
����������
�������

Citation: Parra-Dominguez, G.S.;

Sanchez-Yanez, R.E.; Garcia-Capulin,

C.H. Towards Facial Gesture

Recognition in Photographs of

Patients with Facial Palsy. Healthcare

2022, 10, 659. https://doi.org/

10.3390/healthcare10040659

Academic Editor: Francesco Faita

Received: 21 January 2022

Accepted: 28 March 2022

Published: 31 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

healthcare

Article

Towards Facial Gesture Recognition in Photographs of Patients
with Facial Palsy
Gemma S. Parra-Dominguez † , Raul E. Sanchez-Yanez *,† and Carlos H. Garcia-Capulin †

Department of Electronics Engineering, Universidad de Guanajuato DICIS, Salamanca 36885, Mexico;
gs.parradominguez@ugto.mx (G.S.P.-D.); carlosg@ugto.mx (C.H.G.-C.)
* Correspondence: sanchezy@ugto.mx
† These authors contributed equally to this work.

Abstract: Humans express their emotions verbally and through actions, and hence emotions play a
fundamental role in facial expressions and body gestures. Facial expression recognition is a popular
topic in security, healthcare, entertainment, advertisement, education, and robotics. Detecting facial
expressions via gesture recognition is a complex and challenging problem, especially in persons who
suffer face impairments, such as patients with facial paralysis. Facial palsy or paralysis refers to
the incapacity to move the facial muscles on one or both sides of the face. This work proposes a
methodology based on neural networks and handcrafted features to recognize six gestures in patients
with facial palsy. The proposed facial palsy gesture recognition system is designed and evaluated on
a publicly available database with good results as a first attempt to perform this task in the medical
field. We conclude that, to recognize facial gestures in patients with facial paralysis, the severity of
the damage has to be considered because paralyzed organs exhibit different behavior than do healthy
ones, and any recognition system must be capable of discerning these behaviors.

Keywords: facial gesture recognition; facial expression recognition; FER systems; facial palsy;
facial paralysis

1. Introduction

The human ability to effectively communicate emotion is essential to perform daily
activities, and it is required for personal and social sufficiency. Humans express their
emotions not only verbally but also through their actions. It has been shown that 93% of
communication is non-verbal; thus, facial expressions and body gestures play an essential
role in it [1]. This is why emotion recognition systems use facial expressions, speech, body
gestures, physiological signals, bio-signals body movements, and other information to
identify emotional states [2]. Depending on the sensors and features extracted to detect
emotion, recognition systems are unimodal or multimodal. Some systems specifically
operate using only information extracted from facial expressions [2], and those are of
particular interest for this research.

Of all the ways that humans communicate emotion, facial expressions are among the
most flexible, and their universality allows us to rapidly convey information to people
of different ages, cultures, and languages [3]. This is the reason why gesture and facial
expression recognition has recently become a popular topic with applications in various
fields, for example, in security, healthcare, entertainment, advertisement, education, and
robotics [4]. Computer vision has reached high accuracy in the automatic recognition of
facial expressions; extensive research is found in [2,4–6].

A facial expression can be represented by one or more gestures, as shown in Figure 1;
identifying those could help discriminate one expression from another. Facial Expres-
sion Recognition (FER) systems are computer-based technology that uses mathematical
algorithms to analyze faces in images or video [7,8].
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The analysis of facial expressions allows us to classify them into emotion categories;
in other words, giving meaning to a facial expression permits us to recognize and label it as
anger, disgust, fear, happiness, sadness, surprise, contempt, etc. For the sake of clarification,
it is essential to mention that, in the literature, the acronym FER often refers to facial
expression recognition or facial emotion recognition [7].

The difference between both depends on the system’s primary objective; usually, an
algorithm designed to recognize emotions first, performs facial expression recognition
tasks, among others, and it is said that the recognition of emotional states is based on facial
expressions. FER stands for facial expression recognition in this work because this study’s
principal interest is to classify face gestures before achieving facial expression recognition.

Figure 1. A common facial expression recognition system based on the analysis of face images and
machine-learning algorithms to output a facial expression.

Detecting facial expressions continues to be a complex and challenging problem [5].
In general, a camera-based FER system operates in three primary stages: preprocessing,
feature extraction, and classification [9]. In the preprocessing stage, the main step is face
detection within the image. Face detection is complex because it is affected by face gestures,
poses, and lighting conditions. Feature extraction depends on the type of FER system,
whether frame-based or sequence-based. The first refers to a system that considers a
single frame to distinguish among facial expressions, and the second extracts temporal
information to detect expressions from a set of frames [10].

