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Mitosis and meiosis are crucial life activities that transmit eukaryotic genetic

information to progeny in a stable and orderly manner. The formation and

appearance of chromosomes, which are derived from chromatin, are the

preconditions and signs of mitosis. When entering mitosis, interphase loose

chromatin is highly spiralized and folded to form compact chromosomes.

In recent years, it has been found that in addition to the well-known DNA,

histones, and topoisomerase, a large protein complex called condensin plays

an important role in the process of chromosome formation. Numerous

studies have shown that the abnormal function of condensin can lead to

incomplete or excessive concentration of chromatin, as well as disorder of

genome organization process, abnormal transmission of genetic information,

and ultimately lead to various diseases of individual, especially in nervous

system diseases. In this review, the biological function of condensin and the

potential pathogenic mechanism of condensin in nervous system diseases are

briefly summarized. Therefore, the investigation of these mechanisms makes

a significant contribution to the understanding of those related diseases and

provides new ideas for clinical treatments.
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condensin, mitosis, chromosome, 3D chromatin architecture, nervous system
diseases

Introduction

Mitosis and meiosis are important life activities that transmit
eukaryotic genetic information to progeny in a stable and orderly
manner, which are of great significance for maintaining the
normal growth and development of individuals and ensuring
the continuity and stability of species. The formation and
appearance of chromosomes are the premise and symbol of
mitosis, and also the guarantee of accurate inheritance of
genetic material to the offspring. Chromosome comes from

chromatin, which is a complex of DNA, histones, non-
histones, and a small amount of RNA (Luger et al., 1997).
Chromatin is loosely expanded in the interphase and highly
spiralized and folded to form a compact chromosome as it
enters mitosis (Vagnarelli, 2012). It was found that although
nucleosomes are the basic unit of chromatin packaging, some
functional proteins such as topoisomerase, CTCF, cohesion, and
condensin play their roles in this packaging process in addition
to DNA and histones (Pommier et al., 2022). Condensins,
assisting in the construction of 3D chromatin architecture, play
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their functions in chromosome condensation and segregation
during mitosis by participating in the formation of chromatin
loops and topologically associated domains (TAD; Kalitsis
et al., 2017; Tanizawa et al., 2017). Recent studies have also
confirmed that 3D chromatin architecture changes dynamically
and maintains homeostasis during ontogeny, which plays an
important role in DNA replication, gene expression regulation,
cell differentiation, and development (Ke et al., 2017; Zheng
and Xie, 2019). Peculiarly, these changes in 3D chromatin
architecture are essential for the division of neural stem cells,
the maturation of post-mitotic neurons, neurodevelopment, and
neurodegeneration, in which the normal function of condensin
is indispensable (Nishide and Hirano, 2014; Davis et al.,
2018; Hassan et al., 2020; Hu et al., 2021). On the contrary,
the abnormal function of condensin can influence the 3D
chromatin folding leading to the disorder of gene expression
regulation, and ultimately cause various diseases especially
nervous system diseases (Norton and Phillips-Cremins, 2017;
Li et al., 2018). Thus in this mini-review, we briefly summarize
the biological function of condensins and their potential
pathogenesis in nervous system diseases, including nervous
system developmental disorders, nervous system tumors, and
Alzheimer’s disease, which may provide new understanding and
treatment ideas for these diseases.

