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Abstract
Plant functional trait variation in tropical forests results from taxonomic differences 
in phylogeny and associated genetic differences, as well as, phenotypic plastic re-
sponses to the environment. Accounting for the underlying mechanisms driving plant 
functional trait variation is important for understanding the potential rate of change 
of ecosystems since trait acclimation via phenotypic plasticity is very fast compared 
to shifts in community composition and genetic adaptation. We here applied a sta-
tistical technique to decompose the relative roles of phenotypic plasticity, genetic 
adaptation, and phylogenetic constraints. We examined typically obtained plant 
functional traits, such as wood density, plant height, specific leaf area, leaf area, leaf 
thickness, leaf dry mass content, leaf nitrogen content, and leaf phosphorus con-
tent. We assumed that genetic differences in plant functional traits between species 
and genotypes increase with environmental heterogeneity and geographic distance, 
whereas trait variation due to plastic acclimation to the local environment is inde-
pendent of spatial distance between sampling sites. Results suggest that most of the 
observed trait variation could not be explained by the measured environmental vari-
ables, thus indicating a limited potential to predict individual plant traits from com-
monly assessed parameters. However, we found a difference in the response of plant 
functional traits, such that leaf traits varied in response to canopy-light regime and 
nutrient availability, whereas wood traits were related to topoedaphic factors and 
water availability. Our analysis furthermore revealed differences in the functional 
response of coexisting neotropical tree species, which suggests that endemic spe-
cies with conservative ecological strategies might be especially prone to competitive 
exclusion under projected climate change.
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1  | INTRODUC TION

In general, variation of plant functional characteristics should enhance 
a plant's ability to cope with shifts in the local environment as species 
with higher trait variability should exhibit greater trait–environment 
matching than less variable species (Mitchell et al., 2016). Such trait vari-
ation includes plasticity in a species’ characteristics that enhances its 
ability to quickly respond to environmental changes (Fox et al., 2019), 
as well as genotypic adaptation (evolution) in response to environmen-
tal variation over longer timespans (Murren et al., 2015). Consequently, 
species with a high degree of trait plasticity have been found much 
more likely to succeed in a given environment (Hulme, 2008) and, vice 
versa, species showing low plasticity have been found more vulnera-
ble to changing environmental conditions (Sides et al., 2014). Hence, 
accounting for the different underlying mechanisms driving trait varia-
tion, and in particular to differentiate plasticity from other mechanisms 
of trait variation, is important for understanding and accurate model-
ing of vegetation dynamics (Franklin et al., 2020).

The underlying mechanisms driving trait variation in tropical for-
ests are associated with multiple environmental drivers as factors 
shaping species composition, and thus determining associated plant 
functional traits, have been reported to shift across latitudinal and alti-
tudinal gradients (Ackerly & Cornwell, 2007). For instance, it has been 
found that across larger spatial scales abiotic factors, such as tempera-
ture and precipitation, are key determinants of ecosystem processes 
(Cleveland et al., 2011; Taylor et al., 2017). However, at smaller spa-
tial scales other biotic factors, such as competition among coexisting 
tree species, strongly affect ecosystem structure and functioning via 
the composition of the local species pool (Fauset et al., 2012; Taylor 
et  al.,  2015). Accordingly, it has been shown that competition can 
have equally strong impacts on trait expression as the dominant abi-
otic driver (Albert et al., 2010; Le Bagousse Pinguet et al., 2015; Violle 
et al., 2012), which further highlights that it is crucial to account for 
different components driving plant functional trait variation (Jung 
et al., 2010). So far, most studies have been assessing mean-species’ 
trait values compiled from published datasets comprising global 
observations (Freschet et  al.,  2011; Kraft et  al.,  2008; Swenson & 
Enquist, 2007) and thus have been unable to differentiate plant func-
tional responses to multiple and interactive controlling factors (Ackerly 
& Cornwell, 2007; Sides et al., 2014).

Here, we aimed to differentiate the underlying mechanisms 
controlling plant functional trait variation in a tropical forest and to 
quantify respective contributions of multiple and interrelated environ-
mental factors. We compiled a trait dataset from in-situ measurements 
of the following plant functional traits: (a) wood density, as an import-
ant part of the wood-economics spectrum (Chave et al., 2009) associ-
ated with drought tolerance and shade tolerance; (b) maximum plant 
height, as a strategy to enhance light exposure and linked to drought 
vulnerability (Rowland et al., 2015); (c) leaf area, (d) leaf thickness, and 
(e) specific leaf area, which are associated with light capture; (f) leaf dry 
mass, (g) leaf nitrogen content, and (h) leaf phosphorus content, which 
are included in the leaf-economics spectrum (Wright et al., 2004) and 
are related to local soil water and nutrient availability.

For each of the plant functional traits investigated in this study, 
we aimed to differentiate respective components of trait varia-
tion, in particular, the amount of phenotypic plasticity versus other 
components, including genetic adaptation and species turnover 
between sample sites. Although phenotypic plasticity is influenced 
by many different factors, here we focus on a particularly relevant 
aspect with respect to climate change (i.e., trait plasticity driven by 
environmental variation). We evaluated respective components of 
trait variation based on the underlying driving factors, that is, local 
environmental heterogeneity independent of geographic distance 
among study sites (i.e., the pure environmental factor), spatial dis-
tance between sample sites, while accounting for environmental 
heterogeneity among study sites (i.e., the pure spatial factor), and 
unknown factors not accounted for in the analysis (i.e., the unex-
plained variation factor). In addition, we tested the hypothesis that 
coexisting neotropical tree species differ in the degree of trait plas-
ticity due to differences in the eco-evolutionary trajectory between 
range-restricted and more widespread species.

2  | MATERIAL AND METHODS

2.1 | Study region

The study was conducted in tropical lowland forests located between 
50 and 450 m a. s. l. in the Área de Conservación Osa (ACOSA) at the 
Pacific slope of southwestern Costa Rica (08.6°N, 83.2°W). The re-
gion was declared a biodiversity hotspot with 700 tree species among 
2,369 species of ferns, fern allies, and flowering plants recorded in 
total (Quesada et al., 1997). The terrain is characterized by parent 
material originating from the Cretaceous, Tertiary, and Quaternary 
(i.e., basalt, alluvium and sediment) and is divided into six different 
landforms (i.e., denudational, volcanic, alluvial, structural, littoral, 
tectonic) and four soil orders (i.e., Entisols, Inceptisols, Mollisols, and 
Ultisols (Lobo,  2016)). The dominating, highly weathered, strongly 
acidic Ultisols on ridges and upper slopes are replaced by younger, 
moderately weathered Inceptisols in ravines and lower slopes and 
little developed Mollisols in fluvial deposits (Lobo, 2016). Starting in 
1997, daily climatologic data for temperature and precipitation are 
available from a nearby meteorological weather station located at La 
Gamba field station: https://www.lagam​ba.at/en/tropi​cal-field​-stati​
on/scien​tific​-data-of-the-golfo​-dulce​-regio​n/. Mean annual precipi-
tation for the period 1998–2008 was 5,892 mm, with no month re-
ceiving less than 180 mm on average. The rainy season usually lasts 
from April to December, and the driest months are January to March. 
Mean annual temperature for the period 1998–2008 was 28.0°C and 
ranged between 23.7°C and 33.7°C (Weissenhofer et al., 2008).

