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ABSTRACT: The SARS-CoV-2 pandemic has rapidly spread across the globe, posing an urgent health concern. Many quests to
computationally identify treatments against the virus rely on in silico small molecule docking to experimentally determined structures
of viral proteins. One limit to these approaches is that protein dynamics are often unaccounted for, leading to overlooking transient,
druggable conformational states. Using Gaussian accelerated molecular dynamics to enhance sampling of conformational space, we
identified cryptic pockets within the SARS-CoV-2 main protease, including some within regions far from the active site. These
simulations sampled comparable dynamics and pocket volumes to conventional brute force simulations carried out on two orders of
magnitude greater timescales.

■ INTRODUCTION

In December 2019, the World Health Organization learned of
a novel coronavirus that has since rapidly spread, leading to a
global pandemic. The SARS-CoV-2 virus, causing the disease
named COVID-19, has exceeded 100 million cases worldwide,
taking over 2 million lives as of January 30, 2021.1 The genetic
and structural similarity of the SARS-CoV-2 virus to the agents
of the severe acute respiratory syndrome coronavirus (SARS-
CoV) epidemic in 2003 and Middle East respiratory syndrome
coronavirus (MERS-CoV) epidemic in 2012 provide a basis of
information for understanding and ultimately treating or
preventing this disease; however, no highly effective antiviral
drug exists for any human-infecting coronavirus.
Proteases are responsible for activating viral proteins for

particle assembly and have proved successful targets for
antiviral agents; most notable are the protease inhibitors used
to treat HIV and Hepatitis C.2,3 The main protease of SARS-
CoV-2, called Mpro or 3CLpro encoded by the nsp5 gene,4 was
the first SARS-CoV-2 protein deposited to the protein
databank (PDB) on January 26th 2020.5 This structure was
crystalized with a covalent inhibitor (N3) identified from
computer-aided drug design and validated biochemically.
Currently, over one hundred Mpro structures exist in the

PDB and massive efforts to discover a successful inhibitor are
underway.5−8

Mpro is highly similar to 3CL proteases from other
coronaviruses in sequence, structure, and function.9,10 First,
Mpro autocatalytically cleaves itself from the SARS-CoV-2
polypeptide and then forms a homodimer to subsequently
cleave at 11 distinct sites, while the papain-like protease, PLpro,
cleaves at three sites, allowing the viral proteins to fold and
perform their functions.11−13 Proteolytic cleavage is catalyzed
by residues H41 and C145 of the catalytic cysteine dyad.
These active site residues are located at the N-terminal
globular domain of Mpro, which contains an anti-parallel beta
barrel reminiscent of trypsin-like serine proteases, while the C-
terminal domain consists of five alpha helices.13 Upon
dimerization, Mpro resembles the shape of a heart symbol
(Figure 1A).
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Figure 1. Pocket analysis of GaMD simulations of Mpro. (A) Active site, dimer interface, and distal site definitions for pocket calculations. The
inclusion sphere was centered on the center of mass (COM) of the top and bottom protein domains for active and distal sites with 12 and 10 Å
radii, respectively. A 10 Å-radius sphere was used for the dimer interface calculation. (B−D) Histograms showing the distribution of pocket
volumes calculated from the aggregate 6 μs GaMD simulations.