FER systems can also be classified as appearance or geometric-based methods. Appearance-
based methods extract features from textural information of the face. In contrast, geometric-
based methods rely on features computed from the shape change information of the face
during expressions [11]. A number of machine-learning algorithms are used to classify the
subject’s expression and emotion accurately. Some popular classifiers are the linear discrim-
inant classifiers, k-nearest neighbor, Gaussian mixture model, support vector machines,
artificial neural networks, deep neural networks, decision tree algorithms, and hidden
Markov models [2].

Emotion detection is currently a popular research area in computer science fields.
However, the face analysis for medical and health applications is still in an embryonic
state [3]. Applications in the medical field are designed to reduce the patient’s stress,
depression, and anxiety. In other words, automated systems are being developed to
recognize their emotions and then provide appropriate therapy to manage any adverse
reaction in the patient [2].

According to Leo et al. [3], the healthcare frameworks, which include an emotion or
expression recognition module, have been introduced to provide suitable solutions for the
following: (1) long-term care for person-centered and integrated healthcare systems; (2) di-
agnosis or assessment of cognitive impairments (e.g., autism, schizophrenia, and profound
intellectual and multiple disabilities [12]) and automated pain detection; (3) the use of
technological rehabilitation frameworks [13,14], and (4) the design of smart environments
that react in a friendly manner according to the patient’s necessities.

Yolcu et al. in [11] argued that some neurological disorders show well-known impaired
facial expressions. Therefore, it is necessary to design automated systems to efficiently
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detect emotions in, for example, Parkinson’s, stroke, and facial palsy. In the literature, and to
the best of our knowledge, only one recent study aimed to evaluate the emotions from facial
expression in patients with facial palsy. Xu et al. in [15] stated that the automatic recognition
of emotions could be a solution to help understand facial palsy patients, acknowledge
their stress in advance, and assist their treatment. The authors also stated that their facial
expressions are different from healthy subjects due to the inability of the facial muscles,
making the existing data and models from healthy people invalid [15].

Facial paralysis or facial palsy describes the incapacity of the face to move its muscles
on one or both sides, as previously mentioned. This incapacity can originate from nerve
damage due to congenital conditions, trauma, or diseases (e.g., stroke, Bell’s palsy or brain
tumor). There is a noticeable drooping of the facial features and problems with ordinary ac-
tivities, such as speaking, blinking, swallowing saliva, eating, and communicating through
natural facial expressions. In general, the diagnosis of facial palsy is not difficult; it only
requires a healthcare professional to visually inspect the patient’s facial symmetry and
determine the presence and level of paralysis. Since this inspection requires specific medical
training to produce a diagnosis, automatic approaches to diagnosing and evaluating facial
palsy have been developed in recent years.

The wide variety of methodologies working with facial palsy found in the literature
can be divided according to the primary task they perform. For example, the detection of
paralysis via a binary classification between healthy or unhealthy subjects or assessing the
patient’s level of paralysis (damage severity). In our previous work [16], a frame-based
methodology using geometrical features and neural networks was introduced for detecting
facial paralysis on a publicly available database.

This research seeks to classify facial gestures in palsy patients as a first step in recogniz-
ing emotions from facial expressions. Other authors have identified the necessity of having
specific analysis, data, and models for the detection of facial gestures and expressions in
palsy patients [11,15,17], different from the actual work developed with and performed on
healthy people. The main contributions of this work are (1) an analysis of facial gestures
in persons with facial palsy, (2) a system for the recognition of gestures on photographs
of patients exhibiting facial paralysis (such a system consists of a neural network using
handcrafted features extracted from facial landmarks), and (3) evaluations on a publicly
available database.

The remainder of the paper is organized as follows: Section 2 describes the proposed
methodology. Section 3 describes the database employed in this research and introduces the
experiments, findings, and discussion. Finally, Section 4 provides the concluding remarks.

2. Methodology

This research assumes that a facial expression is composed of one or more facial
gestures, and a gesture is produced by activating one or more muscles. In computer vision,
it is widely accepted that muscle activity is defined by action units (AUs); in the field of face
analysis, actions units are encoded in the Facial Action Coding System (FACS) described by
Kanade et al. in [18] and later in [19]. Identifying specific FACS led us to recognize specific
facial gestures as depicted in Figure 1 and, later, to classify facial expressions [4].