2.2 | Environmental variation among sampling sites

In order to account for environmental variation among sampling 
sites and associated effects on trait variation among congeneric tree 

https://www.lagamba.at/en/tropical-field-station/scientific-data-of-the-golfo-dulce-region/
https://www.lagamba.at/en/tropical-field-station/scientific-data-of-the-golfo-dulce-region/
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species, we measured the slope of the forest stand (using a clinom-
eter) and estimated crown exposure to light using an index from 0 to 
5. Moreover, we took geographical coordinates using a GPS device 
(Garmin 60 CSX, with a mean relative standard error of 6 m). Based 
on these coordinates, we extracted bioclimatic variables (at a reso-
lution of ~ 1 km2) from Worldclim (Hijmans et al., 2005), including 
annual mean temperature, mean diurnal temperature range, isother-
mality (ratio of day-to-night temperature oscillation to summer-to-
winter temperature oscillation), annual precipitation, precipitation 
seasonality, and precipitation during warmest quarter.

2.3 | Selection of tropical tree species and plant 
functional traits

A full description of tropical tree species selected for sampling 
of plant functional traits has been reported in a foregoing study 
(Chacón-Madrigal et al., 2018a). Briefly, we selected 34 tree species 
from 14 genera and grouped them into pairs of congeneric species 
(Table  1). Each congeneric pair comprised one narrowly endemic 
species (either restricted to the central and southern Pacific slope 
of Costa Rica or, in some cases, reaching western Panama or the 
Caribbean slope in Costa Rica), and one species distributed more 
widely. From each of the ten selected tree individuals per species 
(n = 335), we collected five fully expanded, mature leaves with no 
signs of damage and one wood core from each tree. For each tree, 
we determined wood density, quantified by wood specific gravity 
(WSG) on a collected wood core, and measured total plant size, that 
is, tree height (Height). For each leaf of each tree, we analyzed four 
functional traits: leaf area (LA), leaf thickness (LT), leaf dry-matter 
content (LDMC), and specific leaf area (SLA) according to stand-
ard protocols (Pérez-Harguindeguy et  al.,  2013). On a pooled leaf 
sample per individual, we further measured leaf nitrogen content 
(LNC) and leaf phosphorus content (LPC). LNC was measured by 
dry combustion using an auto analyzer (Rapid Exceed, Elementar, 
Langenselbold, Germany), and LPC was determined by acid diges-
tion and inductively coupled plasma-optical emission spectros-
copy (ICP-OES) using a spectrometer Optima 8,300 (Perkin Elmer, 
Waltham, US) at the laboratory of the Agronomic Research Center 
(Centro de Investigaciones Agronómicas) of the University of Costa 
Rica (UCR).

2.4 | Theory and assumptions

While functional trait variation and phenotypic plasticity are gov-
erned by complex interactions among genetic and environmental 
factors, here we address solely the component of trait plasticity 
driven by environmental variation. Our approach does not sepa-
rate plasticity from ontogenetic effects or possible micro-scale 
adaptation (Brousseau et al., 2015; Richardson et al., 2014), as this 
was not feasible based on the available dataset. Here, we focus on 
trait variation among sampled tree individuals, while accounting 

for species and intra-specific genetic differences, both of which 
are influenced by the environment but will additionally be affected 
by other factors, such as spatial distance between individuals. 
We here applied a statistical technique to separate environment-
driven plasticity from other sources of trait variation (i.e., spatial 
distance effects) based on the observed variation of plant func-
tional traits sampled from tree individuals occuring at different lo-
cations in the study region. We tried to avoid ontogenetic effects 
on trait variation by selecting only mature individuals (classified as 
such based on their diameter at breast height) and accounted for 
species phylogeny and differences in range size among coexisting 
widespread and congeneric endemic tree species by analyzing spe-
cies mean values.

2.5 | Statistical analysis

Statistical analyses were performed using the R statistical soft-
ware environment and respective packages “cati,” “ecodist,” “fmsb,” 
“lme4,” “vegan” (R Core Team, 2018).

We performed a principal component analysis (PCA) relat-
ing the investigated eight plant functional traits to in-situ ob-
served environmental variables (slope of the forest stands and 
estimated crown exposure to light). In addition, for unmeasured 
climatic variables we extracted Worldclim bioclimatic variables 
(i.e., annual mean temperature, mean diurnal temperature range, 
isothermality (ratio of day-to-night temperature oscillation to 
summer-to-winter oscillation), annual precipitation, precipitation 
seasonality, and precipitation of warmest quarter). We then com-
bined these environmental variables after normalization by means 
of z-scores (first ordination axis explaining 86% of the variation) to 
characterize the mesoclimatic environment of the sampled plant 
functional traits and plotted respective factor loadings for mean 
annual temperature and relative humidity (“Climate”), soil clay, 
sand and silt content (“Soil”), topography (“Slope”), and canopy-
light index (“Light”).

We used linear mixed effects models to test for significant fac-
tors driving plant functional trait variation, while accounting for 
random effects due differences in sites, plot location, species com-
position, and random factors: [lme(factor ~ 1, random=~1|Locality/
Plot/Species/UID)]. To furthermore account for spatial autocor-
relation between sample sites and taxonomic constraints among 
species, we applied multiple regression on distance matrices 
(MRM), which has been used to disentangle the influence of space 
and environmental factors in ecological data (Lichstein, 2006) and 
to relate phylogenetic or functional beta diversity to spatial and en-
vironmental distance (Swenson, 2014). In this study, we used MRM 
to relate a response distance matrix (∂Y) with respective distance 
matrices accounting for environmental, spatial, and interactive ef-
fects. To this end, we calculated correlation coefficients between 
distance matrices of plant functional traits (∂T), environmental 
factors (∂E), and geographic distance (∂S), and partitioned the total 
observed variation into components of pure environment (E), pure 
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spatial distance (S), and spatial distance–environment interaction 
(SxE), respectively. This approach allowed to quantify the relative 
contribution of factors driving plant functional trait variation due 
to (a) the correlation between trait distance matrix and environ-
mental distance matrix (while accounting for spatial autocorrela-
tion), (b) the correlation between trait distance matrix and spatial 
distance matrix (while accounting for environmental heterogene-
ity), and (c) the correlation between the geographic distance matrix 
and environmental distance matrix).

