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SUMMARY
There is an urgent need to identify which COVID-19 patients will develop life-threatening illness so that med-
ical resources can be optimally allocated and rapid treatment can be administered early in the disease
course, when clinical management is most effective. To aid in the prognostic classification of disease
severity, we perform untargeted metabolomics on plasma from 339 patients, with samples collected at six
longitudinal time points. Using the temporal metabolic profiles and machine learning, we build a predictive
model of disease severity. We discover that a panel of metabolites measured at the time of study entry suc-
cessfully determines disease severity. Through analysis of longitudinal samples, we confirm that most of
thesemarkers are directly related to disease progression and that their levels return to baseline upon disease
recovery. Finally, we validate that these metabolites are also altered in a hamster model of COVID-19.
INTRODUCTION

Coronavirus disease 2019 (COVID-19), which is caused by infec-

tion with the novel coronavirus SARS-CoV-2, has led to a global

health crisis.1 To date, more than 150 million cases of COVID-19

have been reported worldwide and resulted in more than 3.2

million deaths.2 The infection-fatality rate of SARS-CoV-2 can

be reduced with the appropriate care (e.g., intensive care unit

beds, oxygen, staff, extracorporeal-life support, and therapeu-

tics). Unfortunately, hospital resources can quickly become

depleted in situations when cases spike.3 Although vaccination

efforts are underway worldwide, SARS-CoV-2 infections

continue to increase rapidly in a number of countries, such as In-

dia and Brazil, where medical facilities are being overwhelmed.4

Patients who develop critical illness from COVID-19 are best

treated early in the disease course before the onset of severe

symptoms.5,6 It is currently difficult to determine which subset
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of patients will develop life-threatening disease and, therefore,

most benefit from receiving treatment when resources are

limited.7 Early identification of these patients would allow optimal

allocation of care. To that end, the objective of the current study

was to identify metabolites in patient plasma that accurately pre-

dict life-threatening cases of COVID-19 before the onset of se-

vere symptoms.

SARS-CoV-2 is an enveloped, single-stranded positive-sense

RNA virus that gains entry into host cells through binding of the

viral S protein to the angiotensin-converting enzyme 2 (ACE2) re-

ceptor.8,9 Multiple studies have established that patients in-

fected with SARS-CoV-2 havemetabolic dysregulation, possibly

because of immune-triggered inflammation or other changes in

host physiology.10–20 To date, however, unique alterations inme-

tabolites upon SARS-CoV-2 infection have not been validated in

large patient cohorts that have been profiled longitudinally from

early after infection through recovery. Longitudinal assessment
orts Medicine 2, 100369, August 17, 2021 ª 2021 The Author(s). 1
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Table 1. Demographics of all subjects

Parameter COV- COV+ p value

N 67 272

Gender (M/F) 28/39 156/116 0.0220

Age (years) 48 ± 16 60 ± 17 <0.0001

Race (African

American/white/other)

32/35/0 202/66/4 <0.0001

Body mass index 30 ± 8 31 ± 9 0.3987

COVID-19-like symptomsa

Any number of COVID19-like

symptoms

65 242 0.0437

Fever 29 128 0.5788

Chills 13 46 0.6300

Conjunctival congestion 1 1 0.2815

Nasal congestion 7 10 0.0229

Headache 18 23 <0.0001

Cough 35 147 0.7907

Sore throat 14 23 0.0034

Shortness of breath 44 168 0.5540

Nausea or vomiting 15 41 0.1487

Diarrhea 11 38 0.6098

Myalgia 16 66 0.9476

Fatigue 21 53 0.0353

Loss of taste or smellb 0 4 0.3180

Asymptomaticc NA 21

Acute respiratory failured 9 100 0.0002

Acute renal failured 2 68 <0.0001

Comorbidities

Chronic kidney diseasee 4 56 0.0050

Diabetese 15 120 0.0011

Cancere 8 24 0.4345

COVID-19 drug treatmentf

Remdesivir 2 43 0.0056

Dexamethasone 13 63 0.5087

High/Low arterial pH 5 83 0.0001

Current smoker 18 (27%) 36 (13.2%) 0.0063

Hospital admissiong 26 (38.8%) 252 (92.6%) <0.0001

ICU admissiong 10 (14.9%) 129 (47.4%) <0.0001

Intubation and mechanical

ventilation

4 (6.0%) 70 (25.7%) 0.0005

Deceased 6 (8.9%) 65 (23.9%) 0.0071

Deceased because of COVID-19h

30 day mortality N/A 39 (76.5%)

60 day mortality N/A 49 (96.1%)

90 day mortality N/A 50 (98.0%)

overall mortality N/A 51 (100%)

Table includesboth trainingand testcohorts.Percentagesare shownas the

percentage of the group (COV- or COV+). Demographic data were last up-

dated May 20, 2021. Data are presented as means ± SD, p values of

numeric parameters were calculated by using a two-tailed Student’s t

test with unequal variance, p values of categorical parameters were calcu-

lated by using a chi-square test. Abbreviations:M,male; F, female; N/A, not

applicable.

aTwo COV- individuals were without symptoms but were exposed to a

SARS-CoV-2-positive individual. Nine COV+ individuals had other symp-

toms (e.g., confusion, lethargy, an altered mental state, or breathing

anomalies). Clinical metadata last updated October 16, 2020.
bCDC guideline symptom was added to the symptom questionnaire late

in the study; parameter is not available for most of the subjects.
cA SARS-CoV-2 test was routinely administered at presentation to the

hospital for reasons other than COVID-19 (e.g., accidents, pre-operation

tests, regular checkups, cancer screening, injuries, or exposure to a

SARS-CoV-2-positive individual).
dDuring present hospitalization.
eRecorded up to 1 year before the current admission or up to 1 year

before the d0 sample for those who were not admitted to the hospital.
fAt any point during hospital stay.
gHospital and/or ICU admission of COV� group was for reasons other

than COVID-19 (e.g., accidents, acute respiratory failure from bacterial

pneumonia, intentional self-harm, possible heart failure, hypertension,

trauma, and cancer).
hPercentages shown as the percentage of total number of patients who

died of COVID-19.
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of metabolic trends is necessary to assess which changes are

indicative of disease course.

In this study, we performed untargetedmetabolomics profiling

on the polar and non-polar fractions of 700 human plasma sam-

ples collected from 339 patients as part of the WU-350 cohort

recruited during the first phase of the pandemic in St. Louis,

Missouri. Untargeted metabolomics allows for the unbiased

profiling of the human metabolome21 and has been successful

at discovering metabolite biomarkers associated with disease

pathology.22 Using machine learning (ML), we built a model of

COVID-19 disease severity based on the metabolic profiles of

samples collected from patients at study enrollment. The model

led us to identify a panel of unique metabolite biomarkers that

were highly indicative of disease severity. We confirmed that

most of these metabolites were directly related to SARS-CoV-2

infections through comparison with patient demographics, co-

morbidities, clinical measurements, and longitudinal samples

taken from individuals over the course of disease progression.

Lastly, we validated that the same biomarkers appeared in an es-

tablished hamster model of SARS-CoV-2 infection.23–25

RESULTS

Clinical cohort WU-350: demographics
The clinical cohort presented in this study consisted of 155

female and 184 male participants. Of the 339 patients, 272

were considered SARS-CoV-2 positive (COV+) whereas 67

were considered SARS-CoV-2 negative (COV-). The COV+ and

COV- assignment of each individual was confirmed by nasopha-

ryngeal swab polymerase chain reaction (PCR). Significant dif-

ferences were observed in several demographic factors for the

COV+ cohort compared with the COV- cohort (Table 1). The

COV+ group contained significantly older study participants

(p < 0.0001; Figure S1A). The COV+ group also had significantly

more African American, male, and non-smoking individuals.

There was no significant difference in the body mass index

(BMI) between the two groups (Figure S1B).
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Of the 272COV+ individuals, 252were admitted to the hospital

and 129 of those patients were admitted to the intensive care unit

(ICU). As expected, the incidence of both factors (hospitalization

and ICU admission) was significantly increased in the COV+

cohort. Treatment of severe COVID-19 cases often results in

intubation and mechanical ventilation.26 In total, 70 of the

COV+ patients required mechanical ventilation, whereas only

four COV- individuals required mechanical ventilation. The ther-

apeutics administered to treat COVID-19 in this cohort were

dexamethasone and remdesivir. In total, 43 COV+ patients

were treated with remdesivir and 63 with dexamethasone during

their hospital stay (Table 1). The mortality rate in the COV+ group

was 23.9%, which was significantly higher than the 8.9%mortal-

ity rate in the COV- group. A total of 65 COV- patients died, with

51 of the deaths being attributed to COVID-19 and 14 being

attributed to other causes.

