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Potential roles of non-
lymphocytic cells in the
pathogenesis of IgG4-related
disease

Shaozhe Cai †, Ziwei Hu †, Yu Chen*, Jixin Zhong*

and Lingli Dong*

Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College of
Huazhong University of Science and Technology, Wuhan, China
Studies have confirmed the involvement of a variety of lymphocyte subsets,

including type 2 helper T lymphocytes (Th2) and IgG4+ B lymphocytes, in the

pathogenesis of IgG4-related disease (IgG4-RD). Those lymphocytes

contribute to the major pathogenetic features of IgG4-RD. However, they

are not the only cellular components in the immunoinflammatory environment

of this mysterious disease entity. Recent studies have suggested that various

non-lymphocytic components, including macrophages and fibroblasts, may

also play an important role in the pathogenetic process of IgG4-RD in terms of

contributing to the chronic and complex progress of the disease. Therefore,

the potential role of non-lymphocyte in the pathogenesis of IgG4-RD is

worth discussing.
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Background of IgG4-RD

IgG4-RD is a newly defined autoimmune disease of the century. Single or multiple

organs/tissues may be involved simultaneously or successively in the disease progress,

including salivary glands, lacrimal glands, pancreas, biliary tract, kidney,

lung, retroperitoneum, and etc. The main clinical manifestations are tume-

factive enlargement of the affected organs, often accompanied with increased serum

IgG4 level (1). The typical pathological characteristics of IgG4-RD are dense

lymphoplasmacytic infiltration, storiform fibrosis, and obliterative phlebitis (2).

Increased eosinophil infiltration can also be observed. According to 2020 revised

Comprehensive Diagnostic Criteria and 2019 American College of Rheumatology/

European League Against Rheumatism (ACR/EULAR) classification criteria of IgG4-

RD, fibrosis and lymphoplasmacytic infiltration are essential indices for the diagnosis of
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IgG4-RD (3, 4). The exact pathogenesis of IgG4-RD is still in the

exploratory stage. Recent studies have suggested that multiple

lymphocyte subsets including type 2 helper T cell (Th2),

follicular helper T cell (Tfh), CD4+ cytotoxic T cell (CD4+

CTL), and B cells are involved. The interactions among these

cells eventually mediate inflammation and fibrosis, contributing

significantly to the pathogenesis of IgG4-RD (5–8).

Although, as an autoimmune disease, interactions between T

and B cells contribute the majority of the pathogenesis in IgG4-

RD (9), however, they are not the only cellular subsets involved

in the real immuno-inflammatory response: residential

parenchymal, mesenchymal cells, and other inflammatory cells

infiltrated into the involved tissues, can respond to the stimuli

derived from the local inflammatory microenvironment and

further participate in the inflammatory response, which finally

contribute to the histopathological features of IgG4-RD. Recent

studies have also indicated that several non-lymphocytes,

including macrophage and basophil, may exert important

effects on the pathogenesis of IgG4-RD (10–12). Therefore,

exploring the potential role of non-lymphocytes is crucial for

in-depth understanding to the pathogenesis of IgG4-RD. This
Frontiers in Immunology 02
review will discuss this issue from the following three

perspectives, based on the current researches in the field of

IgG4-RD and other related conditions.
Non-T/B lymphocyte-mediated
fibrosis

As mentioned above, profibrotic factors (e.g., IL-1b, TGF-b,
LOXL2, PDGF, etc.) production resulting from the interactions

between T (primarily CD4+ CTL) and B cells is the core

fibrogenic mechanism of IgG4-RD (13). However, a growing

number of researches have revealed that innate immune cells

may play important roles in this process (Figure 1).
Alternatively activated macrophage

The alternatively activated macrophage (AAM), also known as

M2macrophage, is induced by typical type 2 cytokines (such as IL-4
FIGURE 1

The underlying mechanism of fibrosis in IgG4-RD and the role of IL-33/ST2 axis.
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and IL-13), and can be found in several pathophysiological

conditions such as allergy, parasitic infection, and the

maintenance of metabolic homeostasis in adipose tissue (14).