We used variance partitioning to quantify respective amounts of 
variation for each of the plant functional traits, and environmental 
controlling factors, applied one-sided Wilcoxon signed-rank test to 
assess differences in trait medians between the congeneric pairs of 
endemic and widespread tropical tree species, and tested for phy-
logenetic constraints on trait variance for each of the eight plant 
functional traits, that is, wood specific gravity, i.e., wood density 
(WSG), plant height (Height), specific leaf area (SLA), leaf area (LA), 
leaf thickness (LT), leaf dry-matter content (LMDC), leaf nitrogen 
content (LNC), leaf phosphorous content (LPC), by constructing a 
taxonomic dendrogram for the 34 tropical tree species investigated 
in this study.

3  | RESULTS

3.1 | Drivers of plant functional trait variation in 
tropical forests

We quantified relative amounts of variance observed within eight 
plant functional traits obtained from tropical tree individuals located 
in southwestern Costa Rica (Figure 1). Observed variation in plant 
functional traits ranged from 38.0 to 1645 cm2 for LA, from 0.16 
to 0.61  mm for LT, from 66.4 to 236 g/cm2 for SLA, from 195 to 
472 mg/g for LDMC, from 0.26 to 0.86 g/cm3 for WSG, from 1.17% 
to 3.07% for nitrogen content, and from 0.05 to 0.23 mg/g for phos-
phorus content (Table 1). A PCA investigating relationships between 
plant functional traits and environmental factors indicated that leaf 
traits varied in association with canopy light regime and soil nutri-
ent content, whereas wood traits were related to topographic slope 
position and soil water content (Figure 2). Analyzing the underlying 
drivers of these relationships, we found that trait variation was rela-
tively more strongly related to spatial distance, thus often masking 
trait variation in response to environmental factors due to autocor-
relation of space and environment (Table 2).

F I G U R E  1   Study area and sampling sites of neotropical tree species in southwestern Costa Rica (Peninsula de Osa and Golfo Dulce). 
Colored points indicate locations of (1) field stations (purple), (2) endemic tropical tree species (blue), and (3) widespread congeners (yellow) 
surveyed for plant functional traits. Landscape heterogeneity in (a) topography, that is, elevation (in m a.s.l.) and (b) climate, that is, mean 
annual temperature (in °C) and mean annual precipitation (in mm) is displayed according to Hijmans et al. (2005). This figure was reproduced 
from (Chacón-Madrigal et al., 2018a) according to Creative Commons Attribution 4.0 International Public License
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3.2 | Trait variation due to spatial distance and 
environmental factors

We found that the relative amount of explained variation differed 
between the environmental and spatial components of trait varia-
tion identified in this study (Figure 3a). Our findings indicate that 
the relationship between wood density and spatial variation in 
soil texture (p =  .02), slope inclination (p =  .03), light availability 
(p = .02), and climatic drivers (p = .02) was primarily due to spatial 
variation in woody tissue between forest stands, whereas leaf tis-
sue, as well as, leaf chemistry varied in response to environmental 
factors, such as light availability (p = .03 and p = .01, respectively) 
and microclimate (p  =  .03 and p  =  .01, respectively) (Table  2). 
Testing for the direct environmental drivers (Figure 3b) revealed 
that variation in wood density was mostly driven by precipitation 
(p  =  .01), temperature (p  =  .03), and light availability (p  =  .04), 
whereas leaf nitrogen content was mostly driven by precipitation 

(p = .04), and less so by soil nutrient availability (p = .05) and light 
availability (p = .07) (Table 3).

3.3 | Trait variation due to plant life-history 
strategy and taxonomic species diversity

We further found differences in plant functional reaction norms to 
bioclimatic controlling factors (i.e., slopes of trait response versus. en-
vironmental variation) between endemic and widespread tropical tree 
species, when plotting each plant functional trait against the principal 
component of the extracted bioclimatic variables (Figure 4). Although 
we did not find strict significant differences (p < .05) in trait variation 
between endemic and widespread tropical tree species, we found 
that endemic species tended to exhibit higher wood density (p = .08), 
smaller tree size (p =  .08), and higher leaf nitrogen content (p =  .07) 
compared to widespread tropical tree species (Figure 5), which might 

F I G U R E  2   Principal component analysis (PCA) of eight plant functional traits—wood density (WSG), plant height (Height), specific leaf 
area (SLA), leaf area (LA), leaf thickness (LT), leaf dry-matter content (LDMC), leaf nitrogen content (LNC), and leaf phosphorous content 
(LPC)—obtained from 335 tree individuals comprising 34 tree species (point color) classified into endemic and widespread species according 
to differences in range size (point size). Factor loadings reflect (a) in-situ measurements, that is, microclimate (Climate), soil clay, sand, silt 
content (Soil), topography (Slope), and canopy-light index (Light), as well as, (b) bioclimatic variables extracted from Worldclim, that is, 
temperature (red bar), temperature variation (green bar), precipitation (blue bar), and precipitation variation (purple bar)
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Component