Of the 272COV+patients, 242 showed at least one COVID-19-

related symptom mentioned by the Centers for Disease Control

and Prevention (CDC), including fever, chills, conjunctival

congestion, nasal congestion, headaches, cough, sore throat,

shortness of breath, nausea or vomiting, diarrhea, myalgia, fa-

tigue, and loss of taste or smell.27 Of the remaining COV+ cases,

21 showed no symptoms and were classified as asymptomatic.

Nine subjects in the COV+ group displayed other symptoms,

such as confusion, lethargy, an alteredmental state, or breathing

anomalies. Of the 67 COV- cases, 65 presented with at least one

COVID-19-related symptom upon study entry, whereas two

received a SARS-CoV-2 PCR test upon exposure to a SARS-

CoV-2-positive individual. The frequency of COVID-19-related

symptoms is shown in Table 1, and the distributions across the

COV+ and COV- cohorts are depicted in Figure S1C. In both

the COV- and COV+ groups, the number of COVID-19-related

symptoms reported per individual was comparable. The break-

down of how many symptoms were experienced per individual

in both the COV+ and COV- groups is shown in Figures S1D

and S1E.

Next, we examined the distribution of comorbidities and self-

reported medical history presented in the WU-350 cohort. Med-

ical conditions were assigned based on ICD10 codes and the

Elixhauser naming conventions.28 Chronic kidney disease

(CKD) and diabetes (recorded up to 1 year before the current

admission and up to 1 year before the day 0 (d0) sample for those

who were not hospitalized) was significantly higher in the COV+

group compared with the COV- group (Table 1). The incidence of

acute renal failure and acute respiratory failure during the pre-

sent hospitalization was also significantly elevated in the COV+

group compared to the COV- group (Table 1). Furthermore,

31% of the COV+ individuals showed an abnormal arterial pH

(acidosis or alkalosis) compared with 7.5% in the COV+ group.

Of individuals in the COV+ group, 23.9% are now deceased.

Of the COVID-19-related deaths, 76.5% occurred within

30 days, 96.1%within 60 days, and 98%within 90 days of study

entry.

Study design
Blood was collected from study participants directly after enroll-

ment in the WU-350 study (d0). Further longitudinal samples

were collected 3 (d3), 7 (d7), 14 (d14), 28 (d28), and 84 (d84)
days after the initial blood collection, when possible. The collec-

tion of longitudinal samples depended on survival of the study

participants as well as the participants’ ability to complete study

visits after being discharged from the hospital. A total of 703 hu-

man plasma samples from 341 patients were available for me-

tabolomics profiling, including 324 d0 samples, 164 d3 samples,

111 d7 samples, 54 d14 samples, 31 d28 samples, and 19 d84

samples. All samples were divided into nine randomized sample

batches and analyzed by liquid chromatography/mass spec-

trometry (LC/MS). An extract of the standard reference material

(SRM) 1950 fromNIST (National Institute of Standards and Tech-

nology, Metabolites in Frozen Human Plasma) was measured

repeatedly as a quality control (QC), and blank samples were

used to assess background signals. Polar and lipid metabolite

fractions were extracted from each sample, and a global metab-

olomics profile was acquired in both positive and negative ion

modes. Processing of the data led to the putative identification

of 235 polar and 472 lipid metabolites based on accurate mass

and MS/MS matching. Peak areas were extracted for those

707 metabolites to form the metabolic profile of each patient.

Given that the metabolic profiles were acquired over several

months, the combined data showed strong batch effects as

demonstrated by the principal component analysis (PCA) in Fig-

ure S2A. To remove the variance introduced by the individual

batches, but not lose the differentiating biological variancewithin

the research (WU-350) samples, we tested several normalization

approaches (Figure S2B) and selected a combined batch

correction (ComBat)29 approach that outperformed the other

common normalization approaches tested (e.g., probabilistic

quotient normalization, unit length, constant sum, quantile,

etc.). After normalization, the metabolic profiles retained differ-

ences according to sample origin (WU-350, QC, and blank) as

shown in Figure S2C but no longer clustered based on batch

(Figure S2D).

The goal of this study was to findmetabolic alterations that are

predictive of disease severity in SARS-CoV-2-positive individ-

uals. We used admission to the ICU during disease progression

to classify patients as having severe or non-severe disease, as

has been done previously.30,31 An ideal set of predictor metabo-

lites would allow an individual presenting at the hospital and

receiving a positive SARS-CoV-2 PCR-test result to be assessed

for the likelihood of severe disease progression to best guide

treatment at the earliest stage of hospitalization. Thus, we group-

ed the presented COV+ cohort into a non-severe (COV+ non-se-

vere) group that did not require ICU admission and a severe

group (COV+ severe) that did require ICU admission. For data

interpretation purposes, three samples were excluded as the

specimens originated from two patients who tested positive for

other coronaviruses (NL63, HKu1). The final patient cohort con-

sisted of 67 COV- cases, 143 COV+ non-severe cases, and 129

COV+ severe cases. Unsupervised analysis of the metabolic

profiles for the 322 d0 samples available in our patient cohort

demonstrated a clear trend in principal components space that

separated COV+ severe, COV+ non-severe, and COV- patients

(Figure 1A). Further, several significantly varying metabolites

suggested that the metabolic profiles at d0 may indeed be pre-

dictive of disease severity. Hierarchical clustering analysis

(HCA) of the 54 statistically significant metabolites (p < 0.05,
Cell Reports Medicine 2, 100369, August 17, 2021 3



Figure 1. Study design

(A) Principal component analysis based on all polar (n = 235) and lipid (n = 472) metabolites in SARS-CoV-2-negative individuals (COV-, n = 59, green), SARS-

CoV-2-positive individuals with non-severe disease (COV+ non-severe, n = 140, orange), and SARS-CoV-2-positive individuals with severe disease (COV+

severe, n = 123, red). Data shown are only from the sample provided during study entry(d0).

(B) Hierarchical clustering analysis of metabolic profiles of COV-, COV+ non-severe, and COV+ severe patients at d0. Represented are 54 significantly changing

polar and lipid metabolites (p < 0.05, Welch’s ANOVA, Benjamini-Hochberg correction). Each column is a sample, and each row is a metabolite. Cell color

corresponds to the normalized metabolite intensity in each sample.

(C) Human cohort of 67 SARS-CoV-2-negative and 272 SARS-CoV-2-positive participants. The cohort was divided into a training cohort and a test cohort. The

study design incorporated six blood draws for SARS-CoV-2-positive individuals on days 0 (d0), 3 (d3), 7 (d7), 14 (d14), 28 (d28), and 84 (d84) after WU-350 study

entry.
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Welch’s ANOVA) with an absolute fold change greater than two

when compared with the COV- group revealed striking changes

in multiple representatives of lipid classes, including lysopho-

phatidylcholines (LPCs), phosphatidylcholines (PCs), and tri-

glycerides (TGs). Further, several polar metabolites known to

be related to COVID-19, including gluconate32 and dimethylgua-

nosine,33 were also significantly altered (Figures 1B and S3).

Predictive model of COVID-19 disease severity
The global trends in the d0 metabolic profiles visible in the PCA

and HCA visualizations prompted us to develop an ML model of
4 Cell Reports Medicine 2, 100369, August 17, 2021
disease severity that would predict ICU admission caused by

SARS-CoV-2 infection. Patients presented to the hospital and

enrolled in the study at different times during their disease

course, hence the d0 sample is variable with respect to days-

post symptom onset. The time from patient-reported symptom

onset to d0 sample collection ranged from 0 to 107 days, with

4 days being the median. In addition, 45 of the COV+ patients

were on mechanical ventilation and 98 COV+ patients were

admitted to the ICU when the d0 sample was collected (Fig-

ure S4A). Although this diversity added additional variance to

the d0 metabolic signatures, it also enabled a more clinically



Figure 2. Predicting SARS-CoV-2 severity

by machine learning

(A) Receiver operating characteristic (ROC) curves

of prediction model on training set (green) and

test set (blue). Random performance is shown in

gray. ROC of BMI and age as predictors for

severe COVID-19 (red) results in nearly random

performance.

(B) Permutation test results from permuting

training set labels and training the model on the

permuted data. With every permutation, the area

under the ROC curve (AUC) for the test set was

computed. The histogram shows the distribution

of these AUC values for 1,000 random permuta-

tions. Themodel performance on the test set when

trained on the non-permuted training data results

in an empirical p value of 0.002, as shown in blue.

(C) Variable importance in reduced ElasticNet

prediction model for disease severity of SARS-

CoV-2 infection in humans. Negative values are

predictive of non-severe disease and positive

values are predictive of severe disease. Variable

importance is after the model is trained on the

complete dataset.

