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A B S T R A C T

Background: The association between exposure to anti-hyperglycemic medications (A-HgM) for Type 2 Diabetes
Mellitus (T2D) treatment and Multiple Sclerosis (MS) in T2D patients is unclear.
Methods: This retrospective cohort analysis used the Mariner claims database. Patient records were surveyed for a
diagnosis of MS starting 12 months after diagnosis of T2D. Patients were required to be actively enrolled in the
Mariner claims records for six months prior and at least three years after the diagnosis of T2D without a history of
previous neurodegenerative disease. Survival analysis was used to determine the association between A-HgM
exposure and diagnosis of MS. A propensity score approach was used to minimize measured and unmeasured
selection bias. The analyses were conducted between January 1st and April 28th, 2021.
Findings: In T2D patients younger than 45, A-HgM exposure was associated with a reduced risk of developing MS
(RR: 0.22, 95%CI: 0.17–0.29, p-value <0.001). In contrast, A-HgM exposure in patients older than 45 was
associated with an increased risk of MS with women exhibiting greater risk (RR: 1.53, 95%CI: 1.39–1.69, p <

0.001) than men (RR: 1.17, 95%CI: 1.01–1.37, p ¼ 0 ⋅ 04). Patients who developed MS had a higher incidence of
baseline comorbidities. Mean follow-up was 6.2 years with a standard deviation of 1.8 years.
Interpretation: In this study, A-HgM exposure in patients with T2D was associated with reduced risk of MS in
patients younger than 45 whereas in patients older than 45, exposure to A-HgM was associated with an increased
risk of newly diagnosed MS, particularly in women.
1. Introduction

Multiple sclerosis (MS) is an autoimmune-mediated neurological
disorder that affects the central nervous system and leads to severe
physical and cognitive disability. While the etiology of MS remains un-
clear, inflammation and demyelination are hallmarks of the disease [1, 2,
3, 4]. The main driver of pathology in MS is axonal loss and dysfunction
due to the loss of the myelin sheath which are formed by oligodendro-
cytes in the central nervous system [3, 4].

While the etiology of MS is thought to be largely autoimmune the
mechanisms driving disease conversion remain under debate [5]. Recent
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studies have shown a link between the onset of newly diagnosed MS and
history of Type 1 and Type 2 Diabetes (T2D) [6, 7, 8]. In a study from
Taiwan, patients with T2D were more likely to develop newly diagnosed
MS (Hazard Ratio 1.44, Confidence Interval 1.09–1.94) [6]. It was hy-
pothesized that this link is, in part, due to the underlying inflammatory
basis of both diseases [6]. Further, insulin resistance has been shown to
reduce myelin levels in the central nervous system, particularly in ApoE4
carriers [9]. There is mounting evidence linking metabolic disorders and
MS through a common driver of increased autoimmunity which brings
into question the impact of the therapeutics used to treat T2D on the
incidence of MS.
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Anti-hyperglycemic medications (A-HgM) control glucose levels
through different mechanisms [10, 11, 12, 13]. Based on their mecha-
nism of action, A-HgM are divided into four major categories: (1) insulin
sensitizers (biguanides and glitazones), (2) insulin secretagogues (sulfo-
nylureas and meglitinides), (3) incretin analogues (GLP1 agonists and
DPP4 inhibitors), and (4) insulin. In addition, injectable insulin is used in
late-stage T2D patients who are not responding to other pharmacother-
apies to directly activate the insulin receptor. These therapeutics target
the immune system and each have distinct immunomodulatory profiles
which may impact the pathogenesis of MS [13, 14, 15, 16].

Analyses reported herein were designed to determine potential as-
sociations between anti-hyperglycemic therapies used for T2D treatment
and the incidence of MS across the aging spectrum in T2D patients. Our
study was conducted using a US-based claims database that contains a
significantly larger population than previously reported [13, 17, 18]. We
further determined the impact of sex on MS incidence within this pop-
ulation. Additionally, we subdivided MS diagnoses based on age into
early-onset MS (EOMS) and late-onset MS (LOMS). LOMS is defined by
the diagnosis of MS over the age of 50, which represents between
2.7-12% of the patients with MS [19, 20, 21]. We report the association
of individual anti-hyperglycemic agents within the A-HgM category with
the risk of development of age-associated and primary MS.