Spatial 
variation p value

Environmental 
variation p value

Total 
variation p value

R2 R2 R2

Climate

WSG 0.04 0.02 0.01 0.74 0.04 0.04

Height 0.01 0.54 0.00 0.77 0.01 0.60

SLA 0.01 0.12 0.00 0.13 0.02 0.23

LA 0.01 0.12 0.00 0.15 0.03 0.24

LT 0.01 0.24 0.00 0.65 0.01 0.54

LDMC 0.03 0.24 0.03 0.07 0.04 0.03

LNC 0.00 0.63 0.03 0.05 0.03 0.14

LPC 0.00 0.09 0.02 0.03 0.04 0.13

Soil

WSG 0.03 0.02 0.00 0.32 0.04 0.06

Height 0.00 0.54 0.00 0.74 0.00 0.72

SLA 0.02 0.10 0.00 0.84 0.02 0.26

LA 0.03 0.09 0.01 0.41 0.03 0.18

LT 0.01 0.25 0.01 0.32 0.01 0.34

LDMC 0.01 0.23 0.00 0.74 0.01 0.42

LNC 0.00 0.62 0.00 0.68 0.00 0.81

LPC 0.02 0.11 0.00 0.57 0.02 0.22

Slope

WSG 0.03 0.03 0.00 0.64 0.04 0.04

Height 0.00 0.53 0.01 0.29 0.01 0.52

SLA 0.02 0.11 0.00 0.73 0.02 0.22

LA 0.02 0.11 0.00 0.79 0.03 0.24

LT 0.01 0.24 0.00 0.52 0.01 0.41

LDMC 0.01 0.24 0.00 0.42 0.01 0.35

LNC 0.00 0.64 0.00 0.46 0.01 0.68

LPC 0.02 0.13 0.00 0.59 0.03 0.20

Light

WSG 0.03 0.02 0.00 0.90 0.04 0.06

Height 0.01 0.54 0.01 0.29 0.01 0.38

SLA 0.02 0.12 0.00 0.80 0.02 0.22

LA 0.03 0.10 0.00 0.96 0.03 0.25

LT 0.01 0.25 0.01 0.25 0.02 0.30

LDMC 0.01 0.25 0.00 0.68 0.01 0.46

LNC 0.00 0.64 0.03 0.03 0.04 0.12

LPC 0.01 0.12 0.07 0.01 0.09 0.04

Note: Test statistics represent R2 and p value (p < .05 highlighted in bold) showing significant 
relationships between environmental controlling factors and plant functional traits, while 
separating respective effects of nonplastic (correlation between trait distance matrix and spatial 
distance matrix while accounting for environmental variation), plastic (correlation between trait 
distance matrix and environmental distance matrix while accounting for spatial variation), and 
spatial components (correlation between geographic distance matrix and environmental distance 
matrix while correcting for trait variation).
Abbreviations: Ht, plant height; LA, leaf area; LMDC, leaf dry-matter content; LNC, leaf nitrogen 
content; LPC, leaf phosphorous content; LT, leaf thickness; SLA, specific leaf area; WSG, wood 
density.

TA B L E  2   Results of multiple regression 
on distance matrices (MRM) showing 
significant relationships between distance 
matrices of the observed environmental 
factors (i.e., climate, soil, slope, light) and 
each of the plant functional traits
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reflect differences in plant life-history strategy between endemic and 
widespread tropical tree species. Eventually, we found a significant re-
lationship between phylogenetic distance and functional trait variance 
due to taxonomic relatedness of the sampled tree individuals (belong-
ing to congeneric pairs of widespread and endemic tree species), such 
that a clear phylogenetic pattern was found for tree height, SLA, LA, 
LDMC, and LNC, whereas such pattern was missing for WSG and LPC 
(Figure 6).

4  | DISCUSSION

We applied a statistical technique accounting for multiple and inter-
related components of plant functional trait variation by partition-
ing total observed variation into components uniquely and jointly 
explained by environmental heterogeneity, and spatial distance be-
tween sampling sites. We found (i) significant interactions between 
spatial distance and environmental controlling factors, (ii) different 

F I G U R E  3   Radar plots displaying the relative amount of explained variance in multiple regression on distance matrices between 
respective components accounting for (a) spatial variation (red area), environmental variation (green area), and interaction between space 
and environment (blue area), as well as, for (b) environmental factors, such as soil texture “Soil” (red area), canopy-light index “Light” (yellow 
area), slope position “Slope” (green area), and microclimate “Climate” (blue area), for each of the eight plant functional traits—wood specific 
gravity, i.e., wood density (WSG), plant height (Height), specific leaf area (SLA), leaf area (LA), leaf thickness (LT), leaf dry-matter content 
(LMDC), leaf nitrogen content (N), and leaf phosphorous content (P) investigated in this study

TA B L E  3   Results of multiple linear regression showing the effects of environmental factors

Predictor Intercept Slope Light Soil Temperature Precipitation

Response t-value p-value t-value p-value t-value p-value t-value p-value t-value p-value t-value p-value

WSG −1.80 0.08 0.26 0.80 −2.15 0.04 −0.28 0.78 2.25 0.03 −2.84 0.01

Height 0.42 0.68 −0.17 0.87 1.86 0.07 1.18 0.25 −0.31 0.76 −0.02 0.99

SLA 0.94 0.35 0.13 0.90 0.69 0.50 −0.07 0.94 −0.84 0.41 0.73 0.47

LA 0.07 0.94 0.73 0.47 −1.04 0.31 0.92 0.36 −0.08 0.94 0.37 0.71

LT 1.17 0.25 −0.01 1.00 0.37 0.71 −0.91 0.37 −1.03 0.31 0.84 0.41

LDMC −2.26 0.03 0.07 0.94 −1.14 0.26 1.26 0.22 2.68 0.01 −3.06 0.00

LNC 0.94 0.35 −0.64 0.53 1.86 0.07 2.02 0.05 −1.08 0.29 2.18 0.04

LPC 0.57 0.58 −0.93 0.36 1.99 0.06 0.73 0.47 −0.81 0.43 1.96 0.06

Note: Slope, slope position (Slope), canopy-light index (Light), soil texture (Soil), temperature (Temperature), and rainfall (Precipitation)—on the 
variation in eight plant functional traits. Italic entries represent test statistics, such as t-value (coefficients divided by standard errors) and p-value 
(indicating significant relationships p < .05 in bold). Test statistics represent t-value (coefficients divided by standard errors) and p-value, showing 
significant relationships (p < .05 highlighted in bold) between plant functional traits and each of the environmental controlling factors.
Abbreviations: Height, plant height; LA, leaf area; LMDC, leaf dry-matter content; LT, leaf thickness; LNC, leaf nitrogen content; LPC, leaf phosphorus 
content; SLA, specific leaf area; WSG, wood specific gravity, i.e., wood density.
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environmental controls across plant tissues and associated plant 
functional traits, and (iii) nonuniform functional responses among 
coexisting tropical tree species. We conclude that our current 
understanding of tropical ecosystem functioning in response to 
projected climate change would benefit from accounting for the un-
derlying mechanisms driving plant functional trait variation in tropi-
cal forests.

4.1 | Controls over plant functional trait variation in 
tropical forests

We found that plant functional trait variation is the product of mul-
tiple mechanisms and different drivers, including climate but also 
topoedaphic factors and biotic interactions. In line with our findings, 
it has been reported that trade-offs at the species level were only 

weakly associated with climate and soil conditions when analyzing 
global trait-environment relationships at the global scale (Bruelheide 
et al., 2018), because trait combinations were predominantly filtered 
by local-scale factors such as disturbance, fine-scale soil conditions, 
niche partitioning, and biotic interactions (Grime, 2006). However, 
because both biotic and abiotic factors do not mutually exclusively 
affect trait variation, and usually shift in their relative dominance 
over trait expression across spatial gradients in response to multi-
ple environmental factors, ideally all of these factors should be ac-
counted for when analyzing plant functional trait variation. Here, 
we found that all of the plant functional traits investigated in this 
study varied with both spatial distance and environmental factors 
and therefore applied a statistical method to decompose respective 
components driving trait variation in response to multiple environ-
mental factors, that is, soil texture, canopy-light index, slope posi-
tion, temperature, and rainfall (Figure 3).