(D) Profile plot of the normalized intensity (d0) of

the prediction model metabolites grouped into

COV- (control, n = 59), COV+ non-severe (n = 140),

and COV+ severe (n = 123). The color of the lines

reflects the mean intensity of each metabolite in

the COV- patients.

(E) Boxplots showing predictor metabolite in-

tensities (d0) in the COV-, COV+ severe, and

COV+ non-severe groups. Box limits represent the

quartiles of each sample group. Whiskers are

drawn to 1.53 of the inter-quartile range.
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relevant model to be constructed because patients will present

to the hospital at various points in the disease course. We note

that COV+ severe and non-severe patients were not significantly

different in time from symptom onset to the d0 sample collection

(Figure S4B). The 707 metabolites that composed the metabolic

profiles served as the predictors for our ML model. To assess

predictive power, we split our dataset into two distinct groups

of COV+ patients: a training set (163 patients) that we used to

select, optimize, and train our ML model and an independent

test set (100 patients) that was only used to evaluate the model’s

performance (Figure 1C; Tables S1 and S2). Using our training

set, we evaluated the efficacy of five ML algorithms with 20-

fold cross-validation and found that a linear ElasticNet34 regres-

sionmodel was themost effective (Figure S4C). After training the

model, we applied it to the patients in the test set and assessed

performance by using the area under the receiver operating

characteristic curve (AUC). On the test set, we saw strong pre-

dictive performance (AUC = 0.72) that outperformed a simple

model that only uses BMI and age to predict disease severity

(Figure 2A) and is significantly more predictive than a random

model (Figure 2B, see permutation test in method details). As
Cell Repo
further validation, when the trainedmodel

was applied to the COV- patients (no

COV- patients were in the training set),

the mean scores output by the model
were lower than those for the COV+ non-severe and the COV+

severe patients in the test set (Figure S4D). This indicates that

the model can differentiate disease severity and distinguish

COV+ and COV- patients. We wish to emphasize that PCR is

the gold standard to diagnose SARS-CoV-2 infection. As such,

we present this result only as confirmation that our model

correctly predicts disease severity and not as a potential diag-

nostic for viral infection.

We next sought to interpret which metabolites were most

salient to the model’s predictions. First, we computed the vari-

able importance of the model when trained on the complete da-

taset, which found 92 unique metabolites that contributed to the

model’s predictions. Among that group of 92 compounds were

metabolites that have been previously implicated in SARS-

CoV-2 infection, such as kynurenate, nicotinamide, creatinine,

LPCs, PCs, and others.11,12,14,32 The mean intensity of each

metabolite in the COV-, COV+ non-severe, and COV+ severe

groups can be seen in Figure S5. Next, we aimed to assess

the robustness of the metabolites selected by the ML model.

We used bootstrap resampling of our training dataset to

construct confidence intervals for the variable importance of
rts Medicine 2, 100369, August 17, 2021 5



Figure 3. COV+ patient parameters

(A–I) Demographics, comorbidities, and laboratory values of SARS-CoV-2-positive individuals grouped by disease severity (non-severe, severe) for age (A), BMI

(B), CO2 (C), C-reactive protein (D), D-dimer (E), absolute neutrophil levels (F), neutrophil percentage (G), absolute lymphocyte levels (H), and lymphocyte per-

centage (I). Statistical significance (p < 0.05) was assessed by using a two-tailed Student’s t test with unequal variance for data shown in (A-I).

(J) Proportion of COV+ severe and non-severe patients with specific comorbidities and laboratory test results.

(K) Pearson correlation of listed demographic/laboratory results/comorbidities with abundances of the predictor metabolites.

(legend continued on next page)
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each of the 707metabolites we profiled.35 The analysis led to the

identification of 22 predictor metabolites that significantly

contributed to the model’s fit. The structural identities of these

metabolites were rigorously confirmed (see method details).

Strikingly, manyof the predictor metabolites were LPCs. Using

the reduced predictor set, we re-trained and re-optimized our

ElasticNet model on the training set and assessed the predictive

power on our test set. Using the reduced predictor set resulted in

nearly an identical AUC to that of the full set of metabolites

(AUC = 0.70) and still performed better than a random model

or a model that used only BMI and age as predictors (Figures

S6A and S6B). To ensure that our model is indeed capable of

predicting future disease severity, we additionally evaluated

our model on the portion of the test-set patients who were not

admitted to the ICU on or before when the d0 sample was

collected. We again found that our model’s performance re-

mained high (AUC = 0.71) and continued to outperform a model

based only on BMI and age (Figures S6C and S6D). The variable

importance of the predictor metabolites when trained on the

entire dataset is shown in Figure 2C. The mean intensity of the

metabolites in the COV-, COV+ non-severe, and COV+ severe

groups is shown in Figures 2D and S7. In addition, the intensities

of these metabolites among test-set patients and patients not

admitted to ICU on d0 are provided in Figure S8. To exclude

the possibility that the metabolite alterations were due to the

application of therapeutics, we additionally removed all d0 sam-

ples when dexamethasone or remdesivir were administered on

the same day as sample collection. Using that subset, all predic-

tor metabolites were still significantly altered. All LPCs and PCs

that contributed to the model, as well as serine, presented a sig-

nificant downward trend in signal abundance with disease

severity. Conversely, the other polar metabolites (kynurenate

and 1-methyladenosine), phosphatidylethanolamines (PEs),

and ceramides exhibited a significant upward trend in signal

intensity (Figure 2E).

Demographics, laboratory values, comorbidities, and
COVID-19 severity
After evaluating the efficacy of the ML model, we wished to

deduce the relationship of our metabolite predictors to COVID-

19 disease severity. We examined whether these metabolites

were reflective of an underlying condition/risk factor for severe

disease or if they were related to the disease progression of

COVID-19. We addressed the former by asking whether any of

the predictor metabolites correlated with demographic factors,

laboratory values, current severity predictors, or individual pa-

tient comorbidities available for the patient cohort. A comparison

of the COV+ non-severe and severe groups identified several

significantly different parameters (Table S3). The COV+ severe

group was significantly older than the non-severe group (Fig-

ure 3A), but therewas no significant difference in BMI (Figure 3B).
(L) Pearson correlation of interleukin levels with abundances of predictor metabo

significant Pearson correlation (p < 0.05, Benjamini-Hochberg correction).

(M) AUC values for patient comorbidities, demographics, laboratory values, the

values (absolute lymphocyte, absolute neutrophil, CRP, and D-dimer) when pred

patient parameters.
CO2 levels were not significantly altered between groups (Fig-

ure 3C), with valuesmostly being in the normal range. In contrast,

there were significantly increased levels of the inflammatory

marker C-reactive protein (CRP; Figure 3D). D-dimer, absolute

neutrophil count, and neutrophil percentage were also increased

(Figures 3E–3G). Absolute lymphocyte count and lymphocyte

percentage were decreased (Figures 3H and 3I). These data indi-

cate more severe inflammation in the COV+ severe group

compared with the non-severe group and are consistent with re-

ports from previous studies.11,36,37 Neutrophil recruitment has

also been shown to be dysregulated in severe cases of

COVID-19.38–41 Lymphopenia, abnormally low levels of blood

lymphocytes, has been found to correlate with disease severity

in COVID-19 and even to be predictive of disease severity.42–46

Given that specific comorbidities increase the risk of having a

severe case of COVID-19,31,47,48 we asked which co-morbidities

were enriched in the COV+ severe group compared to the COV+

non-severe group (Figure 3J; Table S3). Diabetes, cancer, and

chronic kidney diseases were recorded up to 1 year before hos-

pital admission or up to 1 year before the d0 samples for non-

hospitalized individuals. Although diabetes was significantly

more prevalent in the COV+ group, the number of individuals

with cancer and/or chronic kidney disease was not significantly

different between the groups. Because acute respiratory failure

and/or acute renal failure is a feature of severe COVID-19, the

proportion of individuals suffering from either or both is signifi-

cantly greater in the COV+ severe patients. Further, laboratory

tests showed an increased proportion of individuals having an

abnormal arterial pH (acidosis or alkalosis) in the COV+ severe

group compared to the COV+ non-severe patients. The pre-

sented laboratory results (arterial pH, neutrophils, lymphocytes,

D-dimer, CRP, and CO2) were obtained within 48 h of the first

sample after study entry (d0).