Ishiguro N et al. found that TLR7 (mainly located on M2 in the

IgG4-RD affected tissues) activation in vitro lead to enhanced

interleukin 33 (IL-33) production by M2, which was also

confirmed by the finding that human Toll-like receptor 7

(huTLR7)-transgenic C57BL/6 mice had severer tissue fibrosis

after receiving the treatment of resiquimod (R848) (12). M2 may

also aggravate fibrosis through CC-chemokine ligand 18 (CCL18).

Akiyama M et al. found that serum CCL18 level was significantly

positively correlated with IgG4-RD RI (15). Furukawa S et al. found

that CCL18 was co-localized with massive infiltrated M2 in IgG4-

RD affected tissues, and positively associated with the fibrosis scores

(16). Honda F et al. confirmed that blocking CCL8 (analog of

human CCL18) in LATY136F knock-in mice (an animal model of

IgG4-RD) alleviated the degree of fibrosis in affected salivary glands,

and further in vitro assays revealed that CCL8 could directly

stimulate collagen production in mouse fibroblasts (17). M2 can

also induce plasma cell recruitment by secreting tumor necrosis

factor ligand superfamily member 13(TNFSF13/APRIL) and

further promote fibrogenesis (18).
Type 2 innate lymphoid cells

Innate lymphoid cells (ILCs) develop from common

lymphoid progenitors (CLPs) in bone marrow. Except for the

absence of antigen-specific receptor, ILCs are similar to T cells in

terms of transcriptional and functional features. According to

the expression of key transcription factors in their development

and the pattern of cytokine secretion, ILCs can be divided into

three groups: ILC1 (expresses T-bet and produces IFN-g), ILC2
(expresses GATA3 and produces IL-4, IL-5, and IL-13), and

ILC3 (expresses RORgt, and produces IL-22 or IL-17) (19, 20).

Zhang P et al. found that the circulating ILC2 level in IgG4-RD

patients was significantly higher than that in healthy controls

and was positively correlated with the number of circulating

regulatory T cells (Tregs). In addition, the expression levels of

CD154, PD-1, and CXCR5 on ILC2 were also positively

correlated with the level of B cells in peripheral blood, serum

IgG4, and IgE (21). Although they didn’t directly demonstrate

the effect of IL-13 and IL-4 secreted by ILC2 on IgG4-RD

fibrosis, multiple studies suggested that IL-13 and/or IL-4

could mediate tissue fibrosis either directly (by acting on

fibroblasts) or indirectly (e.g., by acting on alternatively

activated macrophage) (22–24).
Mast cells, eosinophils, and basophils

Mast cells, basophils (Baso), and eosinophils (Eos) share many

similarities in the expression of surface receptors and cytokines:
Frontiers in Immunology 03
they all express immunoglobulin Fc receptors (Eos expresses

FcgRII/CD32 and FcaRI/CD89 for IgG and IgA; Baso and mast

cells express high-affinity IgE Fc receptor FcϵRI) and secrete

typical Th2-type immune response-related cytokines (such as

IL-4 and IL-13) to accelerate the development of fibrosis after

activation (25). Although understanding to the detailed

mechanism of these cells in IgG4-RD is still limited, the

pathological features of IgG4-RD suggest potential roles of these

cells in the fibrosis of IgG4-RD: in recent studies, mild to

moderate eosinophil infiltration was observed in the affected

tissues, and increased peripheral blood eosinophil count and

serum IgE level were detected in IgG4-RD patients (2, 26, 27),

which suggests that Eos may tightly related to the pathogenesis of

IgG4-RD. Increased local IgE may also activate Baso and mast

cells in affected tissues, which can further produce profibrotic

factors to enhance the fibrosis process in IgG4-RD.
Potential roles of IL-33/ST2 axis in IgG4-
RD fibrosis