F I G U R E  4   Scatterplots depicting the functional response of endemic (red points and regression line) and widespread (green points 
and regression line) tropical tree species to factors loadings of the first principal component of environmental factors (i.e., increasing 
temperature and precipitation variation as presented in Figure 2b), for each of the eight plant functional traits—(a) wood sepcific gravity, i.e., 
wood density (WSG), (b) plant height (Height), (c) specific leaf area (SLA), (d) leaf area (LA), (e) leaf thickness (LT), (f) leaf dry-matter content 
(LMDC), (g) leaf nitrogen content (LNC), and (h) leaf phosphorous content (LPC) investigated in this study
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4.2 | Plant functional trait variation in response to 
environmental factors and spatial distance

Despite a relatively large amount of unexplained variation due to 
factors not accounted for in the analysis (see R2 values in Table 2), we 
were able to identify plant functional trait variation in response to 
environmental heterogeneity among, and spatial distance between 
sampling sites. Recalling our assumption about respective compo-
nents of trait variation, the intra-specific component due to pheno-
typic plasticity between individuals of one species would be driven 
by the heterogeneity of the local environment, independent from 
spatial factors, whereas the inter-specific component due to genetic 
adaptation and species turnover would be expected to increase 
with geographic distance between forest stands. Most strikingly, we 
found this pattern reflected among different plant tissues, such that 
wood traits varied in response to the spatial component and thus 
appear less plastic, while leaf traits were more related to the envi-
ronmental component and thus appear more plastic (Figure 3), both 

of which would be in line with the proposed trade-offs along the 
plant-economics spectrum (Reich, 2014).

4.3 | Plant functional trait variation and the plant-
economics spectrum

Our results, highlighting differences in the strength of relationships 
between respective components and plant tissues, mirror the un-
derlying mechanisms driving trade-offs in relative investment be-
tween canopy and woody tissues in response to multiple limiting 
factors (Townsend et al., 2008). We found that leaf nitrogen content 
and leaf phosphorous content was related to canopy-light regime, 
while wood density and plant height was associated with slope posi-
tion and soil texture (Figure 2). Our results indicate that short-term 
eco-physiological responses at the canopy-level or leaf-level are as-
sociated with canopy-light regime, whereas rather longer-term in-
vestments into woody tissue are related to topoedaphic and climatic 

F I G U R E  5   Boxplots indicating differences between endemic (red dots and boxes) and widespread (green dots and boxes) tropical 
tree species for each of the eight plant functional traits—(a) wood specific gracity, i.e., wood density (WSG), (b) plant height (Height), 
(c) specific leaf area (SLA), (d) leaf area (LA), (e) leaf thickness (LT), (f) leaf dry-matter content (LMDC), (g) leaf nitrogen content (LNC), 
and (h) leaf phosphorous content (LPC) investigated in this study. Test statistics indicate significant differences between endemic and 
widespread species, based on Wilcoxon rank-sum test and p values



     |  3867HOFHANSL et al.

factors (Figure 3). Overall, this confirms our assumption that plant 
functional trait variation is controlled by multiple mechanisms and 
interrelated driving factors, and our findings of trade-offs in relative 
investment between canopy and woody tissues furthermore indi-
cate that along environmental gradients of resource availability spe-
cies should be filtered according to differences in their life-history 
strategy.

4.4 | Plant functional traits and species composition 
across environmental gradients

Our analysis revealed differences in the functional response among 
coexisting neotropical tree species, which suggests that under pro-
jected climate change range-restricted endemic species might be 
more susceptible to competitive exclusion than more widespread 
congeners (Figure  4). Such a differential response of neotropical 
tree species to climate change has been reported in a study indi-
cating a shift to more dry-affiliated taxa across Amazonia, where 
tree communities have become increasingly dominated by large-
statured pioneers, while short-statured taxa decreased over the 
observation period (Esquivel-Muelbert et  al.,  2019). Indeed, we 

here found that endemic species were on average characterized by 
higher wood density and lower leaf nitrogen content compared to 
their widespread congeners (Figure 5). Our findings are in line with 
a foregoing analysis conducted in the same study region, which 
found that range-restricted species with conservative ecological 
strategies were characterized by high wood density and low leaf ni-
trogen content, in comparison to coexisting but more widespread 
species (Chacón-Madrigal et  al.,  2018b). Hence, the observed dif-
ferences in plant functional traits between coexisting widespread 
and congeneric endemic tree species might trigger differences in the 
functional response of tropical plant communities due to differences 
in their eco-evolutionary trajectory and associated ecological life-
history strategy.

According to life-history theory, the physical and chemical 
properties of forest soils determining forest structure and dy-
namics across the Amazon Basin (Quesada et  al.,  2012) shape 
plant-community composition by differentially favoring species 
depending on their life-history strategy (Oliveira et  al.,  2018). In 
particular, while relatively stable environments on flat terrain with 
high clay content and low nutrient availability favor slow-growing 
tree species, more frequently disturbed environments on steep 
terrain with low clay content and high nutrient availability favor 

F I G U R E  6   Taxonomic dendrogram depicting phylogenetic constraints on trait variance for each of the eight plant functional traits, that 
is, wood specific gravity, i.e., wood density (WSG), plant height (Height), specific leaf area (SLA), leaf area (LA), leaf thickness (LT), leaf dry-
matter content (LMDC), leaf nitrogen content (LNC), leaf phosphorous content (LPC) investigated in this study. Branch node color indicates a 
phylogenetically conserved signal among the nodes for 34 tropical tree species). For information about the tree species, please see Table 1
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fast-growing tree species competing for limiting resources (Werner 
& Homeier, 2015). Accordingly, it has been found that tropical plant 
species composition was strongly related to local topoedaphic fac-
tors affecting resource availability (Hofhansl et  al.,  2020), which 
furthermore determined the climate sensitivity of neotropical tree 
species (Hofhansl et  al.,  2014). Hence, the opposed functional re-
sponses between coexisting neotropical tree species found in this 
study might reflect differences in their ability to compete for limiting 
resources, thus suggesting that endemic species might be prone to 
competitive exclusion under projected climate change.