Figure 2. Cryptic pockets identified from GaMD simulations. (A−C) Overlay of several frames highlighting loop dynamics leading to various
pocket conformations for each site. (D−F) Overlay of several pockets shown outlined in mesh, colored in varying shades of pink for the active site,
blue for the distal site, and orange for the interface. (G−I) Computational solvent mapping of “hot spots” to pockets at each site.
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Many efforts to identify inhibitors involve high throughput
virtual screening, which exploits the power of computational
docking to screen millions of molecules in silico to narrow
down a few “hits” for lead optimization. Incorporation of
molecular dynamics (MD) has significantly improved the
ability to identify promising protein inhibitors.14 Docking to
protein ensembles obtained from MD simulations is often
employed to consider multiple target states that remain elusive
in static crystal structures.15 Conventional MD simulations are
however limited in the amount of conformational space that
can be sampled due to the amount of time required to traverse
energy barriers between stable conformational states.16 In the
present study, we used the enhanced sampling technique,
Gaussian accelerated MD (GaMD),17 to overcome such
barriers. GaMD adds a harmonic boost to the potential energy
up to a threshold, effectively “filling in the wells” creating a
smoother potential energy surface.17,18 This method allowed us
to extensively sample conformations of the SARS-CoV-2 main
protease at minimal computational expense and provide
detailed characterization of several potentially druggable
pockets, which can serve as a basis for identifying an Mpro

inhibitor for COVID-19 treatment.

■ RESULTS

GaMD simulations were performed on the first published Mpro

structure PDB 6LU7.5 Six systems were simulated, including
monomer and dimer simulation in the presence and absence of
the co-crystalized N3 inhibitor either covalently or non-
covalently bound (Figure S1). Five independent simulations of
200 ns for an aggregate of 1 μs were carried out for each
system. Three regions were defined to investigate potentially
druggable pockets: the active site, which lies in the N-terminal
top lobe of the heart-shaped protease; the C-terminal region,
as a potential allosteric site; and the dimer interface region
(Figure 1A).
Characterization of Mpro Pockets. A variety of pocket

volumes were sampled between 16 and 277 Å3 for the active
site pocket, starting from 170 Å3 in the crystal structure. The
interface spanned from 36 to 429 Å3 starting from 209 Å3 and
the distal site from 0 to 78 Å3 starting from 18 Å3 (Figure 1B−
D). Simulations with the N3 ligand present sampled greater
mean volumes for the active site and distal region than the apo
simulations without N3; however, the average dimer interface
region was greater in the apo simulation (Figure S2).

Covalently bound N3 sampled greater mean volumes for the
active site and dimer interface than non-covalent, which
sampled greater mean volumes for the distal site (Figure S3).
In a few simulations, the non-covalent ligand escaped the
active site pocket (Figure S4). In all simulations, the ligand re-
arranges compared to the crystal structure. The non-covalent
ligands quickly decrease in total number of native contacts and
increase in non-native contacts. The covalent ligands slightly
decrease in native contacts but have a similar increase in non-
native contacts. (Figures S5 and S6). These simulations
revealed significant loop dynamics (Figure 2A−C) leading to
the distinct pocket conformations (Figure 2D−F and Movie
S1) with varying active site water occupancy (Figure S7).
Several metrics were used to assess the properties of these

pockets. The PockDrug19 webserver predicts druggability
probability based on a variety of factors including geometry,
hydrophobicity, and aromaticity, among others. The FTMap20

computational solvent mapping webserver helps determine
“hot spots” and can aid in fragment-based drug design. For
each site, the sampled pocket volumes were clustered into 10
populations, and a frame corresponding to that volume was
analyzed. The most populated volumes for the active site,
dimer interface, and distal site were 114, 220, and 10 Å3,
respectively. The 10 active site pockets gave predicted
druggabilities between 0.18 and 0.86 and solvents mapped to
seven of the pockets (Figure S8). The dimer interface pockets
gave higher druggability prediction values, between 0.5 and
0.93, with solvent mapping to all 10 structures (Figure S9).
The distal site pockets gave the highest predicted druggability,
between 0.37 and 1.00 with six out of ten pockets giving
predicted druggability values greater than 0.90. Solvents
mapped to seven out of the ten pockets (Figure S10). Notably,
none of the solvent mapping to any of the sites showed
overlapping results, indicating that each structure may provide
distinct opportunities for designing inhibitors. The pocket
volume, predicted druggability, and solvent mapping were not
directly correlated, as expected, since each calculation
considers different metrics. Overall, these analyses indicate
that the simulations reveal a diverse set of conformations that
are likely to serve as viable targets for in silico drug
development.
Dimer association is necessary for catalytic activity of the

protease;5 therefore, it is reasonable to assume that binding of
a molecule, which prevents this association, would inactivate