2. Methods

2.1. Data source

This study used the Mariner dataset, an insurance claims database
that includes patient health records from 122 million participants from
2010 to 2018. The database contains records from private-payer and
Medicare insurance datasets across all US states and territories. The
dataset includes demographic characteristics, prescription records, and
other data points for patients with Current Procedural Terminology, Inter-
national Classification of Diseases, Ninth Revision (ICD-9), and International
Statistical Classification of Diseases and Related Health Problems, Tenth
Revision (ICD-10) codes.

This report follows the Strengthening the Reporting of Observational
Studies in Epidemiology (STROBE) reporting guideline. This study was
approved by the University of Arizona Institutional Review Board. Re-
quirements for informed consent were waived as the data were
deidentified.

2.2. Study design and variables

A subset of 5,283,017 participants with T2D were selected from the
Mariner database. The outcome variable was defined as the occurrence of
the first diagnosis of MS based on ICD-9 and ICD-10 codes in the par-
ticipant’s records (eTable1) 12 months after the index date. The index
date is the first record of T2D diagnosis and the study start date is 12
months after the diagnosis of T2D. The diagnosis of MS was validated
based on the previously published algorithms [22] in which a MS diag-
nosis is considered only in patients with>1 ICD codes (eTable1) and/or a
drug claim for a disease modifying therapy for MS such as interferon
beta-1a-SC, interferon beta-1a-IM, interferon beta-1b-SC, glatiramer ac-
etate, fingolimod, natalizumab, dimethyl fumarate, and teriflunomide
(eTable2). The treatment group was defined as patients having at least
one A-HgM medication charge occurring after the diagnosis of T2D,
including insulin, metformin, glitazones, sulfonylureas, sodium-glucose
cotransporter-2 (SGLT2) inhibitors, glucagon-like peptide (GLP-1) ago-
nists, DPP4 inhibitors, glinides, or combination therapies (e.g., metfor-
min and sulfonylureas) (eTable2). Drug groups with a low patient
number were excluded from the analysis evaluating the association be-
tweenMS and individual A-HgM drug classes. The median adherence and
the median time between start of therapy and MS diagnosis are described
in eTable3. The treatment group was then divided into individual A-HgM
drug classes (eTable3). Participants with a diagnosis of T1D, with a
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history of neurosurgery or neurodegenerative disease (including MS)
before the diagnosis of T2D were excluded from the study. An enrollment
criterion of at least six months prior to and three years after diagnosis of
T2D was applied (Figure 1). Age in the study is defined by the age at
diagnosis of T2D. Following our previous studies [24, 25, 26, 27], an
analysis of comorbidities known to be associated with MS outcomes was
conducted. We then conducted sensitivity analyses to address the impact
of age and sex in the study population.

2.3. Statistical analysis

Statistical analyses were performed between January 28th and April
28th, 2021. Patient demographic statistics (Table 1) and incidence sta-
tistics were analyzed using unpaired 2-tailed t-tests or χ2 tests, as
appropriate, to test the significance of the differences between contin-
uous and categorical variables. In all analyses, a 2-sided P < 0.05 was
considered statistically significant.

A propensity score matching algorithm was applied to estimate the
association between A-HgM and MS as previously described [23, 24, 25,
26, 27]. A logistic regression was used to estimate the probability for
each participant to receive A-HgM given their age, gender, region,
comorbidities, and Charlson Comorbidity Index (CCI) score. The pro-
pensity score matching included the variables that were statistically
significant in the regression model (listed in eTable1) to reduce con-
founding factors in group assignment. The quality of the matching was
assessed by standardized mean difference with percent balance
improvement (eTable4).

Biological pathway analysis was conducted using a Drug-Target
Interaction (DTI) network approach (eFigure2) as previously described
[24]. For each drug identified, the related gene targets were extracted
using DrugBank database [28].

3. Results

3.1. Study population

In the Mariner dataset, over 5 million patients with a diagnosis of T2D
were identified (Figure 1). Two populations were evaluated separately:
(1) those whose diagnosis of diabetes occurred prior to age 45 and (2)
those whose diagnosis of diabetes occurred after age 45. In the younger
population, 723,976 patients remained in this population after exclusion
of patients with a diagnosis of T1D, a history of neurosurgery or brain
cancer, a diagnosis of neurodegenerative disease (NDD), including MS,
before the index date as well as those patients over the age of 45.
Following propensity score matching, 287,226 patients from the young
cohort remained in the study. Of the propensity score matched cohort,
143,613 (mean [standard deviation (SD)] age, 30.16 [2.43] years) pa-
tients controlled their diabetes through lifestyle (no record of receiving a
medication for the treatment of hyperglycemia) whereas 143,613 (34.79
[1.02] years) patients had records of receiving a medication to control
hyperglycemia (Figure 1).