The biological function of condensin

Condensin is a large protein complex composed of five
protein subunits, which is highly conserved in both eukaryotes
(fungi, vertebrates) and prokaryotes (Bacillus subtilis) during
the evolutionary process of species. Up to now, three types
of condensin have been found. Condensin I and II exist
in humans and most other eukaryotes. The third type of
condensin was found in Bacillus subtilis. Condensin I and II
have two same structural maintenance of chromosomes (SMC)
subunits 2 and 4 (SMC2/4), while three different non-SMC
regulatory subunits which are a kleisin subunit (NCAPH and
NCAPH2) and a pair of HEAT subunits (NCAPD2/G and
NCAPD3/G2). The third type of condensin, in the form of SMC-
ScpA/B, consists of two identical SMC subunits, two identical
ScpB subunits, and one kleisin subunit (ScpA). Therein the
hinge domains of these two SMC subunits are combined with
each other, while the head domains are combined with their
regulatory subunits respectively. Two SMC subunits form an
“∧” shaped dimer. Then the kleisin subunit connects with
the head domain of the dimer asymmetrically in a band
shape. The HEAT subunits bind to the central domain of
kleisin subunit. There is an ATP binding domain at the head
domain, which is used to regulate the contact and separation
between dimer and regulatory subunit, as shown in Figure 1A
(Hirano, 2016). Condensin can be attached to dsDNA as
ATP hydrolysis-dependent molecular motor and move along

dsDNA as needed (Terakawa et al., 2017). Otherwise, the kleisin
subunit and the HEAT subunits together constitute the groove
domain for recognizing dsDNA, in which the “safety belt”
structure (red part) formed by kleisin subunit is the key for
recognizing and anchoring dsDNA, as shown in Figure 1B
(Kschonsak et al., 2017). So, one end of the condensin is
firmly anchored to the dsDNA, and the other end is attached
to the dsDNA and moves along the dsDNA in a certain
direction, prompting the linear dsDNA segment to form a
dsDNA loop, as shown in Figure 1C (Ganji et al., 2018). When
multiple condensins are attached to the same linear dsDNA
segment, they mutually reinforce rather than interfere with
each other. Finally, the single linear dsDNA segment is folded
into a Z-loop composed of three parallel connected dsDNA
segments, and the linear dsDNA is further compressed, as
shown in Figure 1D (Kim et al., 2020). Condensins mediate
in loop extrusion in this way, as a means for 3D genome
organization. It is worth mentioning that the distribution of
condensin I and II on chromosomes is different, as well as
their relative concentrations and ratios in vivo by which the
chromosome shapes are determined. First, both of them take
different effects in chromosome condensation and segregation
during mitosis: condensin I mainly promotes the longitudinal
compression of chromosomes, while condensin II mainly serves
the axial compression. Second, condensin I is sequestered in the
cytoplasm during interphase and gains access to chromosomes
only after the nuclear envelope breaks down in prometaphase,
while condensin II localizes to the nucleus during interphase
and prophase and participates in an early stage of chromosome
condensation within the prophase nucleus (Ono et al., 2003,
2004; Shintomi and Hirano, 2011). In addition, condensins are
also involved in decatenating dsDNA, DNA damage response,
DNA repair, and cancer growth (Hirano, 2012). However, the
detailed mechanisms of condensins in human nervous system
diseases have not been sufficiently illustrated. To date, their
trials aimed at investigating condensins related drugs for the
treatment of nervous system diseases are lacking. In this regard,
we can say that the biological function of condensin is still at an
early stage of investigation and obviously requires more attention
from researchers.

Condensin and nervous system
developmental disorders

Microcephaly is a group of neurodevelopmental disorders
characterized by a decrease in head circumference accompanied
by a certain degree of non-progressive intellectual degradation
(Neitzel et al., 2002). Patients with primary microcephaly,
whose cells display unique cellular phenotypes, including
premature chromosome condensation (PCC) in the G2 phase,
present with intellectual disability. This group of patients
shows a decrease in the size of the brain and a dramatic
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FIGURE 1

(A) Structural schematic diagram of condensing. (B) “safety belt” structure and DNA anchoring. (C) Mechanism of DNA loop formation promoted
by condensins. (D) Mechanism of multiple condensins promoting DNA Z-loop formation.