4.5 | Implications for trait-based vegetation models

So far, it has remained elusive to what extent the available informa-
tion on trait variance and trade-offs in life-history strategy among 
coexisting species can be used to derive mathematical models capa-
ble of reliably predicting future ecosystem functioning. On the one 
hand, studies exploring plant functional traits have suggested that a 
classification based on trait co-variations should be a powerful can-
didate for building a new generation of vegetation models capable 
of predicting the response of vegetation to future climate changes 
(Zhao, 2019). On the other hand, studies have found that trait varia-
tion was not predictable because factors other than climate, such as 
site conditions, growth form, and phylogeny were important determi-
nants of the observed trait variation (Yang et al., 2018). Accordingly, 
a trait-based forest model exploring the relative roles of climate and 
plant traits in controlling forest productivity and structure found 
that, while differences in productivity were driven by climate, de-
mographic rates, such as mortality and recruitment, were linked to 
plant traits (Fauset et al., 2019). These findings are in line with our 
observation that multiple and interrelated factors determined plant 
functional trait variation in tropical forests; however, our results also 
indicated that most of the variation in plant functional traits could 
not be explained by the comprehensive set of environmental factors 
analyzed in this study. Potentially, some of this variation could be 
accounted for by other quantifiable, deterministic factors; but our 
findings (of relatively large amounts of unexplained trait variation) 
suggest that interactive effects and nondeterministic factors are 
of similar importance, which would imply that spatial autocorrela-
tion and stochasticity should be accounted for in next-generation 
approaches. Recently, some studies have proposed novel concepts 
based on multi-dimensional hypervolume (Blonder et al., 2014), trait 
probability density (Carmona et al., 2016), and the biochemical niche 
(Peñuelas et al., 2019), thus allowing to more realistically assess plant 
functional responses of hyper-diverse ecosystems to climate change 
(Bartlett et al., 2018). Implementation of the findings presented in 
this study allows to account for different components of trait varia-
tion, which should improve predictions of plant functional response 
spectra to environmental variation and therefore result in more re-
liably projections of ecosystem functioning under future scenarios 
(Franklin et al., 2020).

ACKNOWLEDG MENTS
The authors gratefully acknowledge the support of research assis-
tants helping to establish the plots, field taxonomists determining 
tree species, and research permits granted by Ministerio Ambiente y 
Energía (MINAE). FH, ÅB, UD, and OF gratefully acknowledge fund-
ing from IIASA and the National Member Organizations that support 
the institute. FH would like to express special gratitude to organizers 
and participants of the International  Trait School (CNRS Thematic 
School held in Porquerolles, France, 19-24 May 2019). For further 
information and application to upcoming events, please see the fol-
lowing URL: http://www.cef-cfr.ca/index.php?n=MEmbr​es.Aliso​
nMuns​onPla​ntTra​its?userl​ang=en.

CONFLIC T OF INTERE S T
The authors have no conflicts of interest to declare.

AUTHOR CONTRIBUTION
Florian Hofhansl: Conceptualization (lead); Writing-original 
draft (lead); Writing-review & editing (lead). Eduardo Chacon: 
Conceptualization (supporting); Data curation (lead); Investigation 
(lead); Resources (lead); Validation (lead); Writing-original draft (sup-
porting); Writing-review & editing (supporting). Ake Brännström: 
Conceptualization (supporting); Validation (supporting); Writing-
review & editing (supporting). Ulf Dieckmann: Methodology 
(supporting); Supervision (supporting); Writing-review & edit-
ing (supporting). Oskar Franklin: Conceptualization (supporting); 
Supervision (lead); Writing-original draft (supporting); Writing-
review & editing (supporting).

DATA AVAIL ABILIT Y S TATEMENT
Data used in this analysis have been deposited in the Plant Trait 
Database (https://www.try-db.org/TryWe​b/Home.php) available 
under the following link: https://doi.org/10.17871/​TRY.12 (https://
www.try-db.org/TryWe​b/Data.php#12).

ORCID
Florian Hofhansl   https://orcid.org/0000-0003-0073-0946 
Eduardo Chacón-Madrigal   https://orcid.org/0000-0002-8328-5456
Åke Brännström   https://orcid.org/0000-0001-9862-816X 
Ulf Dieckmann   https://orcid.org/0000-0001-7089-0393 
Oskar Franklin   https://orcid.org/0000-0002-0376-4140 

R E FE R E N C E S
Ackerly, D. D., & Cornwell, W. K. (2007). A trait-based approach to com-

munity assembly: Partitioning of species trait values into within- and 
among-community components. Ecology Letters, 10, 135–145.

Albert, C. H., Thuiller, W., Yoccoz, N. G., Soudant, A., Boucher, F., 
Saccone, P., & Lavorel, S. (2010). Intraspecific functional variability: 
Extent, structure and sources of variation. Journal of Ecology, 98, 
604–613. https://doi.org/10.1111/j.1365-2745.2010.01651.x

Bartlett, M. K., Detto, M., & Pacala, S. W. (2018). Predicting shifts in the 
functional composition of tropical forests under increased drought 
and CO 2from trade-offs among plant hydraulic traits. Ecology 
Letters, 12, 1–11.

http://www.cef-cfr.ca/index.php?n=MEmbres.AlisonMunsonPlantTraits?userlang=en
http://www.cef-cfr.ca/index.php?n=MEmbres.AlisonMunsonPlantTraits?userlang=en
https://www.try-­db.org/TryWeb/Home.php
https://doi.org/10.17871/TRY.12
https://www.try-­db.org/TryWeb/Data.php#12
https://www.try-­db.org/TryWeb/Data.php#12
https://orcid.org/0000-0003-0073-0946
https://orcid.org/0000-0003-0073-0946
https://orcid.org/0000-0002-8328-5456
https://orcid.org/0000-0002-8328-5456
https://orcid.org/0000-0001-9862-816X
https://orcid.org/0000-0001-9862-816X
https://orcid.org/0000-0001-7089-0393
https://orcid.org/0000-0001-7089-0393
https://orcid.org/0000-0002-0376-4140
https://orcid.org/0000-0002-0376-4140
https://doi.org/10.1111/j.1365-2745.2010.01651.x


     |  3869HOFHANSL et al.

Blonder, B., Lamanna, C., Violle, C., & Enquist, B. J. (2014). The n-
dimensional hypervolume. Global Ecology and Biogeography, 23, 
595–609.

Brousseau, L., Foll, M., Scotti-Saintagne, C., & Scotti, I. (2015). Neutral 
and Adaptive Drivers of Microgeographic Genetic Divergence within 
Continuous Populations: The Case of the Neotropical Tree Eperua 
falcata (Aubl.). PLoS ONE, 10(3), e0121394. https://doi.org/10.1371/
journ​al.pone.0121394

Bruelheide, H., Dengler, J., Purschke, O., Lenoir, J., Jiménez-Alfaro, B., 
Hennekens, S. M., & Jandt, U. (2018). Global trait–environment 
relationships of plant communities. Nature Ecology & Evolution, 2, 
1906–1917.