In the older population, over 4 million patients remained in the
population after the exclusion criteria described above except for the age
exclusion, which in this case was patients younger than 45 years old
(Figure 1). After enrollment and propensity score matching, the over 45
cohort was composed of 1,277,250 patients. Within the adjusted over 45
group, 638,625 (61.85 [6.19] years) patients were untreated whereas
638,625 (57.37 [5.56] years) patients had a record of receiving A-HgM
(Figure 1).

Within the matched younger than 45 cohort, the majority of the pa-
tients were between 40 and 44 years old and 62% and 53% identified as
female in the control and treatment group, respectively (Table 1). Most of
the untreated patients were from the Northeast region of the US whereas
the majority of the treated patients were from the South. For the older
than 45 cohort, most of the untreated patients were female (55.6%) and
most of the treated patients weremale (50.5%) (Table 1). In both cohorts,



Figure 1. Study design and patient breakdown.
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patients were predominantly from the South region of the US. The
comorbidities and CCI of both cohorts are reported in Table 1. To address
the severity of T2D, the number of A-HgM in the treated group was
determined. In the younger cohort, 92,393 (64.33%) of patients were
treated with 2 or less A-HgM drugs, 48,488 (33.76%) were treated with 3
drugs, and 2,732 (1.90%) were exposed to 4 drugs. Similarly, in the older
cohort, 342,783 (56.68%) of patients were treated with 2 or less A-HgM
drugs, 273,574 (42.84%) were exposed to 3 drugs, and 22,268 (3.49%)
were exposed to 4. In the younger population, the median time duration
(median [SD]) of T2D in the control group was 6.0 [1.8] years and in the
treated group was 6.6 [1.9] years. In the older population, the median
time duration of the diagnosis in the control group was 6.0 [1.8] years
and in the treated group was 7.29 [1.8] years.

3.2. Risk analysis

In both unadjusted population and propensity score matched (PSM)
population, the overall risk for newly diagnosed MS in patients under 45
years of age was reduced in the population receiving A-HgM (unadjusted:
Relative Risk (RR): 0.27, 95% Confidence Interval (CI): 0.21–0.33, p
value (p) < 0.001); PSM: RR: 0.22, 95% CI: 0.17–0.29, p < 0.001)
(Table 2, eFigure1). Conversely, in the older than 45 years old cohort, the
risk of developing MS was increased in both unadjusted and PSM pop-
ulations with A-HgM exposure (unadjusted: RR: 1.16, 95% CI: 1.10–1.23,
p < 0.001); PSM: RR: 1.36, 95% CI: 1.25–1.47, p < 0.001) (Table 2,
eFigure1).

When individual A-HgM drug classes were evaluated in the popu-
lation under 45 years of age at MS diagnosis, sulfonylureas alone or in
combination with metformin were significantly associated with a
decreased incidence of MS (Sulfonylureas: RR: 0.11, 95% CI: 0.06–0.19,
p < 0.001; Metformin&Sulfonylureas: RR: 0.11, 95% CI: 0.06–0.20, p <

0.001). All other A-HgM drugs classes provided comparable reduction in
risk (Figure 2). In the over 45 cohort, when individual A-HgM classes
were evaluated to determine any association with the incidence of
newly diagnosed late-onset MS (LOMS), A-HgM exposure was associated
with an increased risk of MS in all drug classes. Importantly, insulin
exposure (RR: 1.84, CI: 1.67–2.02, p < 0.001) was found to be associ-
ated with a significantly increased incidence over the other therapeutic
groups (Figure 2). Consistent with the drug class indications, A-HgM
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therapeutic targets were predominately driven by class type (DPP4 in-
hibitors vs Glitazones vs Metformin) with only pioglitazone and
glipizide targeting overlapping pathways beyond their drug class
(eFigure2).