reduction in the size of the head (Neitzel et al., 2002;
Darvish et al., 2010). Microcephalin/MCPH1 is one of the
pathogenic genes of primary microcephaly caused by autosomal
recessive inheritance (Jackson et al., 2002; Trimborn et al.,
2004; Venkatesh and Suresh, 2014). It has been shown that it
is primarily condensin II, not condensin I, that is involved in
MCPH1-deficient microcephaly (Trimborn et al., 2006). This
is mainly caused by condensin II locating to the nucleus from
interphase through prophase and participates in an early stage
of chromosome condensation within the prophase nucleus.
This is consistent with PCC in MCPH1-deficient microcephaly
patients. Moreover, condensin II needs to bind to chromatin
at the right time and at the appropriate dosage to achieve
the correct condensation of chromatin and MCPH1 is one
of the factors that regulates this process (Trimborn et al.,
2006; Wood et al., 2008; Yamashita et al., 2011). Furthermore,
MCPH1 can bind with NCAPG2 and NCAPD3 subunits of
condensin II through its intermediate domain and N-terminal
BRCT domain, then regulate SMC2-NCAPH2 interface, to
prevent condensin II from associating with DNA stably and
reduce the formation of extruding loops (Wood et al., 2008;
Yamashita et al., 2011; Houlard et al., 2021; Liu et al., 2021).
Nevertheless, patients with MCPH1-deficient microcephaly

lacked properly functioning MCPH1. As a result, condensin
II loses normal inhibitory regulation of MCPH1, which makes
condensin II combine with chromatin prematurely and more
tightly. This further leads to PCC in the G2 phase of the
cell cycle, which perturbs the program of gene expression
supporting normal development of the brain (Trimborn
et al., 2006; Yamashita et al., 2011). Microcephaly is thus
formed. The above pathological process is the pathogenic
model of MCPH1-deficient microcephaly recognized by many
scholars nowadays.

There is another kind of microcephaly, which is mainly
caused by the deletion or mutation of the gene encoding
the condensin subunits. Here are some reports about
condensin-deficient microcephaly: in 2010, Chen et al.
(2010) reported a child with a chromosome 22q13 deletion
(including NCAPH2 deletion), who showed intellectual
disability, autism, epilepsy, and developmental delay. In the same
year, Ji et al. (2010) reported two cases of Jacobsen syndrome
(JBS) which is a haploinsufficiency syndrome caused by the
deletion of part of the long arm of chromosome 11, including
the deletion of NCAPD3. In that two cases, both patients
presented with developmental delay, microcephaly, and facial
deformity. In 2013, Perche et al. (2013) reported a case of
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7qter deletion syndrome with NCAPG2 deletion, in which
the patient is presented with microcephaly and intellectual
disability. In 2016, Martin et al. (2016) found that the double
allele mutation of NCAPD2, NCAPH, and NCAPD3 would
lead to microcephaly. In 2019, Khan et al. (2019) reported
two families of NCAPG2 recessive mutations and their clinical
phenotypes, including neurodevelopmental defects and ocular
abnormalities.

Further studies have shown that fibroblasts from these
patients share the same genetic pathological changes,
including excessive DNA/chromatin bridges (a kind of
remaining connective structure of incomplete separation of
chromosomes), lagging chromatin/chromosomes, micronuclei,
and aneuploidy, in cells during mitosis (Martin et al., 2016;
Khan et al., 2019). Interestingly, condensin I and condensin
II are just what are needed to break down DNA/chromatin
bridges (Charbin et al., 2014; Martin et al., 2016; Piskadlo
et al., 2017). Therefore, once some subunit gene sites
of condensin are mutated or deleted, such as NCAPD2,
NCAPH, and NCAPD3, this will damage the function of
condensin to decompose DNA/chromatin bridges. The above
genetic pathological changes will occur during cell mitosis.
These genetic pathological changes can also reduce cell
proliferation and increase cell death in the cerebral cortex,
providing a straightforward explanation for condensin-deficient
microcephaly. So another pathogenic model of microcephaly
was proposed that “condensinopathies” result in condensin-
deficient microcephaly due to impaired DNA decatenation
(Charbin et al., 2014; Martin et al., 2016; Piskadlo et al., 2017;
Khan et al., 2019).