Considering the number of significant associations in the pa-

tient parameters between COV+ severe and non-severe pa-

tients, we wanted to test whether any of our predictor metabo-

lites significantly correlated with the clinical data after we

controlled for disease severity (method details). To that end,

we computed the Pearson correlation49 (for continuous parame-

ters) or the point biserial correlation50 (for binary parameters) be-

tween each predictor metabolite and patient parameter (Fig-

ure 3K). The analysis revealed that many of the patient

comorbidities were not significantly associated with the predic-

tor metabolites. Smoking, BMI, and cancer were not significantly

correlated with any of the predictor metabolites. Age and CKD

had weak correlations with 1-methyladenosine (r = 0.32, 0.33),

kynurenate (r = 0.20, 0.36), and serine (r = �0.19, �0.15). Ky-

nurenate has been described previously51 as being associated

with CKD. The most striking results are the significant positive

correlations of the PEs (r = [0.20, 0.23], [0.26, 0.37]), ceramides

(r = [0.14, 0.21], [0.26, 0.43]), and 1-methyladosine (r = 0.26,
lites. Cells in the heatmaps (K and L) shaded white do not have a statistically

metabolite model, and a model that uses both the metabolites and laboratory

icting disease severity on the test-set patients with complete information for all

Cell Reports Medicine 2, 100369, August 17, 2021 7



Figure 4. Course of disease progression

(A)Predictionmodelmetabolites that significantly vary in intensityasa functionof

disease progression for SARS-CoV-2-positive patients surviving severe disease

(COV+ severe). d0 denotes the first sample after hospital admission, ICU de-

notes the sample collected closest to ICU admission, and the last sample is the

final sample collected for the patient. Only patients for whom these time points

were distinct samples were plotted. Statistical significance was assessed by a

repeated-measures one-way ANOVA with a Benjamini-Hochberg correction.

(B) Principal component analysis showing the trajectory of the meanmetabolic

profile of the predictor metabolites in COV+ non-severe patients, surviving

COV+ severe patients, and deceased COV+ severe patients. Deceased and

surviving status was based on 90-day mortality. Patient samples were binned

based on days post symptom onset (0–3, 4–6, 7–11, 12–18, 19–40, and 41–

100). Samples taken when dexamethasone or remdesivir were administered

were excluded. Asymptomatic patients were excluded. The mean d0 meta-

bolic profile of COV- patients is shown in green.
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0.20) with inflammatory markers (neutrophils and CRP) as well as

the incidence of acute renal failure and diabetes. The PEs (r =

[�0.07, �0.05]), ceramides (r = [�0.14, �0.12]), and 1-methyla-

denosine (r = �0.21) were also negatively correlated with

lymphocyte levels, suggesting that these metabolite changes

may be associated with inflammation. The LPCs, PCs, and

serine showed the opposite trend as the PEs and ceramides.

These molecules had positive associations with lymphocyte

levels (r = [0.15, 0.34]) and negative associations with CRP (r =

[�0.37, �0.23]) and neutrophil levels (r = [�0.28, �0.08]), sug-

gesting that they too are associated with inflammation. We

further correlated severity-associated interleukin levels that

have been reported for a portion of our cohort in a prior publica-

tion (Figure 3L).52 Interleukin 6 (IL-6) levels, which have previ-

ously been shown to be a marker for disease severity,53–55

were inversely correlated with LPCs, PCs, and serine after

controlling for severity (r = [�0.43, �0.26]). Similarly, 1-methyla-

denosine (r = 0.47), kynurenate (r = 0.44), Cer-NS d18:1_16:0

(r = 0.32), and PE 16:0_18:2 (r = 0.22) had significant positive cor-

relations with IL-6, giving further evidence that many of the

metabolite alterations are related to inflammation.

We then sought to assess the predictive power of our ML

model relative to the predictive power of the patient comorbid-

ities and laboratory values collected within 48 h of the d0 sample

(CRP, D-dimer, neutrophil, and lymphocyte levels). For each pa-

tient parameter, we computed the AUC when predicting disease

severity for each patient in the test set without missing values for

any of those parameters (n = 68; Figure 3M). For all evaluated co-

morbidities, the model achieved a higher AUC. Conversely, the

laboratory values (D-dimer, CRP, neutrophil, and lymphocyte

levels) were all more predictive of disease severity than the

metabolite model. However, when a new model was trained

that used these laboratory values in combination with the

biomarker metabolites, the performance of the combined model

(AUC = 0.77) outperformed both the metabolite model (AUC =

0.66) and each laboratory value (AUC = [0.72, 0.73]), suggesting

that the metabolite model is capturing complementary informa-

tion to the laboratory values. In total, these results suggest that

our predictor metabolites are indeed relevant to the pathogen-

esis of SARS-CoV-2 infection and not merely markers of other

risk factors.

Longitudinal progression of predictor metabolites
To give further confidence that our predictor metabolites are

associatedwith COVID-19 pathogenesis, we aimed to determine

how the levels of these metabolites changed over the course of

the disease progression. First, we considered the portion of the

COV+ severe cohort that survived SARS-CoV-2 infection. We

sought to determine the temporal behavior of their metabolic

profiles as patients reached peak disease severity and after re-

covery. Accordingly, we analyzed the longitudinal metabolite

abundances from individuals who had severe disease but sur-

vived andwere discharged from the hospital. We compared their

initial d0 plasma sample to the sample taken closest to the day of

ICU admission, when the disease had progressed to peak

severity. We also compared their initial d0 plasma sample to

the last sample provided by the patient at or after hospital

discharge. For several LPCs and one PC, a V-shaped trend



Figure 5. Longitudinal trends in COV+ pa-

tients

(A) Profile plot of the mean predictor metabolite

intensities relative to d0 COV- samples (n = 59,

gray) in symptomatic SARS-CoV-2-positive in-

dividuals with severe COVID-19 (n = 123, COV+

severe).

(B) Profile plot of the mean predictor metabolite

intensities in symptomatic SARS-CoV-2-positive

individuals with non-severe disease (n = 140,

COV+ non-severe).

(C and D) Heatmaps showing relative mean in-

tensity of predictor metabolites in longitudinal

profiles of symptomatic COV+ severe patients (C)

or COV+ non-severe patients (D). The mean COV-

d0 profiles are included as the control for refer-

ence. Patient samples were grouped based on

symptom-onset windows. Patient samples where

dexamethasone or remdesivir were administered

were excluded from the analysis. Asymptomatic

patients were excluded. *p < 0.05. Statistical sig-

nificance was assessed by using a one-way

Welch’s ANOVA with a Benjamini-Hochberg

correction.
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was observed (Figure 4A). After the initial sample (d0), the levels

of these metabolites dropped further as the disease worsened,

but then began to return to d0 levels during recovery. The reverse

trend was observed for Cer-NS d18:1_16:0. Its levels signifi-

cantly increased until the patients were admitted to the ICU,

but its levels subsequently dropped to below the initial d0 values

in the final sample obtained.

These pronounced longitudinal trends in surviving COV+ se-

vere patients raised the question of how the trajectory of disease

progression (as marked by our predictor metabolites) differed

among COV+ non-severe patients, surviving COV+ severe pa-

tients, and deceased COV+ severe patients. We also sought to

compare the end points in these groups to the COV- d0 patients.

We constructed representative metabolite profiles for the groups

by using the levels of the predictor metabolites at different time

windows relative to symptom onset (0–3, 4–6, 7–11, 12–18,

19–40, and 41–100 days post symptom onset) and performed

a principal component analysis that enabled the trajectory of

each group to be visualizedin two dimensions (Figure 4B). Sam-

ples from asymptomatic patients or patients administered the

COVID-19-related therapies dexamethasone or remdesivir on

the day of sample collection were excluded from this analysis.

Notably, the analysis revealed three distinct trajectories with

starting points that trended with disease severity. The groups

then followed a common trajectory toward the COV- d0 sample.
Cell Repo
However, the COV+ non-severe patients

recovered much quicker than the COV+

severe patients, reaching a similar meta-

bolic profile to the d0 COV- patients in

less than 40 days post symptom onset.

The deceased COV+ severe patients

had a similar metabolic profile during
the 41–100 day window when compared to surviving COV+ se-

vere patients. These results point toward distinct metabolic pro-

grams associated with the time course of infection and disease

outcome. When examining the individual metabolite levels within

the four groups at each time window, the deceased COV+ se-

vere patients showed the same direction of dysregulation across

the predictor metabolites as the surviving COV+ severe patients,

but the magnitude of the perturbation was increased. In the 41–

100 day window, less than 20% of the predictor metabolites

were significantly altered, suggesting that metabolite levels

return to control levels over time (Figure S9).

Next, we sought to compare the longitudinal progression of

the predictor metabolites between the surviving COV+ patients.