When evaluating the impact of sex in both age cohorts, there were
differences in the incidence of disease (Figure 3, eTable5). For patients
aged younger than 45 years old, both men and women treated with A-
HgM exhibited a decreased risk for incidence of MS (Men: RR: 0.17, CI:
0.09–0.32, p < 0.001; Women: RR: 0.28; CI: 0.21–0.37; p < 0.001). For
men older than 45 years old, A-HgM exposure had a slightly significant
increase on MS risk (RR: 1.17, CI: 1.01–1.37, p ¼ 0.04) whereas women
older than 45 years exhibited a significant increase of MS incidence
compared to control (RR: 1.53, CI: 1.39–1.69, p < 0.001) (Figure 3,
eTable5).

To address the potential clinical drivers of the sex difference, we
conducted a responder analysis in the younger and older than 45 aged
cohorts to identify factors associated with a diagnosis of MS in each
population (eTable6&7). In both cohorts, those patients who developed
MS, or non-responders, had an overall higher incidence of comorbidities
than responders (did not develop MS) after exposure to A-HgM. In the
younger than 45 cohort, non-responders had a higher incidence of
asthma and cardiovascular comorbidities whereas in the older than 45
cohort, asthma, chronic kidney disease, and stroke were the most prev-
alent comorbidities among non-responders. In general, patients who
developed MS (non-responders) were predominantly women
(eTable6&7).

4. Discussion

This study aimed to identify and describe the association between
exposure to anti-hyperglycemic therapies used for the treatment of Type
2 Diabetes Mellitus and the incidence of Multiple Sclerosis in younger
and older than 45 aged cohorts. Additional analyses of sex difference in
MS incidence were conducted to elucidate factors driving MS risk in
these populations. To our knowledge, this is the largest and most
comprehensive study to-date to examine the impact of individual anti-
hyperglycemic therapies on MS risk. Notably, the results of these
analyses indicated that both age and sex regulate response to A-HgM
exposure to impact MS risk profiles.



Table 1. Baseline characteristics for propensity score-matched T2D patients* younger and older than 45 Years old with or without exposure to A-HgM.

<45 years old >45 years old

Without Exposure to A-HgM With Exposure to A-HgM Without Exposure to A-HgM With Exposure to A-HgM

N % n % n % n %

Number of Patients 143,613 143,613 p value 638,625 638,625 p value

Age

<2 503 0.35% 1 0.00% <0.001

02 to 04 1,805 1.26% 16 0.01%

05 to 09 2,956 2.06% 206 0.14%

10 to 14 4,155 2.89% 1,326 0.92%

15 to 19 7,309 5.09% 2,723 1.90%

20 to 24 12,966 9.03% 4,235 2.95%

25 to 29 17,405 12.12% 9,384 6.53%

30 to 34 23,742 16.53% 21,335 14.86%

35 to 39 31,041 21.61% 38,873 27.07%

40 to 44 41,731 29.06% 65,514 45.62%

45 to 49 56,143 8.79% 95,436 14.94% <0.001

50 to 54 75,565 11.83% 118,983 18.63%

55 to 59 87,529 13.71% 122,695 19.21%

60 to 64 91,189 14.28% 107,415 16.82%

65 to 69 93,519 14.64% 88,463 13.85%

70 to 74 153,805 24.08% 93,780 14.68%

75 to 79 80,875 12.66% 11,853 1.86%

Gender

Female 89,563 62.36% 77,325 53.84% <.001 355,008 55.59% 316,286 49.53% <0.001

Male 54,050 37.64% 66,288 46.16% 283,617 44.41% 322,339 50.47%

Region

Midwest 22,843 15.91% 41,818 29.12% <0.001 115,866 18.14% 177,665 27.82% <0.001

Northeast 61,137 42.57% 5,246 3.65% 197,689 30.96% 33,773 5.29%

South 45,382 31.60% 72,158 50.24% 242,852 38.03% 314,871 49.30%

West 13,938 9.71% 24,202 16.85% 81,229 12.72% 111,137 17.40%

Unknown 313 0.22% 189 0.13% 989 0.15% 1,179 0.18%

Comorbidities

Asthma 3,342 2.33% 9,190 6.40% <0.001 3,573 0.56% 1,389 0.22% <0.001

COPD 1,031 0.72% 2,116 1.47% <0.001 7,058 1.11% 2,387 0.37% <0.001

Chronic Kidney Disease 1,454 1.01% 6,789 4.73% <0.001 9,944 1.56% 4,382 0.69% <0.001

Congestive Heart Failure 1,294 0.90% 3,879 2.70% <0.001 11,956 1.87% 4,966 0.78% <0.001

Coronary Artery Disease 2,673 1.86% 7,572 5.27% <0.001 23,874 3.74% 15,499 2.43% <0.001