Figure 3. Correlated motions of each residue. (A) Correlation matrix calculated from aggregate 1 μs simulation of apo Mpro. Calculation from the
monomer simulation is shown as an inset in the upper right corner of the calculation from the dimer simulation. (B) Structural representation of
correlated motions, with each residue colored based on correlation to the catalytic histidine H41.
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the protease. The significance of the distal regions is less well
understood, though computational investigations support a
potential allosteric role.21,22 To study this further, we examined
the correlated motions of each residue throughout the
simulations. In the monomer simulation, the active site region
was positively correlated to the distal site region and negatively
correlated to the region that connects the two, whereas the
inverse was observed in the dimer simulation (Figure 3 and
Figures S11 and S12). These correlations resulted in primary
motions, detected by principal component analysis, comprising
hinge-like in the monomer versus twisting in the dimer (Figure
S13). These motions were similar in both the apo and N3
bound simulations. In the dimer simulations, the active site of
chain A was slightly correlated to the active site of chain B, and
the distal regions were highly anticorrelated, twisting in
opposite directions. (Figure S13). Regardless of positive or
negative correlation values, the distal and active sites show a
dynamic interdependence on each other in both the apo and
dimer forms.
GaMD Enhancement of Mpro Conformational Space.

Previous benchmarks have demonstrated that GaMD can
enhance sampling by multiple orders of magnitude.23 To test
the sampling enhancement compared to conventional MD
simulations, we compared the 1 μs aggregate GaMD
simulation from five replicates of 200 ns to the 10 μs
simulations carried out at Riken24 and 100 μs simulations D.E.
Shaw Research (DESRES).25 We additionally performed and
compared those to 1 μs of GaMD continuous simulation and
compared 200 ns cMD to 200 ns GaMD. The ranges of pocket
volumes for each site were highly similar, as detailed in Figure

S14. Even the short conventional simulations sampled
comparable pocket volumes, indicating that this metric may
not be the most effective measure of conformational sampling.
Principal component analysis (PCA) is frequently used as a
metric for conformational diversity as it decreases the
dimensionality to maximize the dataset variance.26,27 PCA
was indeed more consistent with expectations where increasing
simulation time corresponded to larger regions of space
covered by plotting the first two principal components (Figure
4).
While the GaMD simulations run continuously for 1 μs only

covered 54% of the conformational space covered by the 100
μs DESRES, the 1 μs aggregate GaMD from five simulations
run in parallel covered 80% of the DESRES space. The 10 μs
Riken simulations covered 94% of that space (Figure 4). It is
worth noting that each of the simulations with the most
extensive sampling (DESRES, Riken, GaMD 5 × 200 ns)
reached areas in the PC1-PC2 subspace that neither of the
other two reached. This just confirms that none of these
simulations achieve comprehensive sampling, which, in the
ultimate case, would include extensively unfolded conforma-
tions. Each of these simulations reveals cryptic binding sites
not seen in shorter, conventional MD simulations, let alone in
the experimental structures, and some sites are seen in one but
not the other simulations.
Though perhaps not intuitive at first glance, it is reasonable

that many simulations in parallel would have a greater chance
of sampling diverse space than one long simulation, which may
settle into a favorable low energy conformation, even given the
boost added by the GaMD, which is restricted by a