The proposed methodology is frame-based, meaning that it inspects a single image
aiming to recognize the facial gesture within it. This approach performs face detection
and then predicts facial landmarks. The geometrical features are computed from those
landmarks mainly in three specific regions: the eyebrows, eyes, and the mouth, similarly
to other approaches [3]. A multi-layer perceptron is then trained to detect six gestures:
rest (neutral), eyebrow elevation, eye closure, wide-open smile, closed mouth smile, and
puckered face, as shown in Figure 2.

A description of the analyzed facial gestures is introduced in Table 1, divided into
three facial regions and the more relevant AUs involved on each. In some cases, not all
the AUs are meaningful to recognize the gesture; then, they are marked as irrelevant for
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the methodology. It does not mean they are not relevant in a different context. Further
description of the method is provided next.

Figure 2. Framework of the proposed facial palsy gesture recognition system.

Table 1. General description of the facial gestures.

Facial Gesture
Face Region

Eyebrows Eyes Mouth

Neutral face No movement No movement No movement

Eyebrow elevation
Inner brow raiser

(AU1) and outer brow
raiser (AU2)

Irrelevant Irrelevant

Eye closure Irrelevant Eyes closed (AU43) Not important

Wide-open smile Irrelevant Irrelevant

Lip corner puller
(AU12), lips part

(AU25) and jaw drop
(AU26)

Closed mouth smile Irrelevant Irrelevant
Lip corner puller
(AU12) and lip

stretcher (AU20)

Pucker Irrelevant Irrelevant Lip puckerer (AU18)

2.1. Step 1: Preprocessing

The first step in our gesture recognition system includes face detection and the predic-
tion of facial landmarks. Color conversion to grayscale and image resize is performed prior
to detect the face using the dlib C++ Library [20]. Facial landmarks are predicted using the
shape predictor proposed and introduced in [21]. Note that the predictor has been trained
to detect 68 key points; however, only 51 are of interest. These were reorganized and are
shown in Figure 3a. The full process is described in [16].

A tilt correction of the head’s angle is performed using the landmarks previously
predicted. It has been demonstrated in [16,22] that such a tilt angle can affect the compu-
tation of measures. To suppress this influence, a rotation of the predicted landmarks is
performed using a transformation matrix. This transformation matrix is calculated accord-
ing to the similarity transform approach and four known point coordinates. The process
goes as follows:

1. Set the outer eyes’ corners as point coordinates. These are landmark 10 (left corner of
the left eye) and landmark 19 (right corner of the right eye) in Figure 3a.

2. Determine a new set of point coordinates, which are horizontally aligned and represent
the new position of the outer eyes’ corners.

3. Calculate the transformation matrix Tf according to the similarity transform approach.
4. Transform the face image using Tf and the affine transformation approach (optional).
5. Rotate the predicted landmarks using Tf .
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The landmark rotation process can be performed with a multiplication of matrices, as
stated in Equation (1)

(
Pirx
Piry

)
=

[
Tf (1,1) Tf (1,2) Tf (1,3)
Tf (2,1) Tf (2,2) Tf (2,3)

]Pix
Piy
1

 (1)

Figure 3. (a) The 51 key points inspired in the 68-point model proposed by Matthews and Baker [23].
(b–d) Facial distances to compute spatial relations between facial landmarks [16].

2.2. Step 2: Feature Extraction

When working with facial palsy patients, the asymmetry of the face must be consid-
ered. Usually, the main difference is observed between the left and right sides of the face,
but others can be observed depending on the disease or the affected nerves. The proposed
methodology mainly compares and quantifies the differences between the left and right
sides by analyzing the location and position of the face organs (eyebrows, eyes, nose, and
mouth). Initial tests concluded that the regions of the eyebrows, eyes, and mouth provide
the most meaningful information for this challenge, and this is similar to the findings of
other authors [22,24–26].

In this research, a total of 30 measures (28 distances and two average values) are
calculated using the extracted key points, as depicted in Figure 3b–d. Distances A to K
are inspired by the work of Ostrofsky et al. in [27], where the authors evaluated objective
measures from face photographs with a target other than the analysis of facial palsy. Still,
they appear to be an excellent reference to characterize the human face. The rest of the
distances (L to W) in Figure 3c,d, were found to be helpful in the previous work [16], which
aimed to detect facial paralysis in photographs.