An important feature of the aforementioned cellular

components is that they all express suppression of tumorigenicity

2 (ST2, also known as IL-1RL1), which is the receptor of a IL-1

family member, interleukin 33 (IL-33) (28, 29). IL-33 is

constitutively and highly expressed in endothelial cells, epithelial

cells, and fibroblast-like cells, and can be induced to express in

several CD45+ cell subsets (e.g., macrophages) under the

inflammatory stimulation (28). IL-33 can act as an alarmin to

indicate the tissue injury: when cells are damaged, full-length IL-33

is released and transformed to highly active form to exert its effects

as a cytokine, after being cleaved by proteases secreted by local

inflammatory cells (such as chymase derived from mast cells) (28–

30). Li D et al. reported that IL-33 released by bleomycin-injured

lung epithelial cells induced the release of IL-13 from ILC2, and

then promoted the differentiation of macrophage to IL-33 secreting

M2, which further lead to the secretion of IL-13 and TGF-b, and
promoted the pulmonary fibrosis (22). Besides in ILC2 andM2, the

expression of profibrotic factor IL-13 can also be up-regulated in

Th2 cells, mast cells, Baso, and Eos under the treatment of IL-33

(22, 31–34). These researches suggest that IL-33/ST2 axis may be

the core axis connecting the fibrosis mediated by Th2-type immune

responses. Despite that the potential profibrotic role of IL-33/ST2

axis has beenmentioned in some studies of IgG4-RD (12, 21, 35), its

main target cells and its temporal influencing order on potential

target cells are unknown. In addition, although IL-33 is mostly

associated with Th2-type immune responses in current studies,

non-Th2-type cells, including Th1 and Treg cells, can also express

ST2 and respond to IL-33 stimulation (36, 37). Therefore, the

specific role of IL-33/ST2 axis in the pathogenesis of IgG4-RD still

remains to be explored.

Beside promoting fibrosis, the above-mentioned immune cells

may also influence the IgG4-RD immune response by other
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means such as secreting a variety of immunoregulatory agents: for

example, IL-33 can enhance the activation of Th2 cells (32); Baso

and monocytes can increase the production of IgG4 after the

activation of some specific pattern recognition receptors (10, 38).

Moreover, fibroblasts acting as collagen producing effector cells in

th i s process can a l so exer t o ther e ff ec t s on the

immunoinflammatory process of IgG4-RD (see below).
Non-profibrotic effects of fibroblasts

Fibroblasts are non-hematopoietic, non-endothelial, non-

parenchymal, non-epithelial and non-mesothelial cells with

mesenchymal origin. However, fibroblasts can be derived from

mesothelial-, epithelial-, or endothelial-to-mesenchymal transition,

and may be transformed from hematopoietic cells (39). As

illustrated above, fibrosis is one of the core pathological features

of IgG4-RD. The transition of fibroblasts into ECM-producing

myofibroblasts is a common feature of fibrosis-related diseases

(40). However, in a dynamic and complex inflammatory

response, activated fibroblasts can not only functionate as a

“collagen maker”, but also participate in the regulation of

immune processes (Figure 2).

Fibroblasts can serve as a hub of
cytokines

Fibroblasts express a variety of cytokine receptors (e.g.,

CCR7, CXCR2, IL-4R, IL-6R, IFN-gR, etc.) and pattern
Frontiers in Immunology 04
recognition receptors, which indicate their ability to receive

inflammatory signal derived from different pathological

environments, and also suggests their strong potential to make

response to the stimulation of these receptors (41–43). For

example, in malignant tumors, cancer-associated fibroblasts

(CAFs) serve as the main source of inflammatory factors

including CXCL12, CXCL1, and IL-6, and participate in the

regulation of immune responses in various malignant tumors

(e.g., pancreatic ductal adenocarcinoma) (44). In classic fibrotic

diseases, such as idiopathic pulmonary fibrosis (IPF), fibroblasts

can up-regulate the expressions of IL-6, IL-8, and CCL2, under

the stimulation of IL-1b (45); Furthermore, the expression of

CCL5 was also up-regulated in response to CCL21 stimulation in

primary lung fibroblasts derived from IPF patients (46). In

Dupuytren’s disease, tumor necrosis factor a (TNFa)
stimulates myofibroblasts to secrete IL-33, which in turn

increase the secretion of TNFa from other immune cells, and

finally forms a vicious circle (47).

The important roles offibroblasts in autoimmune conditions

have also been demonstrated in human specimens and animal

models. In serum transfer induced arthritis (STIA) K/BxN

mouse model, the secretion of cytokines by THY1+ fibroblasts

of hip joint, including CXCL12, CCL2, CCL5 and IL-6, is

significantly enhanced under the stimulation of TNFa (48).