Figure 4. Conformational sampling of GaMD and conventional MD. Each plot shows the first and second principal components, projected from a
mass weighted matrix of backbone atom positions of the apo dimer, colored by probability density. (A) 200 ns of GaMD simulation. (B) 1 μs of
GaMD aggregated from five independent 200 μs simulation. (C) 1 μs of continuous GaMD simulation. (D) 200 ns of cMD. (E) 10 μs of cMD
performed by Riken. (F) 100 μs of cMD performed by D.E. Shaw Research (DESRES). The area of a 2D histogram of the PC1 vs PC2 datapoints
from each simulation is labeled as a percentage relative to the 100 μs DE. Shaw Research (DESRES) conventional MD simulation.
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threshold.17 Representative structures from dense populations
of the PCA plots were further analyzed structurally and
through computational solvent mapping (Figure S15). Addi-
tionally, RMSD and RMSF comparison revealed that the
majority of the conformational deviations occur within the
helices and loops lining the active site pocket (Figures S16,S17,
and S21−S23), which was also visualized in the representative
structures from populations determined from PCA (Figure
S15). Taken together, the range of pocket volumes, structural
conformations, and dynamics were similar between short
GaMD simulations and brute force conventional simulations.
The plethora of available structures from all of these studies is
expected to be useful for in silico inhibitor development for
targeting Mpro.

■ CONCLUSIONS

GaMD simulations of the SARS-CoV-2 main protease, Mpro,
revealed cryptic pockets not detectable from the crystal
structure. In addition to characterizing the vast conformational
landscape of the active site and dimer interface, a distal region
was explored as a potential allosteric site. GaMD sampled
conformational space more efficiently than brute force
simulations, with 1 μs simulation data providing comparable
results to 10 μs simulations carried out by Riken24 and 100 μs
simulations carried out by DE Shaw Research,25 offering a
more widely accessible simulation strategy. These structures,
along with the millisecond simulations from Folding@home,28

can serve as a basis for in silico docking to identify Mpro

inhibitors for COVID-19 treatment.

■ METHODS

Simulation Preparation. The first crystal structure of
SARS-CoV-2 main protease, PDB ID 6LU7,5 was used as a
starting point for all simulations. Protonation states of
titratable residues were determined using the H++ webserver29

with 0.15 M salinity, 10 internal dielectric constant, 80 external
dielectric constant, and pH 7.4. Histidines 64, 80, and 164
were thus named HID to indicate delta nitrogen protonation
before protonation of entire protein using tleap from
AmberTools 18.30 Six systems were simulated as shown in
Figure S1. For apo simulations, the inhibitor was deleted from
the PDB file. For dimer simulations, the PyMOL31 symexp
command was used to generate initial coordinates for the
second chain based on symmetry. The ff14SB32 forcefield was
used for proteogenic residues. For simulations with the N3
bound, the antechamber package of AmberTools 18 was used
to generate GAFF33 forcefield parameters for N3. Gaussian 09
was used to calculate partial charges of atoms according to the
RESP34 method with the HF/6-31G* level of theory. For
covalent simulations, the cysteine 145 was treated as an
unnatural amino acid and capped with N-methyl and C-acetyl
groups for charge calculations. A TIP3P isometric water box
was added with at least 10 Å buffer between solute and edges
of the box. Enough Na+ was added to neutralize the system,
and then Na+ and Cl− ions were added to a final
concentration of 150 mM. Minimization was carried out in
two steps. First, the solute was restrained with a 500 kcal/mol
restraint force to minimize the solvent for 10,000 cycles
followed by unrestrained minimization for 300,000 cycles.
Next, the system was heated to 310 K over 350 ps using an
isothermal-isovolumetric (NVT) ensemble followed by iso-
thermal-isobaric (NPT) equilibration for 1 ns.