Features were computed using the aforementioned 30 measures and, after several
evaluations, 29 were found helpful in detecting a level of asymmetry within the face and
performing gesture recognition tasks. The 29 features are described in Table 2. Please refer
to Figure 3 and to [16] if further detail is required. These features were extracted as follows:
using Equation (2) to obtain the angle between two points, Equation (3) to calculate the
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slope between points, Equation (4) to compute the Euclidean distance, and Equation (5) to
calculate the perimeter of a closed shape.

∠(Pa, Pb) = arctan 2(4x,4y)× 180/π (2)

where4x = Pax − Pbx and4y = Pay − Pby.

m(Pa, Pb) =
∣∣∣ Pay − Pby

Pax − Pbx

∣∣∣ (3)

d(Pa, Pb) =
√
(Pax − Pbx)2 + (Pay − Pby)2 (4)

S(Ps, . . . , Pl) =
l−1

∑
x=s

d(Px, Px + 1) + d(Ps, Pl) (5)

where S is a closed shape, Ps is the start point, and Pl is the last one and represents the end
point within the shape.

Table 2. Facial features introduced by Parra et al. in [16].

No. Element Formula Description

f0 Eyebrows |∠(P0, P9)| Y-axis position of the left and right sides.
f1 Eyebrows |∠(P2, P7)| Y-axis position of the left and right sides.
f2 Eyebrows |∠(P4, P5)| Y-axis position of the left and right sides.
f3 Eyebrows max(L/M, M/L) Eyebrows’ height points ratio.
f4 Eyebrows m(P0, P9) Y-axis position of the eyebrows.
f5 Eyebrows m(P2, P7) Y-axis position of the eyebrows.
f6 Eyebrows m(P4, P5) Y-axis position of the eyebrows.

f7 Eyes |∠(P10, P19)| Y-axis position of the eyes’ corner.
f8 Eyes max(Bl/Br, Br/Bl) Eyes’ width ratio.
f9 Eyes max(D/E, E/D) Eye to head side distance ratio.

f10 Eyes max(H/I, I/H) Eye to nose distance ratio.
f11 Eyes max(N/O, O/N) Eyes’ average opening ratio.
f12 Eyes max(Nl/Or, Or/Nl) Eyes’ outer opening ratio.
f13 Eyes max(Nr/Ol , Ol/Nr) Eyes’ inner opening ratio.

f14 Mouth |∠(P28, P34)| Y-axis position of the corners.
f15 Mouth max(F/G, G/F) Eye to mouth distance ratio.
f16 Mouth max(Pl/Ql , Ql/Pl) Mouth’s outer opening ratio.
f17 Mouth max(Pu/Qu, Qu/Pu) Mouth’s inner opening ratio.
f18 Mouth max(Vl/A, Vr/A) Mouth’s half width and head width ratio.
f19 Mouth max(Pl/W, Ql/W) Mouth’s outer height and its width ratio.
f20 Mouth max(Pu/W, Qu/W) Mouth’s inner height and its width ratio.
f21 Mouth max(Wl/W, Wr/W) Mouth’s half perimeter and its width ratio.

f22 Nose |∠(P23, P27)| Y-axis position of the nose.

f23 Combined |∠(P22, P37)| Y-axis position of the nose and mouth.
f24 Combined max(J/K, K/J) Nose-to-mouth distance ratio.

f25 Combined max(T/A, U/A)
Eyebrows-to-mouth distance and the head’s

width ratio.

f26 Combined max(R/A, S/A)
Eyebrows-to-mouth distance and the head’s

width ratio.

f27 Combined C/A Mouth-to-chin distance and the head’s
width ratio.

f28 Combined X/A Nose-to-mouth distance and the head’s
width ratio.

In f3, L and M are the average heights of all the points in the left and right eyebrows, respectively. In
f11, N = (Nl + Nr)/2, similarly, O = (Ol + Or)/2. In f19, f20 and f21, W is the distance depicted in
Figure 3d, with the perimeter values Wl and Wr calculated as Wl = S(P28, P29, P30, P31, P37, P38, P39) and
Wr = S(P31, P32, P33, P34, P35, P36, P37).
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In this research, the proposed features are also capable of discriminating between
different positions and shapes of the face organs involved in the gestures described in
Table 1. Figure 4 intends to show the behaviors that these elements reveal for each gesture.
For the eyebrows, the most significant asymmetry is observed with the eyebrow elevation
movement. Depending on the palsy severity, such asymmetry can also be observed in
other expressions, for example, while resting the face. For the eyes, the most asymmetrical
level is found for the eye closure; however, a significant change is also observed when the
subject elevates the eyebrows.