Hypertension 13,977 9.73% 50,036 34.84% <0.001 53,293 8.34% 51,959 8.14% <0.001

Ischemic Heart Disease 2,505 1.74% 6,293 4.38% <0.001 23,484 3.68% 15,360 2.41% <0.001

Obesity 10,928 7.61% 39,909 27.79% <0.001 18,079 2.83% 18,191 2.85% 0.55

Osteoarthritis 3,538 2.46% 8,514 5.93% <0.001 26,365 4.13% 14,140 2.21% <0.001

Pulmonary Heart Disease 969 0.67% 2,766 1.93% <0.001 5,195 0.81% 1,797 0.28% <0.001

Rheumatoid Arthritis 959 0.67% 638 0.44% <0.001 3,058 0.48% 501 0.08% <0.001

Stroke 1,231 0.86% 2,584 1.80% <0.001 12,676 1.98% 4,450 0.70% <0.001

Tobacco Use 6,562 4.57% 15,626 10.88% <0.001 14,358 2.25% 6,770 1.06% <0.001

CCI

0–4 138,291 96.29% 143,139 99.67% <0.001 586,371 91.82% 635,303 99.48% <0.001

5–10 5,067 3.53% 474 0.33% 48,527 7.60% 3,322 0.52%

11þ 255 0.18% - 0.00% 3,727 0.58% - 0.00%
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Our results indicate two distinct risk profiles in patients younger
versus older than 45 years of age. A-HgM exposure in patients younger
than 45 was protective against the development of MS (Table 2, eFig-
ure1). Conversely, in patients older than 45 A-HgM exposure was asso-
ciated with increased risk of MS, particularly in women and less so in
men (Table 2, eFigure1). To determine whether drugs within the A-HgM
class were driving these risk profiles, we conducted analyses of each drug
class (Figure 2). These results indicated that the MS risk profiles were
driven by age more than by drug class. This may, in part, be due to the
subtype of MS that is predominately diagnosed in these age groups.
4

Relapsing remitting MS (RRMS) is the most common subtype of in pa-
tients between 20-40 years of age [5, 29] (approximately 87%) [5] which
is characterized by unpredictable acute attacks followed by periods of
remission and is diagnosed predominately. Prior to the 1980s in the
United States, a diagnosis of MS excluded adults over 50 years of age [21,
30]. More recently, late-onset Multiple Sclerosis (LOMS) has been
recognized, which is often characterized by primary progressive course
of disease with pyramidal or cerebellar involvement observed in 60%–

70% of the patients at presentation [29]. Given the relatively recent
acceptance of LOMS, there are a limited number of studies [19, 20, 21]



Table 2. Incidence and relative risk of T2D patients receiving anti-hyperglycemic
medication to develop MS.

<45 yo Cohort >45 yo Cohort

Unadjusted Cohort

Patients not receiving A-HgM 288 1,670

% 0.20% 0.26%

Patients receiving A-HgM 112 3,579

% 0.05% 0.30%

Relative Risk 0.27 1.16

95%CI 0.21–0.33 1.10–1.23

NNT 679 ⋅ 1 2340

p-value <0.001 <0.001

Propensity Score-Matched Cohort

Patients not receiving A-HgM 288 1,020

% 0.20% 0.16%

Patients receiving A-HgM 63 1,384

% 0.04% 0.22%

Relative Risk 0.22 1.36

95%CI 0.17–0.29 1.25–1.47

NNT 638.3 1754

p-value <0.001 <0.001
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investigating the mechanisms of disease driving MS in an aging popu-
lation. In addition to age differences, the risk analysis by drug class
showed that exposure to insulin in patients older than 45 years old was
associated with a greater increased risk compared to other therapies. This
can be explained, in part, by severity of the disease, glycemic control or
socioeconomic status of patients receiving insulin.

Within an age cohort, we also sought to identify the impact of sex on
MS risk after A-HgM exposure. It is known that women are dispropor-
tionately affected by MS and that there are a number of sex specific
aspects of MS including disease risk, disease expression and prognosis
[31, 32, 33]. A study from Denmark showed that the incidence of MS in
women has doubled (comparing 1950–1959 to 2000–2009 data),
compared to a smaller increase noted in men [34]. Of interest, the
Figure 2. Relative risk of propensity score-matched T2D patients younger and
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incidence of LOMS increased 4.30 fold in women and 2.72 fold in men
over the same time period [34]. In our study, in the younger than 45
cohort, no sex difference was observed in response to A-HgM exposure,
which was associated with a decreased risk of MS in both men and
women under 45 years old (Figure 3). In contrast, A-HgM exposure in
the older than 45 cohort was associated with a small but significant
increased risk of MS in men, whereas the use of A-HgM in women was
associated with a substantial increase in the risk of developing MS
(Figure 3).