In the COV+ severe group, the LPC levels increased over the dis-

ease course to levels that were comparable to the COV- group

(Figure 5A). In the COV+ non-severe group, the LPC levels recov-

ered faster, reaching control levels in less than 40 days post

symptom onset (Figure 5B). In total, 15 of the predictor metabo-

lites showed a significant change (p < 0.05, Welch’s ANOVA)

across the longitudinal time points in the COV+ severe group

(Figure 5C). Of the LPCs, 11 were significantly increased over

time. PC 38:6, PC 20:4_20:4, and PC 18:2_22:6 were also signif-

icantly increased with time. After initially being increased

compared to the d0 sample of the COV- group, kynurenate

showed a significant decreasing trend. Because of the lower
rts Medicine 2, 100369, August 17, 2021 9



Figure 6. Syrian hamster model confirms SARS-CoV-2-dependent metabolite changes

(A) Experimental design of the Syrian hamster model. Hamsters (n = 3–6 per group) were infected through intranasal inoculation of SARS-CoV-2 (1e5 plaque-

forming units [PFUs]), influenza virus (1e5 PFU), or nasally treated with a saline solution (mock) on day 0 (d0). After 2, 4, 6, and 14 days (d2, d4, d6, and d14) post

infection, animals were sacrificed and exsanguinated.

(B) Comparing metabolite intensities among hamsters infected with influenza (n = 6), SARS-CoV-2 (n = 5), and mock (n = 6) on d4 shows many of the predictor

metabolites are significantly altered in the hamstermodel (p < 0.05,Welch’s ANOVA). Box limits represent the quartiles of each sample group.Whiskers are drawn

to 1.53 of the inter-quartile range.

(C and D) Metabolite changes during disease progression in SARS-CoV-2 (C) and influenza (D). Infected animals show a faster recovery during influenza. All

groups are n = 6with the exception of SARS-CoV-2 hamsters at d2 (n = 3) and d4 (n = 5). *p < 0.10, **p < 0.05. Statistical significancewas assessed by using a two-

tailed Student’s t test with unequal variance between d2 and d4 samples. All values were corrected with the Benjamini-Hochberg procedure.
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sample numbers, the COV+ non-severe group had only six me-

tabolites (five LPCs and one PC) that showed a significant trend

(p < 0.05, Welch’s ANOVA; Figure 5D).

Syrian hamster model confirms metabolite changes in
COVID-19
Lastly, we aimed to validate that the predictor metabolites we

found in the human samples were directly related to COVID-19

and not to some unidentified correlate that could have

confounded our analysis. As such, we used an established ham-

ster model of SARS-CoV-2 infection.24,25 Syrian hamsters have

been found to be susceptible to SARS-CoV-2 infection, with

the virus mainly replicating in the upper and lower respiratory

tract of intranasally challenged animals for approximately

6 days post infection. Diseased animals exhibit a loss of body

weight and pathological lung inflammation. We obtained plasma

samples from golden Syrian hamsters that were intranasally

inoculated with SARS-CoV-2 according to Imai et al.,25 influenza

virus according to Iwatsuki-Horimoto et al.,56 or nasally treated
10 Cell Reports Medicine 2, 100369, August 17, 2021
with saline solution as a mock infection. Viral infection of the

lung and body-weight loss were confirmed in all SARS-CoV-2-

and influenza-infected hamsters and were consistent with previ-

ous reports.25,56 All SARS-CoV-2-infected hamsters experi-

enced greater body-weight loss (>5.1% of their initial body

weight) compared to influenza-infected hamsters, and virus

was detected in both the lungs and nasal cavity in both models

(see method details; Figure S10).

After 2, 4, 6, and 14 days (d2, d4, d6, and d14) post infection,

plasma was harvested from the SARS-CoV-2- and influenza-in-

fected hamsters (Figure 6A) because those time points correlate

with the well-established kinetics of pathology and infection in

the hamster model of SARS-CoV-2.24,25,57 For the mock group,

plasma was harvested on days 4 and 14 relative to the infection

timeline. All plasma samples were subjected to the same LC/MS

workflow as described above. Differences in the sample matrix

prevented a direct comparison of metabolite intensities between

rodent and human plasma, but we are able tomake comparisons

between the different experimental groups. We compared the
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predictor metabolite levels of samples from the three groups

(SARS-CoV-2, influenza, and mock) harvested on d4 as a repre-

sentative time point for early disease. Figure 6B shows the 11

significantly changing predictor metabolites (p < 0.05, Welch’s

ANOVA) across the three groups. Of the LPCs, eight were signif-

icantly altered in animals infected with SARS-CoV-2. Although

PC 20:4_20:4 was not detected in the hamster plasma, possibly

because of matrix effects, the two detected PCs were signifi-

cantly dysregulated, along with PE 16:0_20:4. All 11 of the signif-

icantly altered metabolites showed the same direction of dysre-

gulation as what was observed in the d0 human samples. For all

significantly varying metabolites except PE 16:2_20:4, infection

with the influenza virus showed a similar trend of dysregulation

relative to control samples but a very different magnitude

compared to SARS-CoV-2 infection. This is consistent with

milder disease in influenza-infected hamsters compared to ham-

sters infected with SARS-CoV-2 and suggests that the depres-

sion of LPCs and PCs may not be as specific to SARS-CoV-2

infection as changes in PEs.

Finally, we wanted to determine whether the predictor metab-

olites in hamsters showed longitudinal changes over the time

course of infection. Indeed, when compared to the d4 control

(mock infection) samples, there was a similar trend in hamsters

infected with SARS-CoV-2 (Figures 6C and S11A) as in human

COV+ samples. There was minimal time-dependent variation in

the mock-infection samples, and none of the predictor metabo-

lite levels were significantly different between d4 and d14 in

those animals (Figure S11B). In SARS-CoV-2-infected hamsters,

plasma LPC levels decreased on d4 compared to d2 and slowly

recovered toward the control levels on d14. By comparison, for

the influenza-infected animals, metabolite levels approached

those of the control group more rapidly (Figures 6D and S11C).

The similar patterns of alteration and recovery in LPC and PC

levels across both hamsters and humans suggest that these lipid

species are directly related to SARS-CoV-2 infection.

DISCUSSION

The current study sought to predict COVID-19 disease severity

based on the metabolic profiles of human plasma samples ob-

tained early in the disease course, before the onset of critical

illness. We applied untargeted metabolomics to profile a patient

cohort of 339 individuals, which amounted to 700 study samples

in addition to QC and method blanks. From the experiments, we

putatively identified 235 polar metabolites and 472 lipid species.

Using these compounds, we applied ML techniques to build a

predictive model that accurately classified a patient’s disease

severity from their d0 metabolic profile obtained at the time of

initial study entry. Currently, risk assessment is primarily based

on BMI and age.58 Even though we see a significant difference

between the ages of patients in the non-severe and severe dis-

ease groups (p < 0.0001), the results of our study show that

risk assessment based on a small panel of predictor metabolites

is more reliable than age and BMI, thereby providing a better

metric for resource allocation.

Although our linear ElasticNet model is relatively simple

compared to other popular ML models that have been applied

to metabolomics datasets previously (including artificial neural
networks, support vector machines, or ensemble-based ap-

proaches, such as random forest), linear models can be easily in-

terpreted and provide robust performance even when modeling

innately non-linear biological systems.34,59 Notably, a previous

study13 successfully used an ElasticNetmodel to predict disease

severity from amulti-omic dataset. Other studies have used non-

linear ML models, such as random forest, to predict disease

severity from metabolomics, lipidomics, and/or proteomics pro-

files.10,12,19 While those studies found higher AUC scores than

that of ourmodel, they used considerably smaller patient cohorts

than what our model was trained and evaluated on. Further, AUC

scores are not directly comparable, unless they are calculated

from the same dataset. When we tested non-linear models (sup-

port vectormachines and random forest), we foundworse cross-

validated performance relative to ElasticNet (see Figure S4C).

Interpretation of our model led us to identify metabolites that

predicted disease severity. Using a reduced predictor set, we

were able to retrain our model and found similarly strong predic-

tive ability. Of the predictor metabolites, most were LPCs and

PCs that were more decreased in patients with severe COVID-

19 when compared to patients with non-severe disease. The

observation that LPC and PC levels are altered in patients with

COVID-19 has been corroborated by multiple studies from

around the world. Early studies of COVID-19 patients from China

and Italy showed a decrease in PC levels and an increase in

select LPCs,14,32,60 but recent studies from South America and

Canada have shown that both circulating PC and LPC levels

decrease in patients with COVID-19.10,19 Not only do our results

support that PCs and LPCs are directly related to COVID-19 dis-

ease severity, they also build upon previous findings by showing

that these metabolites are decreased early in the disease course

and are, therefore, predictive of ICU admission. Additionally,

upon disease recovery, we find that LPCs are restored to the

levels of control individuals. We also confirmed that PCs and

LPCs are decreased in a hamster model of SARS-CoV-2 infec-

tion and that the levels of those metabolites in animal plasma

similarly recover over time.