We observed that when the patient is asked to raise the eyebrows, the movement
comes with a whole opening of the eyes; the mouth is irrelevant in this case. Smiling shows
the most considerable asymmetry within the lips, vertically in the case of a wide-open smile
and horizontally in the other case. Here, it is also observed that patients tend to show a
slight asymmetry in the eyes opening when smiling and when performing a pucker gesture.

Depending on the palsy severity, this asymmetrical eye-opening could be observed
when resting the face. Notice that the photographs represent posed expressions; a different
behavior could be observed in in-the-wild images. In Figure 4, the reader can infer that the
proposed methodology aims to discriminate among six classes (i.e., rest, eyebrow elevation,
eye closure, wide-open smile, closed mouth smile, and pucker).

Figure 4. The proposed facial gestures grouped into six classes.

2.3. Step 3: Classification

The Waikato Environment for Knowledge Analysis (Weka) was employed to achieve
the proposed facial gesture classification task. Weka is a platform for general-purpose
machine-learning tasks, such as classification, prediction, detection, etc. Weka is a graphical
user interface that contains the full pipeline for managing data sets, training, and testing
according to multiple machine-learning models; therefore, it was appropriate for the
analysis performed in this research. For more information regarding the Weka platform,
please refer to [28].

Particularly, the Weka function known as the Multilayer Perceptron (MLP) was used
to train and test a multi-class classifier based on the multi-layer perceptron strategy. This
MLP classifier requires a few parameters to learn. Some of those can be easily set up in
the Weka environment, for example, the learning rate (L), momentum (M), training time
(N), number of neurons in each of the layers (input, hidden, and output) (H), and seed (S).
During the training phase of the MLP strategy, the learning rate and the momentum are
required to update the weights of the connections between network nodes. As indicated by
its name, the training time refers to the number of iterations to train through, and the value
in H refers to the number of neurons in each layer within the network. Finally, the value
of S refers to a number employed to initialize the network’s weights randomly. The MLP
strategy uses backpropagation to learn and classify instances. More information regarding
the Weka software may be found at [28].
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It is relevant to mention that the Weka suite operates using Attribute-Relation File
Format (ARFF) files, which are text files that describe a list of instances (samples) sharing
a set of attributes (features and labels); information on how to create ARFF files can be
found in [29]. ARFF files are created for the training and testing sets in this work, those files
are later loaded into Weka, and the training and evaluation process begins. Next, further
details on the experiment and results are provided.

3. Results and Discussion

Several methodologies are proposed to detect facial paralysis in a photograph; however,
no methods seek to analyze and recognize facial gestures in patients with palsy. To our
knowledge, annotated data indicating the patient’s emotional state is not publicly available.
This is likely because the available data is limited due to patients’ privacy; under this scenario,
we decided to design a recognition system using a publicly available dataset called the
Massachusetts Eye and Ear Infirmary (MEEI) database. This image database was collected by
Greene et al. and introduced in [17], the MEEI is an open-source set of face photographs and
videos representing the whole flaccid and nonflaccid facial palsy spectrum. The database was
launched with the purpose to serve as a resource for facial paralysis research and education;
some works that have employed the MEEI database are [16,21,30,31].

The relationship between the level of facial function and the perceived emotion in a
palsy patient was characterized by Greene et al. in [17] using a machine-learning algorithm
to initially demonstrate the utility of the MEEI database. That particular algorithm was
designed and trained using healthy people imagery, and then, the recognition of the
communicated emotion from the palsy patients was inaccurate as concluded by the authors
themselves in [17].

The MEEI dataset consists of 480 high-resolution images from 60 subjects: ten healthy
participants, 25 patients with flaccid palsy, and 25 patients with nonflaccid paralysis. Each
subject performed eight well-known facial movements: (1) at rest, (2) eyebrow elevation,
(3) light effort eye closure, (4) full effort closure, (5) light effort smile, (6) full effort smile,
(7) pucker, and (8) lip depression. The MEEI database is also annotated according to the
level of paralysis; in other words, six palsy grades are provided: normal, near-normal, mild,
moderate, severe, and complete. It is relevant to mention that those facial grading scores
seek to evaluate the level of paralysis rather than perform emotion recognition tasks. The
scope of our research only aims to recognize facial expressions with this image database.