To sum up, there are two pathogenic models of
microcephaly, MCPH1-deficient and condensin-deficient.
Both of them indicate that maintaining dynamic stability,
proper organization, correct shape, and ordered isolation of
3D genome is crucial for neurodevelopment (Davis et al., 2018;
Ghosh and Meyer, 2021; Cummings and Rowley, 2022) in
which condensins play an indispensable role. Many subunits
of condensing are involved in the two pathogenic models.
However, the specific role of each subunit is still unclear
and needs further research. Related condensin subunits and
symptoms of nervous system developmental disorders are
summarized in Table 1.

TABLE 1 Subunits and symptoms of condensin associated with
nervous system developmental disorders.

Condensin subunits involved in Symptommanifestations

SMC2 Microcephaly
NCAPG2 Intellectual disability
NCAPD3 Autism
NCAPH2 Epilepsy
NCAPD2 Facial deformity
NCAPH Brain structural abnormality

Mental disorder
Aphasia
Ocular anomalies

Condensin and nervous system
tumors

Glioma is a kind of tumor that originated from glial cells
and is the most common primary malignant tumor of the
brain (Malzkorn and Reifenberger, 2016). Despite the etiology
of glioma is not very clear till present, more and more studies
have shown that the pathogenesis of glioma is related to the
3D genome structure in which condensins play a pivotal role
(Phillips et al., 2020; Wang et al., 2021). Currently, studies
have shown that the subunits of condensin, such as NCAPG,
SMC4, and NCAPG2, have been reported to be involved in
the glioma pathogenesis. Wherein, NCAPG could be positively
related to CDCA2 (cell division cycle-associated protein 2)
in glioma, and the over-expression of NCAPG may regulate
the cell cycle and promote the proliferation, migration, and
invasion of glioma cells (Liang et al., 2016; Jiang et al., 2022;
Jin et al., 2022). Meanwhile, NCAPG overexpression can also
increase the expression of MHCI and AMAD17 molecules, both
of which are located on the tumor surface, thus, assisting in
camouflaging the tumor and preventing NK cells from being
activated in the immune microenvironment (Zheng et al., 2022).
In addition, the knocking down of NCAPG can make the tumor
cells stay in the G1 phase of the cell cycle. Unfortunately,
there is still no research to clarify how NCAPG regulates the
cell cycle and how to promote glioma progression by affecting
the 3D genome structure of glioma. Further investigations
of that are needed to be conducted to prove the regulative
relationships.

Numerous studies have proved that SMC4 is involved
in glioma molecular nosogenesis. The overexpression of this
condensin subunit in glioma cells can increase their proliferative
by accelerating the G1-S phase transition, and thus can
promote migration, invasive, tumorigenicity, and the epithelial-
mesenchymal transition (EMT) process of glioma cells (Jiang
et al., 2017; You et al., 2021). According to recent researches,
the above effects of SMC4 in glioma cells are exerted
mainly by activating the TGF β/Smad pathway, along with
Smad2/3 phosphorylation and Smad2/3 nuclear translocation
(Jiang et al., 2017). The TGFβ/Smad pathway is a recognized
signal pathway that promotes the progression of glioma,
characterized by p-Smad2 nuclear translocation (Bruna et al.,
2007). The p-Smad2 co-locates with DSB repair protein in the
nucleus and participates in inducing DNA damage response
(DDR; Hubackova et al., 2012; Wang et al., 2013). A hallmark
of cancers is their genomic instability due to a propensity
to accumulate DNA damage (O’Connor, 2015). Therefore, the
tumor depends on DDR to maintain its survival (O’Connor,
2015; Bakhoum et al., 2017). The 3D genome structure needs
to be appropriately changed to assist DDR (Yasuhara and
Zou, 2021), and the Smc2/4 condensin complexes are needed
in this process (Wu and Yu, 2012). In the SMC4 depleted
glioma cells, the DNA damage foci increased significantly
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(Wang and Wu, 2021). SoSMC4 may participate in DDR directly
or indirectly, to maintain genome stability and promote the
malignant progression of glioma.