Gaussian Accelerated Molecular Dynamics. Gaussian
accelerated molecular dynamics (GaMD)17 pmemd.cuda
implementation of Amber 18 was used to generate five
independent trajectories of 200 ns, an aggregate of 1 μs for
each system. The dual boost method was employed, adding a
biasing force to both the total and dihedral potential energy.
The threshold energy was set to the upper bound. GaMD
production of equilibrated systems was carried out in five
stages. First, 200 ps of preparatory conventional MD
simulation was carried out, without any statistics collected.
Second, 1 ns of conventional MD was carried out to collect
potential statistics Vmax, Vmin, Vavg, and σV. Next, 800 ps of
GaMD was carried out with a boost potential applied with
fixed parameters. Then, 50 ns of GaMD was carried out with
updated boost parameters, and finally, 150 ns of GaMD was
carried out with fixed boost parameters. All production
simulations were carried out using NVT, with periodic
boundary conditions and 2 fs timesteps. The SHAKE35

algorithm was used to restrain nonpolar hydrogen bonds and
TIP3P water molecules. The Particle Mesh Ewald36 method
was used for electrostatic interactions with a 10 Å cutoff for
nonbonded interactions. A Langevin thermostat was used for
temperature regulation with a collision frequency of 5 ps−1.

Pocket Analysis. For each system, the aggregated
simulation was clustered based on the RMSD from the first
frame using the cpptraj37 hierarchical algorithm to obtain 100
distinct structures for pocket calculation. Three regions were
defined for individual calculations: the active site pocket, distal
site pocket, and dimer interface. Pocket volume was calculated
using POVME 238 with a 1 Å grid spacing. The point inclusion
sphere was determined based on the average center of mass of
residues 7−198 with a 12 Å radius for the active site pocket,
the average center of mass of residues 198−306 with a 10 Å
radius for the distal site pocket, and the average center of mass
between residues within 3.5 Å of the other dimer with a 10 Å
radius for the dimer interface. The pocket volumes were
chosen to be underestimated as opposed to overestimated and
were calculated with a minimal radius to avoid extensively
calculating known solvent exposed regions. As shown in the
FTMap solvent screening (Figures S10 and S15), fragments
bound to various regions around the distal site crevices.
Increasing the radius of the pocket calculation space would
incorporate solvent exposed regions from many directions that
would not be useful and would involve other regions of the
protein. Due to this volume dependence on chosen radius,
these volumes are intended as an initial comparative metrics
for identifying structures to analyze further, rather than
concrete final values. For analysis of water occupancy, the
GIST (Grid Inhomogeneous Solvation Theory Method)39

function of cpptraj was used for the active site region, and the
density of oxygen centers map was used to visualize results in
VMD.40

To quantify druggability, we have used the PockDrug19

webserver, which predicts druggability probability based on a
variety of factors including geometry, hydrophobicity, and
aromaticity, among others. Additionally, we have used the
FTMap20 computational solvent mapping webserver to
determine druggable “hot spots.” Pocket volumes calculated
by POVME38 from each of the three regions were clustered
into 10 populations, and representative frames for each were
selected for analysis. The fpocket estimation method was used
for PockDrug, and the druggability probability of the pocket
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that aligned best to the POVME38 calculation sphere was
reported.
Principal Component Analysis. Principal motions were

calculated using cpptraj, as described previously,41 from
projection of displacement vectors of each of the backbone
atoms onto a diagonalized mass-weighted covariance matrix
after rms fitting of every atom except protons to the first frame.
Residue correlation matrices were also generated this way. For
the graphical abstract, reweighting of the potential energy was
carried out on one 200 ns simulation of the one N3 non-
covalently bound dimer using the PyReweighting toolkit.42

Reweighting was carried out using the Maclaurin series
expansion to the 10th order with a bin size of 6 and maximum
energy of 100 based on the first two principal components.
One conventional 200 ns MD simulation was performed for
comparison and was outlined in the figure. For the conforma-
tional sampling comparison shown in Figure 4, the dimer−apo
system was used for consistency with Riken and DESRES
simulations. The colors of the histograms are normalized so
the same number of datapoints (frames) is considered.
Therefore, 40,000 frames were used for all of the in house
simulations, and 50,000 frames were used for the Riken and
DESRES simulations. The color bars were set to maximum
values of 0.0008 and 0.0010, respectively. This results in
densely localized (yellow color) in the short simulations versus
less density (blue color) and more spread out in the longer and
enhanced simulations. Visualization of the first normal mode
was carried out using the Normal Mode Wizard plugin of
VMD.