Carmona, C. P., de Bello, F., Mason, N. W. H., & Lepš, J. (2016). Traits 
without borders: integrating functional diversity across scales. 
Trends in Ecology & Evolution, 31, 382–394.

Chacón-Madrigal, E., Wanek, W., Hietz, P., & Dullinger, S. (2018a). Is 
local trait variation related to total range size of tropical trees? 
PLoS ONE, 13, e0193268–e193319. https://doi.org/10.1371/journ​
al.pone.0193268

Chacón-Madrigal, E., Wanek, W., Hietz, P., & Dullinger, S. (2018b). Traits 
indicating a conservative resource strategy are weakly related to 
narrow range size in a group of neotropical trees. Journal of PPEES 
Sources, 32, 30–37. https://doi.org/10.1016/j.ppees.2018.01.003

Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., & Zanne, A. 
E. (2009). Towards a worldwide wood economics spectrum. Ecology 
Letters, 12, 351–366.

Cleveland, C. C., Townsend, A. R., Taylor, P., Alvarez-Clare, S., Bustamante, 
M. M. C., Chuyong, G., & Wieder, W. R. (2011). Relationships among 
net primary productivity, nutrients and climate in tropical rain forest: 
A pan-tropical analysis. Ecology Letters, 14, 939–947.

Esquivel-Muelbert, A., Baker, T. R., Dexter, K. G., Lewis, S. L., Brienen, R. 
J. W., Feldpausch, T. R., Lloyd, J., Monteagudo-Mendoza, A., Arroyo, 
L., Álvarez-Dávila, E., Higuchi, N., Marimon, B. S., Marimon-Junior, 
B. H., Silveira, M., Vilanova, E., Gloor, E., Malhi, Y., Chave, J., Barlow, 
J., … Phillips, O. L. (2019). Compositional response of Amazon for-
ests to climate change. Global Change Biology, 25, 39–56. https://doi.
org/10.1111/gcb.14413

Fauset, S., Baker, T. R., Lewis, S. L., Feldpausch, T. R., Affum-Baffoe, K., 
Foli, E. G., Hamer, K. C., & Swaine, M. D. (2012). Drought-induced 
shifts in the floristic and functional composition of tropical forests in 
Ghana. Ecology Letters, 15, 1120–1129.

Fauset, S., Gloor, M., Fyllas, N., & Earth, O. P. F. I. (2019). Individual-based 
modelling of Amazon forests suggests that climate controls productivity while 
traits control demography. frontiersin.org. doi: 10.3389/feart.2019.00083

Fox, R. J., Donelson, J. M., Schunter, C., Ravasi, T., & Gaitán-Espitia, J. 
D. (2019). Beyond buying time: The role of plasticity in phenotypic 
adaptation to rapid environmental change. Philosophical Transactions 
of the Royal Society of London Series B-Biological Sciences, 374, 
20180174–20180179.

Franklin, O., Harrison, S. P., Dewar, R., Farrior, C. E., Brännström, Å., 
Dieckmann, U., Pietsch, S., Falster, D., Cramer, W., Loreau, M., Wang, 
H., Mäkelä, A., Rebel, K. T., Meron, E., Schymanski, S. J., Rovenskaya, 
E., Stocker, B. D., Zaehle, S., Manzoni, S., … Prentice, I. C. (2020). 
Organizing principles for vegetation dynamics. Nature Plants, 6, 444–
453. https://doi.org/10.1038/s4147​7-020-0655-x

Freschet, G. T., Aerts, R., & Cornelissen, J. H. C. (2011). A plant econom-
ics spectrum of litter decomposability. Functional Ecology, 26, 56–65.

Grime, J. P. (2006). Trait convergence and trait divergence in herba-
ceous plant communities: Mechanisms and consequences. Journal of 
Vegetation Science, 17, 255–260.

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). 
Very high resolution interpolated climate surfaces for global land 
areas. International Journal of Climatology, 25, 1965–1978.

Hofhansl, F., Chacón-Madrigal, E., Fuchslueger, L., Jenking, D., Morera-
Beita, A., Plutzar, C., Silla, F., Andersen, K. M., Buchs, D. M., Dullinger, 
S., Fiedler, K., Franklin, O., Hietz, P., Huber, W., Quesada, C. A., 

Rammig, A., Schrodt, F., Vincent, A. G., Weissenhofer, A., & Wanek, 
W. (2020). Climatic and edaphic controls over tropical forest di-
versity and vegetation carbon storage. Scientific Reports, 10, 5066. 
https://doi.org/10.1038/s4159​8-020-61868​-5

Hofhansl, F., Kobler, J., Ofner, J., Drage, S., Poelz, E.-M., & Wanek, W. 
(2014). Sensitivity of tropical forest aboveground productivity to cli-
mate anomalies in SW Costa Rica. Global Biogeochemical Cycles, 28, 
1437–1454.

Hulme, P. E. (2008). Phenotypic plasticity and plant inva-
sions: Is it all Jack? Functional Ecology, 22, 3–7. https://doi.
org/10.1111/j.1365-2435.2007.01369.x

Jung, V., Violle, C., Mondy, C., Hoffmann, L., & Muller, S. (2010). Intraspecific 
variability and trait-based community assembly. Journal of Ecology, 
98, 1134–1140. https://doi.org/10.1111/j.1365-2745.2010.01687.x

Kraft, N. J. B., Valencia, R., & Ackerly, D. D. (2008). Functional traits 
and niche-based tree community assembly in an Amazonian forest. 
Science, 322, 580–582.

Le Bagousse Pinguet, Y., Börger, L., Quero, J. L., García-Gómez, M., 
Soriano, S., Maestre, F. T., & Gross, N. (2015). Traits of neighbouring 
plants and space limitation determine intraspecific trait variability in 
semi-arid shrublands. Journal of Ecology, 103, 1647–1657.

Lichstein, J. W. (2006). Multiple regression on distance matrices: A multi-
variate spatial analysis tool. Plant Ecology, 188, 117–131. https://doi.
org/10.1007/s1125​8-006-9126-3

Lobo, R. G. (2016). Costa Rican Ecosystems. University of Chicago Press.
Mitchell, R. M., Wright, J. P., & Ames, G. M. (2016). Intraspecific variabil-

ity improves environmental matching, but does not increase ecologi-
cal breadth along a wet-to-dry ecotone. Oikos, 126, 988–995.

Murren, C. J., Auld, J. R., Callahan, H., Ghalambor, C. K., Handelsman, 
C. A., Heskel, M. A., & Schlichting, C. D. (2015). Constraints on the 
evolution of phenotypic plasticity: Limits and costs of phenotype and 
plasticity. Heredity, 115, 293–301.