The cellular mechanisms underlying the decreased LPC and

PC levels in the plasma of patients with severe COVID-19 may

be connected to uncontrolled inflammatory responses or viral

pathogenesis. Multiple studies have shown that individuals

with severe COVID-19 display a hyper-inflammatory state char-

acterized by dysregulated production of cytokines, such as IL-1,

IL-6, IL-10, and others.61–63 Fatty acids in plasma have also been

correlated with sustained IL-6 release and renal dysfunction in a

smaller cohort of patients with COVID-19,11 suggesting that

altered inflammatory responses may affect levels of circulating

metabolites. Consistent with prior studies, in our cohort, we

found that PC and LPC levels in patients with COVID-19 corre-

lated with inflammatory markers (e.g., IL-6, CRP, lymphocyte,

and neutrophil levels). In addition, reductions in circulating LPC

levels have also been found in patients with pneumonia-induced

inflammation, infection of the lung,64 and sepsis in which a cyto-

kine storm occurs.65 Alternatively, metabolic alterations may be

directly related to the pathogenesis of SARS-CoV-2. Reprog-

ramming of cellular metabolism is critical to sustain viral replica-

tion during coronavirus infection.66,67 SARS-CoV-2-infected

monocytes upregulate genes involved in lipid biosynthesis and
Cell Reports Medicine 2, 100369, August 17, 2021 11
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lipid remodeling, leading to the formation of lipid droplets.68

Additionally, a CRISPR-based screen for host factors required

for the replication of coronaviruses identified genes involved in

the sterol regulatory-element binding-protein (SREBP) pathway

and the gene encoding the low-density lipoprotein (LDL) recep-

tor. The SREBP pathway regulates cholesterol metabolism, and

the LDL receptor influences circulating lipid levels.69 As such, the

alterations in plasma metabolites found in our study may reflect

systemic alterations in metabolism induced by sustained viral

replication, especially in severe disease.

In summary, our large sample size that included longitudinal

measurements of patient plasma, collection of patient metadata

(laboratory values, comorbidities, and demographics), and use

of an animal model allowed us to discover a small panel of

metabolite predictors for COVID-19 severity and rigorously

investigate the relationship of thosemetabolites to the pathology

associated with SARS-CoV-2 infection. The model we present

here to assess the risk of a severe case of COVID-19 does not

require intensive computation or untargeted metabolomics,

making it immediately applicable to most hospitals around the

world. The metabolites presented could, for example, be quan-

titatively measured by triple quadrupole mass spectrometers,

which are widely available in clinical laboratories.

Limitations of the study
Although the size of our patient cohort is a major strength of this

study, sample collection started early in the pandemic (March

2020), when the appropriate treatment of SARS-CoV-2 infec-

tions was not yet established. Over the time of study enrollment,

treatment plans changed (e.g., fewer individuals were treated by

mechanical ventilation in the second half of the study). Addition-

ally, although the goal was to collect longitudinal samples 3, 7,

14, 28, and 84 days after initial sample collection, we were un-

able to obtain samples from all patients at every time point. Sub-

jects were less likely to provide plasma after being discharged

from the hospital, and samples could not be collected after pa-

tients were deceased. Moreover, even though the d0 sample

would ideally have been taken at or preceding hospital admis-

sion, this was not always possible. Some patients enrolled in

the study several days after being admitted, or they were

enrolled only after being transferred from another hospital. These

practical challenges affected the statistical power of our tempo-

ral comparisons. Furthermore, it is important to note that the pa-

tients studied here were all from hospitals in the St. Louis region

and were mostly collected before the emergence of variants,

such as B.1.617.2 (delta). Further longitudinal studies of patients

from other geographic regions who have been infected with var-

iants are thus needed to confirm the broad applicability of our

findings.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Viral vectors

H1N1 influenza A virus

(A/California/04/2009)

NIH N/A

SARS-CoV-2 (WA-1) BEI Resources Cat# NR-52281

Biological samples

Human plasma samples Washington University in St. Louis,

Tissue Procurement Core (TPC),

https://siteman.wustl.edu/research/

shared-resources-cores/tissue-

procurement-core-tpc/

WU-350

Reference human plasma National Institue of Standards

and Technolgoy

SRM1950

Chemicals, peptides, and recombinant proteins

Acetonitrile LC/MS OPTIMA Fisher Scientific Cat#A955 4, CAS 75-05-8

Euthanasia Solution SleepAway Fort Dodge Animal Health NAC No.: 10031902

Formic Acid for LC-MS LiChropur Sigma-Aldrich Cat#5438040100, CAS 64-18-6

Ketamine Vedco, Inc., St Joseph, MO NDC 50989-996-06

Xylazine Akorn, Inc., Lake Forest, IL N/A

Mass Spectrometry Metabolite Library IROA Technologies Cat#MSMLS

Medronic Acid Sigma-Aldrich Cat#64255, CAS 1984-15-2

Methanol LC/MS OPTIMA Fisher Scientific Cat#A456 4, CAS 67-56-1

Methyl tert-butyl ether HPLC Plus Fisher Scientific Cat#650560, CAS 1634-04-4

OPTIMA LC/MS 2-propanol (IPA) Fisher Scientific Cat#A461 4, CAS 67-63-0

Water LC/MS OPTIMA Fisher Scientific Cat#W64, CAS 7732-18-5

Deposited data

Raw and analyzed data WU-350 NMDR,

https://www.metabolomicsworkbench.org

NMRD:ST001849, https://doi.org/10.21228/M80981

Metadata WU-350 NMDR,

https://www.metabolomicsworkbench.org

NMRD:ST001849, https://doi.org/10.21228/M80981

Raw and analyzed data Syrian Hamster

Model

NMDR,

https://www.metabolomicsworkbench.org

NMRD:ST001853, https://doi.org/10.21228/M80981

Metadata Syrian Hamster Model NMDR,

https://www.metabolomicsworkbench.org

NMRD:ST001853, https://doi.org/10.21228/M80981

Experimental models: Organisms/strains

LVG golden Syrian hamsters Charles River Laboratories (Kingston, NY) LVG(SYR)

Software and algorithms

Biorender BioRender.com RRID:SCR_018316

GraphPad Prism v3.8 GraphPad RRID:SCR_002798

Lipid Annotator v1 B1.0.54.0 Agilent Technologies N/A

Mass Profiler Professional Software v15.5 Agilent Technologies N/A

MassHunter Workstation LC/MS Data

Acquisition v10.1 B10.1.48

Agilent Technologies N/A

Python v3.7 python RRID:SCR_008394

Scikit-learn v0.23.1 N/A https://scikit-learn.org

SciPy v1.4.1 N/A https://SciPy.org

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Skyline 64-bit v20.2.0.343 MacCoss Lab Software RRID:SCR_014080

statsmodels v0.11.1 N/A https://statsmodels.org

Thermo Scientific Xcalibur v4.2.28.14,

AcquireX workflow

Thermo Fisher Scientific RRID:SCR_014080

Other

ACQUITY UPLC HSS T3 Column, 100Å,

1.8 mm, 2.1 mm X 150 mm

Waters Cat#186003540

VanGuard Pre-Column HSS T3, 1.7 mm,

2.1mm x 5mm

Waters Cat#186003976

SeQuant� ZIC�-pHILIC HPLC Column,

5mm polymer 100 3 2.1 mm

Merck Millipore Cat#150462

SeQuant� ZIC�-pHILIC Guard Kit,

5mm polymer 20 3 2.1 mm

Merck Millipore Cat#150438
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to the lead contact, Dr. Gary J. Patti (gjpattij@wustl.

edu).

Materials availability
This study did not generate new unique reagents.

Resources used in this study are available to the scientific community upon request from Dr. Gary J. Patti (gjpattij@wustl.edu).

Data and code availability
The raw LC/MS data as well as the processed metabolic profiles and corresponding metadata for the human (deidentified) and an-

imal samples is publicly available on the Metabolomics Workbench repository (NMRD:ST001849, ST001853; https://doi.org/10.