The eight facial movements are grouped into six classes in the proposed approach, as
previously shown in Figure 4. Closing the eyes is considered a single gesture since it is not
the intention to measure the intensity of the movement, which would be out of the scope of
this work. Smiling is split into smiles showing the teeth (wide-open smile) or just enlarging
the lips (closed mouth smile); again, measuring the intensity of the gesture is out of the
scope. During preliminary tests, we observed that, for a palsy patient, performing a lip
depression—which consists of showing the lower teeth—is very similar to a wide-open
smile; thus, it was grouped as a single facial gesture.

The five-fold cross-validation protocol is adopted to test the model accuracy. This
allows testing on unseen images, thus, reducing the possibility of over-fitting to previously
seen ones. The five-fold cross-validation method divides the data set into five subsets.
Every single subset is retained as validation data. The other four are used as training data,
ensuring the test data is untouched in each experiment session. The experiment is repeated
five times, and each subset has the same probability for validation. The accuracy, recall,
precision, and F1 score values are computed as evaluation metrics according to (6), (8), (7),
and (9), respectively.

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

Recall =
TP

TP + FN
(7)
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Precision =
TP

TP + FP
(8)

F1-score =
2× TP

2× TP + FP + FN
(9)

where TP stands for true positives, TN for true negatives, FP for false positives, and FN for
false negatives.

Due to the limited amount of data, 80 healthy and 400 palsy samples (200 flaccid and
200 non-flaccid), it was necessary to augment the data set. Following the strategy suggested
in [22,32], the samples were rotated in opposite directions, increasing the amount of data
and also verifying that the proposed methodology is invariant to rotation. In preliminary
tests, increasing the amount of data to 560 healthy and 2800 palsy samples, meaning three
rotations in opposite directions and the original data, was shown to be sufficient to obtain
good results without over-fitting.

3.1. Performance Evaluation

As previously stated, the classification task (i.e., facial gesture recognition) was per-
formed using the MLP approach with the L and M parameters set as previously proposed
in our work (i.e., L = 0.2045 and M = 0.1909) [16]. The rest of the parameters were defined
after several trials and a value optimization process using the Weka platform. We found
that H = 95, S = 0, and N = 5000 yielded the best results for the system. The entire data
set was used during the design of the classifier; 80% of the samples were used to train and
20% to test according to the five-fold cross-validation strategy, as mentioned earlier.

It is out of the scope of this research but to provide a reference of the necessity of
having new models designed with palsy data, a classifier was trained and tested using only
the healthy data from the MEEI database. The 560 samples were distributed as follows:
70 samples for class 0, 70 samples for class 1, 140 samples for class 2, 161 samples for class
3, 49 samples for class 4, and 70 samples for class 5. The overall accuracy of 90.71% was
reached in recognizing facial gestures using the five-fold cross-validation strategy. The
palsy data was also evaluated with this classifier trained with healthy samples, and the
performance decreased to 58.96%. This shows that a model trained with palsy information
is required, as discussed earlier.

Another classifier was trained using the 2800 palsy samples, which are distributed as
follows: 350 samples for class 0, 350 samples for class 1, 700 samples for class 2, 868 samples
for class 3, 182 samples for class 4, and 350 samples for class 5. The five-fold cross-validation
results are provided in Table 3, where the values correspond to the performance of the
testing part of the data for each fold. The system accuracy is 90.25% with the best result of
90.86% and the worst of 89.46%.

Table 3. The results per fold of the facial gesture recognition system.

n-Fold Correct Errors Accuracy

1-fold 509 51 90.89%
2-fold 506 54 90.36%
3-fold 501 59 89.46%
4-fold 507 53 90.54%

five-fold 504 56 90.00%

Overall 2527 273 90.25%

The results provided in Table 4 reflect the capacity of the system to recognize each
class. It is easy to observe that the best-recognized gesture is class 3 (wide-open smile),
while class 4 (close-mouth smile) is the worst in terms of recall values, likely because of the
data distribution previously described. A deeper analysis of the capacity of the system to
recognize each class is provided in Section 3.2.
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Table 4. The results per class of the facial gesture recognition system.

Class Recall Precision F1-Score

Class 0 83.71% 78.55% 81.05%
Class 1 86.57% 89.38% 87.95%
Class 2 89.43% 91.92% 90.66%
Class 3 97.12% 92.84% 94.93%
Class 4 83.52% 86.86% 85.15%
Class 5 88.57% 95.68% 91.99%

Class 0 refers to neutral face, class 1 to eyebrow elevation, class 2 to eye closure, class 3 to wide-open smile, class 4
to closed mouth smile, and class 5 to pucker.