It has been shown that the overexpression of NCAPG2 could
promote proliferation, migration, and invasion and regulate
the cell cycle in glioblastoma cells. NCAPG2 regulates
HBO1 phosphorylation and H4 histone acetylase activation,
modulates activation of the Wnt/β-catenin pathway, increases
the expression of MCM, and the binding of MCM protein
to chromatin (Wu et al., 2021). MCM mainly participates in
DNA replication by binding chromatin in the S phase, which is
required by chromosome condensation mediated by condensin
II (Sonneville et al., 2015). The surplus of MCMs can increase
the robustness of genome duplication by restraining the speed
at which eukaryotic cells replicate their DNA (Sedlackova et al.,
2020). MCM can also participate in DDR (Drissi et al., 2018).
SoNCAPG2 may also promote the malignant progression of
glioma by maintaining genome stability.

Some studies have shown that, not only in glioma,
condensins also play an important role in the occurrence
and development of other kinds of nervous system tumors.
Neuroblastoma is a developmental neoplasm of the autonomic
nervous system that primarily affects young children (Fetahu
and Taschner-Mandl, 2021). In neuroblastoma, MYCN gene
amplification is related to the poor prognosis of patients
(Tolbert and Matthay, 2018). The overexpression of SMC2,
in neuroblastoma with MYCN gene amplification, can also
promote tumor growth by regulating DDR (Murakami-Tonami
et al., 2014). A typical teratoid/rhabdoid tumor (AT/RT) is a
highly malignant central nervous system tumor predominantly
occurring in infants and possibly also in older children and
adults (Fruhwald et al., 2016). NCAPG is a potential oncogene
of AT/RT, which is mainly involved in the cell cycle, DNA
replication, and the p53 signaling pathway (Pan et al., 2020).

In short, NCAPG, SMC2/4, and NCAPG2, the subunits of
condensins, play an important role in the malignant progression
of nervous system tumors. There is a potential pathogenic
model of nervous system tumors: because the tumor itself has
genome instability and DNA damage, the tumor will compensate
for over-expression of condensins. For one thing, condensins
can directly participate in genome condensation to maintain
chromosome stability; for another, condensins can indirectly
maintain genome stability through the DDR pathway or MCM
protein pathway (Ibarra et al., 2008). This can, rapidly and safely,
promote the G1-S phase transition of the tumor, realize the
effective proliferation of the tumor, and lay the foundation for
the malignant progression of the tumor.

Condensin and Alzheimer’s disease

Alzheimer’s disease (AD) is a neurodegenerative disease
with the hidden onset and progressive development. Clinically,

it is characterized by memory disorder, aphasia, apraxia,
agnosia, impairment of visual and spatial skills, executive
dysfunction, personality and behavior changes, etc (Knopman
et al., 2021). However, the etiology of AD is still unclear. It
has been shown that DNA methylation, chromatin remodeling,
and 3D genomic structural abnormalities are potential causes
of AD (Berson et al., 2018). Studies have also shown that
there is genetic variation related to AD in a wide area in
chromosome12 (Pericak-Vance et al., 1997; Liang et al., 2006).
Later, Lee et al. (2008) and Li et al. (2009) successively and
accurately located NCAPD2 as a potential susceptibility gene
of AD in chromosome 12p13. Unfortunately, there has been
no research report on NCAPD2 and AD since then, and the
relationship between them has become a mystery. Kobayashi
et al. (2016), Shinagawa et al. (2016), and Chen et al. (2021) have
successively confirmed that the level of NCAPH2 methylation
in peripheral blood of AD patients is lower than that of normal
people and NCAPH2 hypomethylation is significantly positively
associated with the hippocampal volume in patients. Similarly,
further relationship between NCAPH2 and AD remains to be
revealed.