■ DATA AND SOFTWARE AVAILABILITY
In accordance with the community principles around open
sharing of COVID19 simulation data,43 all simulation input
files and data are available at https://covid19.molssi.org
through the NSF MolSSI COVID19 Molecular Structure and
Therapeutics Hub.
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Values for RMSD of 275 of Mpro crystal structures
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Active site pocket dynamics sampled with GaMD
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tary Movie S1, and legend for Supplementary Data S1
(PDF)
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J. A.; Miao, Y.; Smith, J. C. Ensemble Docking in Drug Discovery.
Biophys. J. 2018, 114, 2271−2278.
(16) Zwier, M. C.; Chong, L. T. Reaching Biological Timescales
with All-Atom Molecular Dynamics Simulations. Curr. Opin.
Pharmacol. 2010, 10, 745−752.
(17) Miao, Y.; Feher, V. A.; McCammon, J. A. Gaussian Accelerated
Molecular Dynamics: Unconstrained Enhanced Sampling and Free
Energy Calculation. J. Chem. Theory Comput. 2015, 11, 3584−3595.
(18) Pang, Y. T.; Miao, Y.; Wang, Y.; McCammon, J. A. Gaussian
Accelerated Molecular Dynamics in NAMD. J. Chem. Theory Comput.
2017, 13, 9−19.
(19) Borrel, A.; Regad, L.; Xhaard, H.; Petitjean, M.; Camproux, A.-
C. PockDrug: A Model for Predicting Pocket Druggability That
Overcomes Pocket Estimation Uncertainties. J. Chem. Inf. Model.
2015, 55, 882−895.
(20) Kozakov, D.; Grove, L. E.; Hall, D. R.; Bohnuud, T.; Mottarella,
S. E.; Luo, L.; Xia, B.; Beglov, D.; Vajda, S. The FTMap Family of
Web Servers for Determining and Characterizing Ligand Binding Hot
Spots of Proteins. Nat. Protoc. 2015, 10, 733−755.
(21) Dubanevics, I.; McLeish, T. C. B. Computational Analysis of
Dynamic Allostery and Control in the SARS-CoV-2 Main Protease. J.
R. Soc., Interface 2021, 18, 20200591.
(22) Sencanski, M.; Perovic, V.; Pajovic, S. B.; Adzic, M.; Paessler,
S.; Glisic, S. Drug Repurposing for Candidate SARS-CoV-2 Main
Protease Inhibitors by a Novel In Silico Method. Molecules 2020, 25,
3830.
(23) Miao, Y.; McCammon, J. A. Chapter Six - Gaussian Accelerated
Molecular Dynamics: Theory, Implementation, and Applications. In
Annual Reports in Computational Chemistry; Dixon, D. A. Ed.; Elsevier:
2017; Vol. 13, pp. 231−278.
(24) Komatsu, T. S.; Koyama, Y.; Okimoto, N.; Morimoto, G.;
Ohono, Y.; Taiji, M. COVID-19 related trajectory data of 10
microseconds all atom molecular dynamics simulation of SARS-CoV-2
dimeric main protease. 2020 v2, DOI: 10.17632/vpps4vhryg.2.
(25) D. E. Shaw Research Molecular Dynamics Simulations Related to
SARS-CoV-2. D. E. Shaw Research Technical Data. 2020 http://
www.deshawresearch.com/resources_sarscov2.html.
(26) Amadei, A.; Linssen, A. B. M.; Berendsen, H. J. C. Essential
Dynamics of Proteins. Proteins 1993, 17, 412−425.
(27) Inizan, T. J.; Célerse, F.; Adjoua, O.; El Ahdab, D.; Jolly, L.-H.;
Liu, C.; Ren, P.; Montes, M.; Lagarde, N.; Lagarder̀e, L.; Monmarché,
P.; Piquemal, J.-P. High-Resolution Mining of the SARS-CoV-2 Main
Protease Conformational Space: Supercomputer-Driven Unsuper-
vised Adaptive Sampling. Chem. Sci. 2021, 12, 4889−4907.
(28) Zimmerman, M. I.; Porter, J. R.; Ward, M. D.; Singh, S.;
Vithani, N.; Meller, A.; Mallimadugula, U. L.; Kuhn, C. E.; Borowsky,
J. H.; Wiewiora, R. P.; Hurley, M. F. D.; Harbison, A. M.; Fogarty, C.
A.; Coffland, J. E.; Fadda, E.; Voelz, V. A.; Chodera, J. D.; Bowman,
G. R. SARS-CoV-2 Simulations Go Exascale to Capture Spike
Opening and Reveal Cryptic Pockets Across the Proteome. bioRxiv
2020, 120, 299.
(29) Gordon, J. C.; Myers, J. B.; Folta, T.; Shoja, V.; Heath, L. S.;
Onufriev, A. H++: A Server for Estimating P Ka s and Adding Missing
Hydrogens to Macromolecules. Nucleic Acids Res. 2005, 33, W368−
W371.
(30) Case, D. A.; Cheatham, T. E., III; Darden, T.; Gohlke, H.; Luo,
R.; Merz, K. M.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R. J.
The Amber Biomolecular Simulation Programs. J. Comput. Chem.
2005, 26, 1668−1688.