The confusion matrix with actual and predicted labels is introduced in Figure 5,
showing the accuracy of the proposed methodology, and by looking into it, it can be
observed that the classification system can recognize different facial gestures. The best
result is 97.12% for class 3, and the worst is 83.52% for class 4. As mentioned before, the
system’s overall accuracy is 90.25%, representing a good result if considering this is a
six-class classification system. Furthermore, considering that the baseline accuracy was set
at 58.96%, a significant improvement was achieved.

Figure 5. Confusion matrix with actual and predicted labels: class 0 for neutral face, class 1 for
eyebrow elevation, class 2 for eye closure, class 3 for wide-open smile, class 4 for closed mouth smile,
and class 5 for pucker.

Additional experiments were performed to observe the capacity of the recognition
system based on the level of facial palsy. For this test, six classifiers were trained under
the same parameters (i.e., L = 0.2045 and M = 0.1909, H = 95, S = 0, and N = 5000);
however, only the data corresponding to the same grade of paralysis was employed. The
data distribution consists of 10 participants for each grade: normal, near-normal, mild,
moderate, severe, and complete.

The results for the recognition system based on the level of facial palsy are shown
in Table 5. Good results are revealed, especially for the complete level of paralysis with
an overall accuracy of 96.79%. The lowest performance was 87.14% for the mild grade;
this palsy level was the hardest to characterize for our system. The overall accuracy of
90.71% seems acceptable for the normal subjects; however, in the literature highest values of
accuracy are found. However, it is not the scope of this research to perform facial expression
recognition on healthy people.
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Table 5. The results per class for each level of paralysis of the facial gesture recognition system.

Test Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Overall

Normal 75.71% 87.14% 86.43% 98.76% 91.84% 97.14% 90.71%
Near-

normal 87.14% 94.29% 85.71% 98.81% 80.95% 91.43% 91.25%

Mild 71.43% 80.0% 80.0% 98.41% 76.19% 97.14% 87.14%
Moderate 87.14% 95.71% 87.86% 97.80% 89.29% 81.43% 91.25%

Severe 88.57% 85.71% 86.43% 96.89% 93.88% 91.43% 90.89%
Complete 91.43% 95.71% 93.57% 100% 100% 100% 96.79%

Average 83.57% 89.76% 86.67% 98.44% 88.69% 93.09% 91.34%
Class 0 refers to neutral face, class 1 to eyebrow elevation, class 2 to eye closure, class 3 to wide-open smile, class 4
to closed mouth smile, and class 5 to pucker.

In Figure 6, the confusion matrix for each of the evaluations is depicted. In Figure 6a,
it is possible to observe that a neutral face is mainly confused with closed eyes in a healthy
face; this is an expected behavior since a little change in the organs’ shape would be
observed because of the symmetry of the face. The same justification applies for eyebrow
elevation being confused with a neutral face. In the case of near-normal palsy shown in
Figure 6b, the worst class is closed mouth smile, which is confused with eye closure. We
argue that this is produced by the activation of the lip corner puller, making what looks
like a smile. In the case of mild palsy shown in Figure 6c, it is easy to observe that this level
of paralysis is the most difficult to characterize.

Here, the neutral face is confused with four of the five possible classes. In the case of
moderate palsy shown in Figure 6d, the worst class is puckered face, which is confused
with all possible classes, likely because the asymmetry of the mouth is not sufficient to
characterize it into specific gestures. In the case of severe palsy shown in Figure 6e, the
worst class is eyebrow elevation, and we argue that this is produced by the incapacity of
the patient to raise the eyebrows. Finally, in the case of complete palsy shown in Figure 6e,
the worst class is the neutral face, which is slightly confused with three of the five possi-
ble classes.

At the beginning of this paper, we mentioned the work of Xu et al., which aimed
to evaluate emotions in patients with facial palsy through deep learning [15]. To start,
the authors collected images representing facial expressions of six basic emotions from
45 patients with three levels of facial palsy. The authors reported an increase in the
performance from 23.89% to 66.58% after training using the palsy data. Moreover, their
emotion recognition accuracy rates were 72.22% for mild, 65.83% for moderate, and 61.67%
for severe levels of paralysis. Their work is not a direct comparison to our research; however,
they are related because both seek to provide solutions in the analysis from images of facial
paralysis. Both works concluded that new models trained with palsy data are required to
do so.
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(a) Accuracy 90.71% (b) Accuracy 91.25%

(c) Accuracy 87.14% (d) Accuracy 91.25%

(e) Accuracy 90.89% (f) Accuracy 96.79%

Figure 6. Confusion matrix with actual and predicted labels for test: (a) normal, (b) near-normal,
(c) mild, (d) moderate, (e) severe, and (f) complete paralysis. Class 0 refers to neutral face, class 1 to
eyebrow elevation, class 2 to eye closure, class 3 to wide-open smile, class 4 to closed mouth smile,
and class 5 to pucker.