TNFa, IL-1b, and hypoxia also up-regulate the expression of

cytokines, including IL-6, CXCL8 (namely, IL-8), CCL2,

CXCL11, CXCL12, and VEGF, as well as the expression of

cytokine receptors such as TNFRSF9 in synovial fibroblasts

derived from rheumatoid arthritis (RA) patients (49, 50). In
FIGURE 2

Fibroblasts serve as secretion centers of inflammatory factors and participate in the formation of ectopic lymphoid follicles.
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systemic sclerosis (SSc), IL-22 synergistically works with TNFa
to induce the expression of IL-8 and CCL2 in skin fibroblasts,

while the simultaneous stimulation of TGF-b1 and IL-17A can

lead to an up-regulation of IL-6 expression in fibroblasts from

affected skin by nearly a hundredfold (51, 52).

In involved tissues of IgG4-related retroperitoneal fibrosis

(IgG4-RPF), the co-localization of IL-6, BAFF, IL-7, IL-12 p70

and IL-23 with aSMA is observed by Zongfei J et al, and the

expression levels of both IL-6 and IL-6R are higher than those in

the control tissues, suggesting the pro-inflammatory properties

of fibroblasts in affected tissues of IgG4-RD patients (53).

Elevated secretion of BAFF, IL-7, IL-12 p70, and IL-23 in the

aortic adventitial fibroblasts (AAFs) after the activation of IL-6/

IL-6R axis can also be seen (53). It is worth mentioning that the

increased production of IL-7, IL-12, IL-23, and other cytokines

by IgG4-RD fibroblasts can not only play an immediate role in

regulating the immunoinflammatory processes via affecting the

functional status of infiltrated immune cells, but also can exert a

long-term impact on the progress of autoimmune diseases by

participating in the formation of ectopic lymphoid follicles

(ELFs) (54).
Fibroblasts may participate in the
formation of ectopic lymphoid
follicles (ELFs)

Ectopic lymphoid follicles, also known as tertiary lymphoid

structures (TLSs), which is induced by inflammatory insults, and

can contribute to the “propagation” of antigenic specific responses

in local tissues (55). The developed ELF is a complex collection of

white blood cells and specific mesenchymal cells, which is

functionally similar to the secondary lymphoid organs (SLOs)

including spleen and lymph nodes and provides a site for germinal

center reaction (GC reactions) (54, 55).

The interaction between lymphoid tissue inducer (LTi) and

lymphoid tissue organizer (LTo) is required for the generation of

lymphoid follicles. LTis are developed from IL-7Ra+ lymphoid

progenitors, and this is a process that requires the expression of

retinoic acid receptor-related orphan receptor-gt (RORgt) (56).
LTi cells express lymphotoxin a1b2 (LTa1b2) under the

stimulation of IL-7 and RANKL (55, 56). Via binding to LTb
receptor (LTbR) expressed on LTo cells, LTa1b2 induces the

release of chemokines (e.g., CXCL13, CCL19, and CCL21), as

well as the expression of adhesion molecules, which further

recruits immune cells, and promotes the formation of lymphoid

structures (55, 57). In actual pathological environment, a variety

of cells, including Th17 and Tgd17, are involved in the formation

of ELF (55). In chronic inflammation, a key step in the formation

process of ELF is the transition of resident stromal cells (e.g.,

fibroblasts) to LTo-like phenotype after receiving the stimulation

of inflammatory stimuli: for example, in synovial tissues of RA

patients, the enhancement of IL-6 signal can lead to increased
Frontiers in Immunology 05
IL-7 production in synovial fibroblasts, which can induce LTi

recruitment into the affected tissues and promote ELF formation

(57–60).