This observation may be explained by a variety of factors resulting
from immune system changes that occur during the perimenopause-to-
menopause transition in this population of women. Each year ~1.5
million American women enter into perimenopause, a midlife neuroen-
docrine transition state unique to the female [35]. It is well-known that
the female immune response is more robust than that in the male [36].
This is, in part, the reason for the increased propensity for females to
develop autoimmune diseases. Epidemiological and biochemical evi-
dence suggest a role for female sex hormones to drive this dichotomy.
With the fall of estrogen at menopause, there is an increase in
pro-inflammatory cytokines, including interleukin (IL)-6, IL-8, and tumor
necrosis factor [37, 38]. Further, there are observed increases in
CD4/CD8 ratios, T cell activation, B cells and immunoglobulin in women
at menopause [39, 40, 41]. Substantial evidence indicates that female
menopause leads to a chronic low grade pro-inflammatory state [37, 40],
bioenergetic crisis in brain [35, 41], catabolism of white matter as an
auxiliary fuel source of fatty acids [42], a rise in autoimmune signaling
[38], decline in white matter volume [43] and increased symptoms of MS
after menopause [37, 40, 41].

It is known that diabetes, similar to MS, is linked to a proin-
flammatory state [44] and that symptomatic worsening in female di-
abetics occurs during menopause due to loss of estrogenic control of
insulin sensitivity and resistance [45, 46, 47]. During this menopausal
transition, glucose fluctuations result in oxygen radical production and
inflammation, both systemically and in the brain, which may contribute
to an increased risk of MS [48]. The impact of A-HgM exposure in
pro-inflammatory postmenopausal diabetic patients is both interesting
and concerning.
older than 45 years old with exposure to different A-HgM to develop MS.



Figure 3. Sex differences in the relative risk of propensity score-matched T2D patients younger and older than 45 years old with exposure to A-HgM to develop MS.
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The geographic/longitudinal risk factors for the development of MS
are well documented [49]. In our populations, the majority of people who
control their T2D with diet/exercise (non-treatment group) are located in
the Northeast region of the US where there is an association with a greater
incidence of MS (Table 1). Important to consider is the fact that the T2D
population potentially represents a unique subset of patients with MS.
Thus, the incidence of MS and its etiology in the context of T2D may not
exactly follow the prevalence of MS in a general population. It also follows
that since T2D is an age-associated disease (increased prevalence with
increased age), the population of T2D patients will be larger for those
older than 45 years of age. However, the incidence of MS is still greater in
the younger cohort when accounting for total population, which is
consistent with national trends and data for MS prevalence [29]. This
study aimed to identify the association between MS risk and commonly
used A-HgM in an at-risk population, which contribute to the Brain Health
recommendations for MS prevention, where brain and cognitive reserves
must be preserved to maximize long-term brain health [50].

4.1. Limitations

Participants included in this studymay have obtained services outside
of those included in this database. This study relied on ICD codes
assigned by a physician and lab values such as glucose levels were not
used to confirm a diagnosis of T2D. Drug prescribing trends, lifestyle
changes, as well as switching/overlap of A-HgMwere not included in this
analysis. Although the propensity-score matching addressed most con-
founding factors, there could be factors addressed inadequately by this
method. Subtype of MS or disability level of each MS patient could not be
assessed in this cohort. Genetic data and latitude information relevant to
MS were not available in this dataset.

5. Conclusion

Exposure to anti-hyperglycemic medication was associated with a
reduced incidence of MS in T2D patients younger than 45. Conversely, in
patients older than 45 years old, anti-hyperglycemic agents were asso-
ciated with an increased risk of developing MS, particularly in women. It
will become increasingly important to understand the neuro-
immunological changes that occur during the perimenopause transition
6

and how these changes may affect brain health and disease risk in aging
populations. These findings represent an important call to action for
better understanding the interplay between the endocrine, immune, and
nervous systems and the need for a precision medicine approach for
prevention of multiple sclerosis in vulnerable populations.
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