(31) The PyMOL Molecular Graphics System, Version 2.1.1
Schrödinger, LLC.
(32) Maier, J. A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.;
Hauser, K. E.; Simmerling, C. Ff14SB: Improving the Accuracy of
Protein Side Chain and Backbone Parameters from Ff99SB. J. Chem.
Theory Comput. 2015, 11, 3696−3713.
(33) Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D.
A. Development and Testing of a General Amber Force Field. J.
Comput. Chem. 2004, 25, 1157−1174.
(34) Bayly, C. I.; Cieplak, P.; Cornell, W.; Kollman, P. A. A Well-
Behaved Electrostatic Potential Based Method Using Charge
Restraints for Deriving Atomic Charges: The RESP Model. J. Phys.
Chem. 1993, 97, 10269−10280.
(35) Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H. J. C. Numerical
Integration of the Cartesian Equations of Motion of a System with
Constraints: Molecular Dynamics of n-Alkanes. J. Comput. Phys. 1977,
23, 327−341.
(36) Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.;
Pedersen, L. G. A Smooth Particle Mesh Ewald Method. J. Chem.
Phys. 1995, 103, 8577−8593.
(37) Roe, D. R.; Cheatham, T. E., III PTRAJ and CPPTRAJ:
Software for Processing and Analysis of Molecular Dynamics
Trajectory Data. J. Chem. Theory Comput. 2013, 9, 3084−3095.
(38) Durrant, J. D.; Votapka, L.; Sørensen, J.; Amaro, R. E. POVME
2.0: An Enhanced Tool for Determining Pocket Shape and Volume
Characteristics. J. Chem. Theory Comput. 2014, 10, 5047−5056.
(39) Ramsey, S.; Nguyen, C.; Salomon-Ferrer, R.; Walker, R. C.;
Gilson, M. K.; Kurtzman, T. Solvation Thermodynamic Mapping of
Molecular Surfaces in AmberTools: GIST. J. Comput. Chem. 2016, 37,
2029−2037.
(40) Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular
Dynamics. J Mol. Graph 1996, 14, 33−38.
(41) Casalino, L.; Palermo, G.; Spinello, A.; Rothlisberger, U.;
Magistrato, A. All-Atom Simulations Disentangle the Functional
Dynamics Underlying Gene Maturation in the Intron Lariat
Spliceosome. Proc. Natl. Acad. Sci. 2018, 115, 6584−6589.
(42) Miao, Y.; Sinko, W.; Pierce, L.; Bucher, D.; Walker, R. C.;
McCammon, J. A. Improved Reweighting of Accelerated Molecular
Dynamics Simulations for Free Energy Calculation. J. Chem. Theory
Comput. 2014, 10, 2677−2689.
(43) Amaro, R. E.; Mulholland, A. J. A Community Letter Regarding
Sharing Biomolecular Simulation Data for COVID-19. J. Chem. Inf.
Model. 2020, 60, 2653−2656.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.1c00140
J. Chem. Inf. Model. XXXX, XXX, XXX−XXX