Moreover, we found that there are some potential
relationships between condensins, cellular senescence, and
AD. These may help us to reveal the roles of condensins
in AD. At first, studies have shown that cellular senescence
emerges as a pivotal player in the complex cellular landscape
of AD, which could promote Aβ deposition, tau-dependent
pathology, and cognitive decline (De Strooper and Karran,
2016; Bussian et al., 2018; Musi et al., 2018; Guerrero
et al., 2021). Then in mouse models of neurodegeneration,
clearance of senescent glial cells alleviates tau-dependent
neurodegeneration and β-amyloid plaque size (Bussian et al.,
2018; Guerrero et al., 2021). And ablation of senescent
cells has been postulated as a promising therapeutic means
to prevent or mitigate AD (Saez-Atienzar and Masliah,
2020). Meanwhile, senescent processes are accompanied by
significant alterations in the 3D genome architecture, such
as the formation of senescence-associated heterochromatic
foci (SAHF) and the distension of centromeric satellites
(Iwasaki et al., 2019). There are several models of cellular
senescence and different cellular senescence models may
have disparate and unique chromatin changes (Hernandez-
Segura et al., 2018; Huang et al., 2019; Wang et al., 2020).
Among them, oncogene-induced senescence (OIS) and
replicative senescence (RS) are two common models of
cellular senescence, in which condensins are involved
(Wang et al., 2020). On the one hand, overexpression of
condensin complex II subunit NCAPH2 induces SAHF
formation in OIS and contributes to senescent processes,
via reorganizing the 3D genome, reinforcing euchromatic A
compartments, and upregulating transcription of senescence
genes (Yokoyama et al., 2015; Iwasaki et al., 2019; Wang
et al., 2020). On the other hand, condensin complex I
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subunit NCAPD2 promotes heterochromatin condensation
and reorganization, and overexpression of the condensin
complex subunit rescues RS-induced cellular senescence and
heterochromatin destruction (Huang et al., 2019; Wang et al.,
2020). Therefore, in humans, low expression of NCAPD2 and
overexpression of NCAPH2 induce cellular senescence, and
then cellular senescence promotes the formation and progress
of AD.

In a word, NCAPD2 and NCAPH2 are inextricably linked
with the occurrence and progress of AD, but current research is
still at the level of gene sequencing. Based on previous literature,
we proposed a possible pathogenic model: condensin I and
condensin II may induce cellular senescence by regulating 3D
chromatin architecture, then participate in the occurrence and
progress of AD. The detailed and matured mechanism needs
further in-depth research and verification.

Summary

In summary, condensins play an indispensable role
in the rational concentration and accurate separation of
chromatin. The occurrence and progress of many nervous
system diseases are inseparable from the condensation
and the decondensation functions of condensins: excessive
condensation and insufficient condensation of chromatin
can both lead to microcephaly; compensatory enhanced
chromatin condensation counteracts the tumor genome
instability and promotes the survival and development of
nervous system tumors; reorganizing the 3D chromatin
architecture and upregulating transcription of senescence
genes induce the formation and progress of AD. The
discovery of these pathogenic mechanisms may change the
understanding of related diseases and provide new ideas for
clinical treatment.

It should be noted that condensins could be diversely
regulated in the contexts of different cell activities, such as
cell differentiation, gene mutation, genome instability, and
others. Cell differentiation needs to change 3D chromatin
architecture by regulating condensins to achieve selective gene
expression and spatio-temporal specificity. When condensins are
abnormally regulated by gene mutation and other cell activities,
the malfunction of this protein complex will contribute to
many diseases. Therefore, the functions of condensins of cells
in different differentiation states or mutation loading states
may be different. This may explain why different pathologies
arise after the same condensin subunit is affected. Thus, we
are inclined to believe that the change in the components
of condensin ultimately exerts pathological effects through
the regulation of 3D chromatin architecture by condensin
complexes.

To sum up, in one way, the molecular structure of
condensing and its biological function in mitosis have not been

explained until recent years, and the mechanism of assisting
linear DNA condensed into 3D chromatin architecture is still
worth further research. In the second way, there are many
subunits of condensin, and the functions of other subunits
in different nervous system diseases need to be studied and
revealed one by one. At present, research on condensin in various
human diseases, especially in tumors, is in a period of rapid
growth and is expected to become a research hotspot in the
future.
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