study, the clusters observed in AP3 are located in

areas with low vegetation cover and high demographic densities. However, clusters were also

observed in neighborhoods with low demographic densities in AP5, coinciding with another

study on dengue in Rio de Janeiro. Therefore, the authors considered that the high risk for

dengue in AP5 could be due to a recent and accelerated urban growth without adequate infra-

structure [4].

In this study, data from passive epidemiological surveillance were used, which excludes sub-

clinical cases that did not seek medical attention, or cases that were not reported. In epidemic

periods, to optimize resources, only a sample of symptomatic cases are confirmed in the labo-

ratory. The aim of this is to identify circulating serotypes in the case of dengue, as well as to

enable the differential diagnosis between the three diseases in the case of their co-circulation.

The similarity between the symptoms of the three arboviral diseases and the absence of labora-

tory confirmation leads to misclassification bias. This fact reinforces the need to improve the

ability of identifying and diagnosing arboviral diseases [19, 24].

Despite these limitations, it was possible to identify areas with persistent circulation of arbo-

viral diseases. These areas need to be prioritized by managers, considering that dengue, Zika,

and chikungunya circulate endemically, in addition to the risk of introducing other arboviral

diseases, such as yellow fever. Techniques used are accessible and can be used by local epidemi-

ological surveillance services to support the planning of effective actions to control the vector

and the disease.
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