3.2. Analysis

In this methodology, the levels of asymmetry were found by measuring the change rate
of the height and width of each eye and the mouth, and the difference in the vertical position
between the eyes and eyebrows. The method mainly compares the left and right sides of
the face as depicted in Figure 7, thereby, allowing good results in detecting facial gestures.

In a further analysis and referring to Figures 6 and 7, we found that:

• Neutral face is confused with closing the eyes, because there is a slight difference
between the eyebrows’ position (see Figure 7a) and the mouth shape for both gestures
(see Figure 7b); however, if there is enough paralysis where one eye remains opened
and the other closed, the change is perceived by the classifier and the movement is
classified correctly (see Figure 7c).

• Neutral face is confused with the eyebrow elevation; some patients show similar
asymmetry in the eyebrows’ vertical position due to their level of paralysis.



Healthcare 2022, 10, 659 13 of 15

• Closed mouth smile is confused with a wide-open smile mainly because a similar rate
of change is produced in the eyes opening and in the mouth width or opening (see
Figure 7d).

• Closed mouth smile is confused with closing the eyes because, in some patients, a full
effort eye closure activates the lip corner puller, producing what looks like a smile (see
Figure 7e).

• Closed mouth smile is confused with a neutral face because, in some patients, the
asymmetry in the mouth shape is not sufficient to classify it as a smile.

• Pucker is confused with a neutral face because some patients cannot fully perform the
gesture. Their mouth looks asymmetrical; however, the eyes and the eyebrows remain
close to no movement (see Figure 7f).

• Pucker is confused with closing the eyes because some patients cannot fully perform
the gesture but show a change in the eyes’ opening.

The images from the MEEI database are available upon request at https://www.
sircharlesbell.com/ (accessed on 1 September 2020).

Figure 7. Analysis of facial gestures in patients suffering from facial palsy: (a) Small change in the
eyebrows’ height. (b) Similar mouth shape (width and height). (c) Slightly different change in the
eyes’ height. (d) Similar change in the mouth shape. (e) Activated lip corner puller. (f) Similar change
in the mouth shape.

To achieve facial gesture recognition and later emotion classification in patients with
facial paralysis, the level of damage must be considered in the recognition system design be-
cause the paralyzed facial organs exhibit different behavior compared with healthy organs.
Regarding accuracy and face generalization, improvements to the methodology would
require more data from facial palsy patients with labeled facial expressions and emotions.

It is out of the scope of this research; however, it is worth mentioning that a complete
facial paralysis system should start with detecting facial palsy in a face photograph (or
video, depending on the methodology). Then, a classifier trained on healthy people or palsy
patients could be selected for the following tasks depending on the detection result. The
next module should include the analysis of facial gestures to recognize facial expressions
to detect emotion or any other application involving the face. To date, we proposed a

https://www.sircharlesbell.com/
https://www.sircharlesbell.com/
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system to detect facial palsy in photographs and now an approach to classify facial gestures.
Annotated data, including the patient’s emotional state, is needed for the next step.

4. Conclusions

We proposed a methodology based on neural networks and handcrafted features to
recognize six gestures in patients with facial paralysis. The proposed gesture recognition
system was designed and evaluated on publicly available images from patients with facial
palsy. The recognition system obtained an overall accuracy of 90.25%; the best result yielded
97.12% and the worst 83.52%. The achieved performance also shows that our methodology
is helpful in solving issues of interest in facial palsy. Other approaches have aimed to
analyze faces in subjects with cognitive impairments and pain; however, this research is a
first attempt to perform facial gesture recognition in patients with facial palsy.

We found that any facial gesture recognition system must consider the level of paralysis
exhibited by the patient because there is different behavior between healthy and paralyzed
facial organs. The recognition systems must be capable of discerning such behavior. The
analysis of facial paralysis from images requires new data and models to overcome the bias
produced by the use of healthy people photographs in the design, training, and testing
of algorithms. Improvements to the methodology would require more data from palsy
patients with labeled facial expressions. The code to compute our facial features and the
trained models is available upon request.
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