21228/M80981). Custom code used to perform the ML analyses is available on GitHub (https://github.com/e-stan/

covid_19_analysis)

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human subjects and samples
Over the period of March to August of 2020, blood specimens of 341 individuals who presented at Barnes Jewish Hospital or Chris-

tian Hospital located in Saint Louis, Missouri, USAwere collected. Inclusion criteria were a physician-ordered SARS-CoV-2 nasopha-

ryngeal swab polymerase chain reaction (PCR) test with a positive or negative outcome, availability of gender and age information,

and an age greater than 18. Informed consent was obtained from all study participants. The clinical cohort consisted of 155 female

and 184 male participants. Out of the 339 patients, 272 were considered SARS-CoV-2 positive (COV+) and 67 were considered

SARS-CoV-2 negative (COV-). Samples were collected at the time of enrollment (d0) to the study, and 3, 7, 14, 28, or 84 days

post study entry. Clinically relevant medical information (e.g., patient-reported symptoms, date of symptom onset, age, race, and

BMI) was collected at the time of enrollment from the subject or from the medical record. Data were retrieved for the current study

on October 16th 2020.

Animal studies
All animal studieswere performed atMount Sinai School ofMedicine. Outbred female LVGgolden Syrian hamsters (6-8weeks of age)

were obtained from Charles River Laboratories (Kingston, NY). Experiments were performed as previously published.25,56 In short,

the hamsters were anesthetized by intraperitoneal injection of a mixture of ketamine and xylazine prior to intranasal inoculation with

0.1mL of 1e5 plaque-forming units (PFU) of SARS-CoV-2 (WA-1) or H1N1 influenza A virus (A/California/04/2009). On day 2, 4, 6, and

14 after infection, 3-6 anesthetized hamsters per infection group were euthanized by exsanguination followed by intracardiac injec-

tion of veterinary euthanasia solution (SleepAway; Fort Dodge). Plasma samples were exposed to germicidal UV-C light. A disease

score was calculated based on virology and weight-loss data.
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Study approval
Portions of the human study relevant to Barnes Jewish Hospital, Christian Hospital, and Washington University were reviewed and

approved by the Washington University in Saint Louis Institutional Review Board (WU-350 study approval #202003085, and plasma

metabolomics study approval #202004204). All animal studies were approved by the Institutional Care and Use Committee at Mount

Sinai School of Medicine, following the humane care and use guidelines set by the institution.

METHOD DETAILS

Metabolomics sample preparation
Participant plasma, which had been stored at�80�C upon collection, was thawed on ice. A 50 mL aliquot was transferred onto a solid-

phase-extraction (SPE)-system CAPTIVA-EMR Lipid 96-wellplate (Agilent Technologies) before addition of 250 mL of acetonitrile con-

taining 1% formic acid (v/v) and 10 mM internal standard (consisting of uniformly 13C and 15N labeled amino acids from Cambridge

Isotope Laboratories, Inc). The samples were mixed for 1 min at 360 rpm on an orbital shaker at room temperature prior to a 10 min in-

cubationperiodat4�C.Afterward,200mL80%acetonitrile inwater (v/v)wasadded to thesamples.Thesamplesweremixedonanorbital

shaker (360 rpm) for an additional 10 min at room temperature. The samples were then eluted into a 96-deepwell collection plate by

centrifugation (10min, 57 x g, 4�C followed by 2min, 1000 x g, 4�C). Polar eluateswere stored at�80�Cuntil the day of LC/MS analysis.

The SPE-plateswere thenwashed twice with 500 mL 80%acetonitrile in water (v/v). Lipids still bound to the SPE-material were then

released into a second elution plate, in two elution steps applying 2x 500 mL 1:1 methyl tert-butyl ether:methanol (v/v) onto the SPE

cartridge and centrifuging for 2min at 1000 g and 4�C. The combined eluates were dried under a stream of nitrogen (Biotage SPE Dry

Evaporation System) at room temperature and reconstituted with 100 mL 1:1 2-propanol:methanol (v/v) prior to LC/MS analysis.

Hamster plasma samples were diluted 1:4 with methanol (v/v), vortexed for 30 s, and incubated at �20�C for 2 hours. Samples

were centrifuged for 10 minutes at 13,500 x g at 4�C and supernatant was transferred to a new centrifuge tube, concentrated,

and stored at �80�C until reconstitution as described above.

LC/MS analysis of polar metabolites
A 2 mLaliquot of polar metabolite extract was subjected to LC/MS analysis by using an Agilent 1290 Infinity II liquid-chromatography

(LC) system coupled to an Agilent 6540Quadrupole-Time-of-Flight (QTOF)mass spectrometer with a dual Agilent Jet Stream electro-

spray ionization source. Polar metabolites were separated on a SeQuant� ZIC�-pHILIC column (100 3 2.1 mm, 5 mm, polymer,

Merck-Millipore) including a ZIC�-pHILIC guard column (2.1 mm x 20 mm, 5 mm). The column compartment temperature was main-

tained at 40�C and the flow rate was set to 250 mL$min-1. The mobile phases consisted of A: 95% water, 5% acetonitrile, 20 mM

ammonium bicarbonate, 0.1% ammonium hydroxide solution (25% ammonia in water), 2.5 mM medronic acid, and B: 95%

acetonitrile, 5% water, 2.5 mM medronic acid. The following linear gradient was applied: 0 to 1 min, 90% B; 12 min, 35% B; 12.5

to 14.5 min, 25% B; 15 min, 90% B followed by a re-equilibration phase of 4 min at 400 mL$min�1 and 2 min at 250 mL$min�1. Me-

tabolites were detected in positive and negative ion mode with the following source parameters: gas temperature 200�C, drying gas

flow 10 L$min�1, nebulizer pressure 44 psi, sheath gas temperature 300�C, sheath gas flow 12 L$min�1, VCap 3000 V, nozzle voltage

2000 V, Fragmentor 100 V, Skimmer 65 V, Oct 1 RF Vpp 750 V, and m/z range 50-1700. Data were acquired under continuous refer-

ence mass correction at m/z 121.0509 and 922.0890 for positive ion mode and m/z 119.0363 and 966.0007 for negative ion mode.

Samples were randomized prior to analysis. In addition, a quality control sample was injected after every 12th sample to monitor

signal stability of the instrument.

LC/MS analysis of lipid metabolites
A 2 mL aliquot of lipid metabolite extract was subjected to LC/MS analysis by using an Agilent 1290 Infinity II LC-system coupled to an

Agilent 6545 QTOF mass spectrometer with a dual Agilent Jet Stream electrospray ionization source. Lipids were separated on an

Acquity UPLC� HSS T3 column (2.1 3 150 mm, 1.8 mm) including an Acquity UPLC� HSS T3 VanGuard Pre-Column (2.1 3 5mm,

1.8 mm) at a temperature of 60�C and a flow rate of 250 mL$min�1. The mobile phases consisted of A: 60% acetonitrile, 40% water,

0.1% formic acid, 10 mM ammonium formate, 2.5 mM medronic acid, and B: 90% 2-propanol, 10% acetonitrile, 0.1% formic acid,

10mM ammonium formate (dissolved in 1mLwater). The following linear gradient was used: 0-2min, 30%B; 17min, 75%B; 20min,

85% B; 23-26 min, 100% B; 26 min, 30% B followed by a re-equilibration phase of 5 min.

Lipids were detected in positive and negative ion mode with the following source parameters: gas temperature 250�C, drying gas

flow 11 L$min�1, nebulizer pressure 35 psi, sheath gas temperature 300�C, sheath gas flow 12 L$min�1, VCap 3000 V, nozzle voltage

500 V, Fragmentor 160 V, Skimmer 65 V, Oct 1 RF Vpp 750 V, and m/z range 50-1700. Data were acquired under continuous refer-

ence mass correction at m/z 121.0509 and 922.0890 in positive ion mode and m/z 119.0363 and 966.0007 in negative ion mode.

Samples were randomized before analysis. In addition, a quality-control (QC) sample was injected after every 12th sample to monitor

signal stability of the instrument.

Data preprocessing and normalization
Polar metabolite identifications were supported by matching the retention time, accurate mass, and MS/MS fragmentation data to

our in-house retention time and MS/MS library created from authentic reference standards (Mass Spectrometry Metabolite Library
e3 Cell Reports Medicine 2, 100369, August 17, 2021



Article
ll

OPEN ACCESS
supplied by IROA Technologies, Millipore Sigma, St. Louis, MO, USA) and online MS/MS libraries (Human Metabolome Database

(HMDB, https://hmdb.ca 70), Mass Bank of North America (MoNA, https://mona.fiehnlab.ucdavis.edu/ 71), and mzCloud (https://

www.mzcloud.org). Lipid iterative MS/MS data were annotated with the Agilent Lipid Annotator software. All data files were then

analyzed in Skyline (Version 20.1.0.155) to obtain peak areas. m/z values of the metabolite and lipid target lists obtained from the

metabolite identification workflow, which had at least an MS/MS match to an online library, were extracted under consideration

of retention times.