G

https://doi.org/10.1016/j.apsb.2020.02.008
https://doi.org/10.1016/j.bmcl.2020.127377
https://doi.org/10.1016/j.bmcl.2020.127377
https://doi.org/10.1021/jm990322h
https://doi.org/10.1016/j.bpj.2018.02.038
https://doi.org/10.1016/j.coph.2010.09.008
https://doi.org/10.1016/j.coph.2010.09.008
https://doi.org/10.1021/acs.jctc.5b00436
https://doi.org/10.1021/acs.jctc.5b00436
https://doi.org/10.1021/acs.jctc.5b00436
https://doi.org/10.1021/acs.jctc.6b00931
https://doi.org/10.1021/acs.jctc.6b00931
https://doi.org/10.1021/ci5006004
https://doi.org/10.1021/ci5006004
https://doi.org/10.1038/nprot.2015.043
https://doi.org/10.1038/nprot.2015.043
https://doi.org/10.1038/nprot.2015.043
https://doi.org/10.1098/rsif.2020.0591
https://doi.org/10.1098/rsif.2020.0591
https://doi.org/10.3390/molecules25173830
https://doi.org/10.3390/molecules25173830
https://doi.org/10.17632/vpps4vhryg.2?ref=pdf
http://www.deshawresearch.com/resources_sarscov2.html
http://www.deshawresearch.com/resources_sarscov2.html
https://doi.org/10.1002/prot.340170408
https://doi.org/10.1002/prot.340170408
https://doi.org/10.1039/D1SC00145K
https://doi.org/10.1039/D1SC00145K
https://doi.org/10.1039/D1SC00145K
https://doi.org/10.1101/2020.06.27.175430
https://doi.org/10.1101/2020.06.27.175430
https://doi.org/10.1093/nar/gki464
https://doi.org/10.1093/nar/gki464
https://doi.org/10.1002/jcc.20290
https://doi.org/10.1021/acs.jctc.5b00255
https://doi.org/10.1021/acs.jctc.5b00255
https://doi.org/10.1002/jcc.20035
https://doi.org/10.1021/j100142a004
https://doi.org/10.1021/j100142a004
https://doi.org/10.1021/j100142a004
https://doi.org/10.1016/0021-9991(77)90098-5
https://doi.org/10.1016/0021-9991(77)90098-5
https://doi.org/10.1016/0021-9991(77)90098-5
https://doi.org/10.1063/1.470117
https://doi.org/10.1021/ct400341p
https://doi.org/10.1021/ct400341p
https://doi.org/10.1021/ct400341p
https://doi.org/10.1021/ct500381c
https://doi.org/10.1021/ct500381c
https://doi.org/10.1021/ct500381c
https://doi.org/10.1002/jcc.24417
https://doi.org/10.1002/jcc.24417
https://doi.org/10.1016/0263-7855(96)00018-5
https://doi.org/10.1016/0263-7855(96)00018-5
https://doi.org/10.1073/pnas.1802963115
https://doi.org/10.1073/pnas.1802963115
https://doi.org/10.1073/pnas.1802963115
https://doi.org/10.1021/ct500090q
https://doi.org/10.1021/ct500090q
https://doi.org/10.1021/acs.jcim.0c00319
https://doi.org/10.1021/acs.jcim.0c00319
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.1c00140?rel=cite-as&ref=PDF&jav=VoR