TLS assists to eliminate pathogenic microorganisms when

it is produced in local site of infections. However, in some

autoimmune settings (e.g., Sjogren’s syndrome, systemic

lupus erythematosus, etc.), the formation of TLS can

aggravate the progress of autoimmune diseases through

somatic hypermutation (SHM), isotype switching, and

affinity maturation (56, 61). It is worth mentioning that

Nayar S et al. found that during TLS formation in salivary

glands in patients with Primary Sjogren’s Syndrome (pSS), the

differentiation of a group of resident podoplanin (PDPN)

positive mesenchymal cells into the “immunofibroblasts”

that could support the early TLS formation happens before

the infiltration of lymphocytes into the salivary glands, which

is mainly regulated by IL-13 derived from resident ILCs and

stromal cells (62). After lymphocyte infiltration, those

immunofibroblasts were further phenotypically stabilized

and proli ferated under the influence of IL-22 and

lymphotoxin (62). These studies show that innate immune

cells may have already been primed for the potential

chronicity of adaptive immune response before it occurs,

and provide important hints for the potential mechanism of

ELF formation in autoimmune diseases with mucosa

containing organs’ involvement.

ELF probably plays an important role in the pathogenesis

of IgG4-RD (63): there is marked fibroblast activation in IgG4-

RD involved tissues, and Zongfei J et al. observed that

fibroblasts in affected tissues could express IL-7 (an ELF

formation promoting cytokine) after the activation of IL-6/

IL-6R axis (53); Chen Y et al. found an abnormal expansion of

Tfh cells in IgG4-RD patient tissues (5); In addition,

infiltration of a large amount of B cells into the affected

tissues, and the diversity of B cell clones suggest the possible

existence of ectopic germinal center reactions in IgG4-RD (64,

65); Zhang P et al. observed the infiltration of ILC in the

affected tissues of IgG4-RD patients, and the positive

correlation of ILC2 with the disease severity of IgG4-RD

(21). All these aforementioned components can be involved

in the formation of ELF and participate in the subsequent

immuno inflammatory reac t ions . Cons ide r ing the

predisposition of exo-/endocrine gland involvement (mucosa

containing organs), marked fibroblast activation (potential

LTo), and dense infiltration of immune cells (potential LTi)

in IgG4-RD, the possible role of fibroblasts in the formation of

ELF in the pathogenesis of IgG4-RD is worthy of further

investigation. Besides, fibroblasts can express major

histocompatibility complex class II (MHC-II) molecules

under the influence of inflammatory stimuli, which leads

them become the target cells of CD4+ CTLs resulting in

apoptosis and the subsequent biological processes (see

below) (66).
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Atypical antigen presentation

Antigen presentation is an important immunological

process that assists T cells in antigen recognition and

activation. Antigen-presenting cells (APCs) can be grouped

into professional APCs and non-professional APCs based on

the expression of different MHC molecules. Professional APCs

include dendritic cells (DCs), macrophages, and B cells (67).

Most nucleated cells can present antigen to CD8+ T cells via

MHC-I molecules, while professional APCs present antigen

peptides to CD4+ T lymphocytes through their constitutively

expressed MHC-II molecules (68). With the help of CD4/CD8,

and other surface molecules such as CD45, the binding of T cell

receptor (TCR) to antigen peptide-MHC complex lead to the

phosphorylation of immunoreceptor tyrosine-based activation

motif (ITAM) on the cytoplasmic tail of CD3, and initiates the

downstream TCR signaling (69).

However, in some pathological conditions, the expression of

MHC-II molecules can be induced on some non-professional

APCs by inflammatory stimuli (namely, ectopic expression).

Winau F et al. found that IFN-g could up-regulate the expression
of MHC-II in hepatic stellate cells (HSC) (70). Kato et al. found

that the MHC-II expression on synovial fibroblasts was

increased when co-cultured with Th1 cells (71). Even human

T cells can express MHC-II molecules and present autoantigenic

peptides after activation of TCR signaling (72). In addition to the

aforementioned cells, cells including Eos, Baso, and epithelial

cells may express MHC-II molecules under the stimulation of

different inflammatory stimuli, which is well reviewed by

Kambayashi T and Laufer TM (73).