Due to the risk of handling plasma samples fromSARS-CoV-2-positive patients and not knowing howmany batches of samples we

would receive, we refrained from preparing a pooled sample and instead used the NIST SRM1950 plasma referencematerial as aQC

sample in each batch. The QC sample was injected after every 12th sample. After peak area extraction, batch effects were observed

in the research samples (see Figure S2A). The research samples and QC data were used to test typical batch normalization methods

(see Figure S2B), including constant sum, unit length, scale, percentile shift, minimum-maximum, probabilistic quotient normaliza-

tion, quantile, and ComBat correction used in metabolomics.29,72–75 In Figure S2B, the variance remaining in the research samples

normalized to the variance in the QC samples is shown for each method. The higher this ratio, the more variance that remains in the

research samples and the more batch-derived variance in the QC samples is reduced. ComBat correction outperformed the other

batch-correction approaches tested by using this metric. After correction, samples are well clustered according to sample type (WU-

350, QC, blank) as shown in Figure S2C. In addition, within the research samples, there is no clustering by batch (see Figure S2D).

Machine learning
Samples were split into two distinct cohorts for training and testing theMLmodel. d0 COV+ patient samples within batches 1-6made

up the training set and d0 COV+ patient samples from batches 7 through 9 made up the test set. Training and tests sets were treated

independently except for batch normalization, which was carried out for all patients (including samples collected after d0 and COV-

samples) together. Demographics of both training and tests sets are available in Tables S1 and S2.

Model selection was based on 20-fold cross validation of the training set. Five different ML models: logistic regression, ElasticNet

linear regression, partial least-squares discriminant analysis (PLSDA), support vector machine (SVM), and random forest were

selected for consideration based on interpretability and previous studies.10,12,59,76 Hyperparameters of all models and feature selec-

tion strategies were optimized by using 20-fold cross validation and a grid search. Two separate feature selection strategies were

tested: a correlation-based approach and a statistic-based approach. In the correlation-based approach, the Pearson correlation

was computed between each metabolite’s intensity and disease severity. Then, the top X% of metabolites sorted by absolute cor-

relation was taken as the predictors for theMLmodel. In the statistic-based approach, a Student’s t test was performed to assess the

statistical significance of the differences in each metabolite’s intensity between COV+ severe and COV+ non-severe patients. Abso-

lute fold-change and p value cutoffs were used to select metabolites. Performance was assessed with the area under the receiver

operating characteristic curve (AUC). After optimization, ElasticNet regression achieved the highest AUC on the cross validated

training dataset. The ElasticNet model is given below in Equation 1, where X is the matrix of metabolic profiles (# of samples by #

of metabolites), b is the bias term, y is the sample labels (0 = COV+ non-severe, 1 = COV+ severe),w is the weight of eachmetabolite

to the model prediction, a is the weight of the regularization, and r is the mixing parameter between the l1 and l2 norm regularization.

min
w

1

2n
kXw+b� yk2 +ar kwk1 +

að1� rÞ
2

kwk22 (Equation 1)

After optimization, the correlation-based feature selection was used by taking the top 33% most correlated metabolites and model

hyperparameters were set to a= 10:0 and r = 0:0. In the reduced predictor model, no feature selection was performed and model

hyperparameters were set to a= 1:0 and r = 0:0.

The variable importance of eachmetabolite in the ElasticNet model is easily computed from the optimizedweights,w. To normalize

for the different abundances of the metabolites, each weight was normalized by the median abundance of the metabolite across all

samples. The more positive the variable importance, the more predictive that metabolite is to severe disease. The more negative the

variable importance, the more predictive the metabolite is to non-severe disease. To find the metabolites that significantly contribute

to the model fit, the training dataset was resampled with replacement 10,000 times. At each iteration, the ElasticNet model was

trained and the variable importance was calculated. After the iterations were complete, the 95% confidence interval of the variable

importance was calculated for each metabolite by using the 2.5 and 97.5 percentiles. If this interval included zero, the metabolite did

not significantly contribute to the model fit.

All ML analyses were carried out by using Python (v3.7), with extensive use of the packages SciPy (v1.4.1)77 and Scikit-learn

(v0.23.1).78

Controlling for disease severity
To control for disease severity in the correlation analysis of the predictor metabolites, interleukin levels, and patient parameters

(laboratory results, comorbidities, demographics), the mean value within each patient group (COV+ severe, COV+ non-severe,

and COV-) was subtracted from each patient’s metabolite levels, interleukin levels, and patient parameters. This prevents weak

correlations from occurring as a result of bulk changes associated with disease severity. After correction, the Pearson correlations

between each corrected metabolite/interleukin measurement and patient parameter were calculated.
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Confirming metabolite identities of predictor metabolites
The identities of the predictor metabolites were rigorously confirmed with authentic standards. For the polar compounds, authentic

standards were purchased to not only match MS/MS spectra but also retention times. For lipids, one or two standards per lipid class

were matched to an authentic standard to compare MS/MS spectra and retention times. PCs were identified based on m/z and the

two characteristic fragments 184.0733 and 86.0964 in positive ionization mode. For PCs where no peaks for the acyl-chains were

observed, only the sum composition can be given. PEs were identified based on the neutral loss of phosphorylethanolamine

(141.0191) in positive mode. The fatty acyl composition could be derived from the spectra, but no differentiation of regioisomers

was possible, as was the case for ceramides. To denote regiospecificity, metabolites whose regioisomers could be differentiated

have their acyl-chains separated with a ‘‘/’’ while those that could not have a ‘‘_.’’ Cer-NS d18:1_16:0 was matched to its authentic

standard. MS/MS data for Cer-NS d18:2_16:0 were matched to MS/MS library spectra. Cer-NS d18:3_16:0 eluted slightly before

Cer-NS d18:1_16:0, as expected due to having one less double bond. LPCs were identified based on MS/MS spectral matches.

Standards were available for LPC 14:0/0:0 and LPC 18:1/0:0. Their retention times were used as a reference for the other LPCs.

The two regioisomers of LPCs (sn1 and sn2) were separated by liquid chromatography, with the sn1 isomer eluting later. They are

also distinguished by their MS/MS spectra. 1-acyl-LPC (sn1) shows two main fragments (m/z 184.0733 and 104.1070), whereas

the 2-acyl-LPC (sn2) has a more pronounced 184.0733 fragment. The 104.1070 fragment (choline) has been previously reported

as being more abundant from sodiated LPCs.79 We note that sn2 LPCs can be converted to sn1 during sample preparation, and

our sample preparation was not dedicated to preserve isomers.80,81

Acquiring MS/MS data
MS/MS spectra for polar metabolites and lipids were acquired by using an iterative approach in theMassHunter Acquisition Software

(Version 10.1.48, Agilent Technologies) on an Agilent 6540 and 6545 QTOF, respectively. The same source settings as for MS1 data

acquisition were used. MS/MS spectra were acquired at a scan rate of 3 spectra/s with different intensity thresholds and collision

energies of 10, 20, and 40 V to increase identification rates.

To improve matching to Orbitrap spectral databases, MS/MS data for polar metabolites were acquired on an Orbitrap ID-X Tribrid

mass spectrometer (Thermo Scientific). A Vanquish Horizon UHPLC system, with the same chromatographic conditions as

described in the Method details, was interfaced with the mass spectrometer via electrospray ionization in both positive and negative

ion mode with a spray voltage of 3.5 and 2.8 kV, respectively. The RF lens value was 35%. Data were acquired in data dependent

acquisition (DDA) mode by using the built-in deep scan option (AcquireX) with a mass range of 67-900 m/z. MS/MS scans were ac-

quired at 15K resolution on a NIST SRM 1950 plasma sample and from 4 individual samples (d0, d3, d7, and d14) in both positive and

negative ion mode with different collision energies in the range of 20 NCE to 50 NCE for HCD and 30 NCE for CID to maximize

identifications.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis
All statistical analyses were performed by using the SciPy (v1.4.1)77 and statsmodels (v0.11.1)82 Python packages and with the Mass

Profiler Professional Software (Agilent Technologies, v15.5). All p values were corrected for multiple hypothesis testing by using the

Benjamini-Hochberg procedure.83 All statistical tests used are described in the figure legends.

Permutation test
To assess the significance of themodel fit and compare the predictive power towhat is expected from randomchance, we performed

a permutation test. After the feature selection and model hyperparameters were optimized, the training dataset labels were

permuted, and the model was retrained on the permuted data. Then, the performance of the model was assessed on the non-

permuted test set and the AUC was computed. This process was repeated 1,000 times. The empirical p value was computed by

calculating the percentage of the 1,000 permutations that achieved an AUC higher than that of themodel’s performancewhen trained

on non-permuted data.
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