Oliveira, R. S., Costa, F. R. C., van Baalen, E., de Jonge, A., Bittencourt, 
P. R., Almanza, Y., & Poorter, L. (2018). Embolism resistance drives 
the distribution of Amazonian rainforest tree species along hydro-
topographic gradients. New Phytologist, 221, 1457–1465.

Peñuelas, J., Fernández-Martínez, M., Ciais, P., Jou, D., Piao, S., 
Obersteiner, M., & Sardans, J. (2019). The bioelements, the elemen-
tome, and the biogeochemical niche. Ecology, 26, e02652–e2715.

Pérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., 
Jaureguiberry, P., & Cornelissen, J. H. C. (2013). New handbook for 
standardised measurement of plant functional traits worldwide. 
Australian Journal of Botany, 61, 167–168.

Quesada, C. A., Phillips, O. L., Schwarz, M., Czimczik, C. I., Baker, T. R., 
Patino, S., & Lloyd, J. (2012). Basin-wide variations in Amazon for-
est structure and function are mediated by both soils and climate. 
Biogeosciences, 9, 2203–2246.

Quesada, F. J., Jiménez Madrigal, Q., Zamora Villalobos, N., Aguilar 
Fernández, R., & González, R. J. (1997). Árboles de la Península de Osa. 
Instituto Nacional de Biodiversidad.

R Core Team (2018). R: A language and environment for statistical com-
puting. R Foundation for Statistical Computing. https://www.R-proje​
ct.org/

Reich, P. B. (2014). The world-wide “fast-slow” plant economics spec-
trum: A traits manifesto (H. Cornelissen, Ed.). Journal of Ecology, 102, 
275–301.

Richardson, J. L., Urban, M. C., Bolnick, D. I., & Skelly, D. K. (2014). 
Microgeographic adaptation and the spatial scale of evolution. Trends 
in Ecology and Evolution, 29(3), 165–176. https://doi.org/10.1016/j.
tree.2014.01.002

Rowland, L., da Costa, A. C. L., Galbraith, D. R., Oliveira, R. S., Binks, O. 
J., Oliveira, A. A. R., Pullen, A. M., Doughty, C. E., Metcalfe, D. B., 
Vasconcelos, S. S., Ferreira, L. V., Malhi, Y., Grace, J., Mencuccini, M., 
& Meir, P. (2015). Death from drought in tropical forests is triggered 
by hydraulics not carbon starvation. Nature, https://doi.org/10.1038/
natur​e15539

https://doi.org/10.1371/journal.pone.0121394
https://doi.org/10.1371/journal.pone.0121394
https://doi.org/10.1371/journal.pone.0193268
https://doi.org/10.1371/journal.pone.0193268
https://doi.org/10.1016/j.ppees.2018.01.003
https://doi.org/10.1111/gcb.14413
https://doi.org/10.1111/gcb.14413
https://doi.org/10.1038/s41477-020-0655-x
https://doi.org/10.1038/s41598-020-61868-5
https://doi.org/10.1111/j.1365-2435.2007.01369.x
https://doi.org/10.1111/j.1365-2435.2007.01369.x
https://doi.org/10.1111/j.1365-2745.2010.01687.x
https://doi.org/10.1007/s11258-006-9126-3
https://doi.org/10.1007/s11258-006-9126-3
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1016/j.tree.2014.01.002
https://doi.org/10.1016/j.tree.2014.01.002
https://doi.org/10.1038/nature15539
https://doi.org/10.1038/nature15539


3870  |     HOFHANSL et al.

Sides, C. B., Enquist, B. J., Ebersole, J. J., Smith, M. N., Henderson, A. N., 
& Sloat, L. L. (2014). Revisiting Darwin“s hypothesis: Does greater 
intraspecific variability increase species” ecological breadth? 101: 
56–62.

Swenson, N. G. (2014). Functional and phylogenetic ecology in R. Springer.
Swenson, N. G., & Enquist, B. J. (2007). Ecological and evolutionary 

determinants of a key plant functional trait: Wood density and its 
community-wide variation across latitude and elevation. American 
Journal of Botany, 94, 451–459.

Taylor, P., Asner, G., Dahlin, K., Anderson, C., Knapp, D., Martin, R., & 
Townsend, A. (2015). Landscape-scale controls on aboveground for-
est carbon stocks on the Osa Peninsula, Costa Rica. Plos ONE, 10, 
e0126748.

Taylor, P. G., Cleveland, C. C., Wieder, W. R., Sullivan, B. W., Doughty, 
C. E., Dobrowski, S. Z., & Townsend, A. R. (2017). Temperature and 
rainfall interact to control carbon cycling in tropical forests (L. Liu, 
Ed.). Ecology Letters, 20, 779–788.

Townsend, A., Asner, G., & Cleveland, C. (2008). The biogeochemical 
heterogeneity of tropical forests. Trends in Ecology & Evolution, 23, 
424–431.

Violle, C., Enquist, B. J., McGill, B. J., Jiang, L., Albert, C. H., Hulshof, C., 
Jung, V., & Messier, J. (2012). The return of the variance: Intraspecific 
variability in community ecology. Trends in Ecology & Evolution, 27, 
244–252.

Weissenhofer, A., Huber, W., Mayer, V., Pamperl, S., Weber, A., & 
Aubrecht, G. (2008). Natural and cultural history of the Golfo Dulce 

region, Costa Rica. Stapfia 88, zugleich Kataloge der Oberösterreichischen 
Landesmuseen NS 80.

Werner, F. A., & Homeier, J. (2015). Is tropical montane forest hetero-
geneity promoted by a resource-driven feedback cycle? Evidence 
from nutrient relations, herbivory and litter decomposition along 
a topographical gradient (M. J. Briones, Ed.). Functional Ecology, 29, 
430–440.

Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, 
F., & Villar, R. (2004). The worldwide leaf economics spectrum. 
Nature, 428, 821–827.

Yang, Y., Wang, H., Harrison, S. P., Prentice, I. C., Wright, I. J., Peng, C., 
& LIN, G.(2018). Quantifying leaf-trait covariation and its controls 
across climates and biomes. New Phytologist, 221, 155–168.

Zhao, P. (2019). Trait-Based Climate Change Predictions of Vegetation 
Sensitivity and Distribution in China. fpls-10-00908.tex 10: 1–10.

How to cite this article: Hofhansl F, Chacón-Madrigal E, 
Brännström Å, Dieckmann U, Franklin O. Mechanisms driving 
plant functional trait variation in a tropical forest. Ecol Evol. 
2021;11:3856–3870. https://doi.org/10.1002/ece3.7256

https://doi.org/10.1002/ece3.7256