In IgG4-RD, Perugino CA et al. found that CD4+ CTL

mediated the apoptosis of a variety of cells in affected tissues,

including T cells, B cells, acinar cells, ductal cells, and endothelial
Frontiers in Immunology 06
cells, and the expression level of HLA-DR in these apoptotic cells

was significantly increased (66). Interestingly, those apoptotic cells

are mainly non-endothelial, non-immune cells with mesenchymal

origin (66). However, the regulatory mechanisms and specific

roles of atypical MHC-II expression in these cells remain

unknown in IgG4-RD. Considering the existence of the

previously mentioned inducing factors for the atypical

expression of MHC-II molecules (e.g., infiltration of immune

cell subsets, and immunoinflammatorymicroenvironment) (7, 10,

21, 74) and the potential influence of environmental factors on

IgG4-RD (75), atypical antigen presentations via MHC-II

molecules may be the factor to promote or even initiate the

development of IgG4-RD. In addition, inflammatory

microenvironment could also up-regulate the expression of

MHC-I molecules, while the dying cells induced by CD4+CTL

may contribute to cross-presentation, which may be an important

basis for the potential pathogenic role of CD8+ T cells in IgG4-RD

(66, 76, 77) (Figure 3).

Summary and prospect

Non-lymphocyte can exert important effects on the immune-

inflammatory regulations in many pathological conditions, such as

RA, SLE, SSc, and etc. (78–80). Current studies on IgG4-RD and

basic immunological evidence suggest that non-lymphocyte may

play roles in the initiation of IgG4-RD disease (such as atypical

antigen presentation), disease severity (such as mediating fibrosis

and participating in the regulation of immune inflammation), as

well as chronic and complex progress (such as the formation of

ectopic lymphoid follicles). Although more and more evidence

suggest the potential role of non-lymphocyte in the pathogenesis

of IgG4-RD, the research on IgG4-RD is still very limited at present

in this area, mainly because IgG4-RD is a newly defined disease
FIGURE 3

Induction of atypical antigen presentation and its potential effect on IgG4-RD.
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entity in this century, and there is no particularly suitable animal

model for IgG4-RD investigation. Animal models that have been

published so far include the patient serum injectionmodel proposed

by Shiokawa et al. (injecting serum IgG of IgG4-RD patients into

male Balb/C neonatal mice), LATY136F knock-in mouse model

identified by Yamada et al., and Human TLR7 transgenic mouse

model proposed by Ishiguro N et al. (12, 81, 82). These models may

assist in exploring the potential roles of non-lymphocyte in IgG4-

RD in vivo. Considering the lack of appropriate animal models, the

application of high-throughput techniques coupled with well-

designed experiments may help further mechanistically

elucidating the functional status of these cells and their

association with IgG4-RD: via single-cell transcriptome

sequencing (scRNA-Seq), Valenzi E et al. identified the

heterogeneity of fibroblasts in patients with systemic sclerosis

associated interstitial lung disease (SSC-ILD) revealing that

myofibroblast differentiation and proliferation were the key

pathological mechanisms promoting fibrosis in patients with SSC-

ILD (83); Der E et al. found that the signal signatures of type I

interferon and the fibrosis-related signaling in renal tubular cells

and keratinocyte of lupus nephritis patients were differentiated from

that in healthy controls (84). It is worth mentioning that detailed

investigation into the pathological roles of non-lymphocytes may

help provide helpful therapeutic insights, not only for IgG4-RD, but

also for many other autoimmune conditions: different diseases may

share some pathogenic cytokines, which have the potential to be the

therapeutic targets. For example, besides in IgG4-RD, IL-33/ST2

axis has been identified to play roles in several fibrotic process

related diseases (e.g., pSS), and antibodies targeting have been

utilized in the clinical trials of several diseases, including atopic

dermatitis, and asthma (80, 85); type I interferon can also exert

pathological effects and be the therapeutic target in several

autoimmune conditions (e.g. SLE) (86). In consideration of the

fact that the components of non-lymphocytes may affect the

pathogenesis of IgG4-RD at multiple levels, further mechanistic

researches and large-scale clinical association analyses focusing on

the specific roles of different non-lymphocytes in the initiation and

progress of IgG4-RD will help indicate the optimal usage of target
Frontiers in Immunology 07
therapy, which in turn, on this basis, will deepen our understanding

to the potential pathogenic roles of non-lymphocyte and related

inflammatory factors in IgG4-RD.
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