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Abstract: Pharmacophore-based techniques are nowadays
an important part of many computer-aided drug design
workflows and have been successfully applied for tasks
such as virtual screening, lead optimization and de novo
design. Natural products, on the other hand, can serve as a
valuable source for unconventional molecular scaffolds that
stimulate ideas for novel lead compounds in a more diverse
chemical space that does not follow the rules of traditional
medicinal chemistry. The first part of this review provides a
brief introduction to the pharmacophore concept, the

methods for pharmacophore model generation, and their
applications. The second, concluding part, presents exam-
ples for recent, pharmacophore method related research in
the field of natural product chemistry. The selected
examples show, that pharmacophore-based methods which
get mainly applied on synthetic drug-like molecules work
equally well in the realm of natural products and thus can
serve as a valuable tool for researchers in the field of natural
product inspired drug design.
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1 Introduction

Many modern blockbuster drugs originate from or were
inspired by natural products (NP) and there is growing
interest in employing computational approaches for the
design of highly active compounds based on natural-
product derived fragments.[1] Chemotype-specific syn-
thetic compound libraries used to be the common
approach in medicinal chemistry, in which compounds
are designed according to a specific target profile and
aim for a high degree of diversity.[2] As natural products
can serve as source for novel molecular scaffolds and
thus stimulate ideas for novel lead compounds,[3] a
renewed and growing interest in these molecules can be
observed which gets demonstrated by several recently
published drug design projects. Natural products do not
always follow the rules which are commonly applied in
modern drug design (for instance Lipinski’s “Rule of
Five”[4]). However, this can also be seen as a valuable
chance to explore powerful molecules in a more diverse
chemical space. Recently, anti-cancer agents with scaf-
folds inspired by natural products were described.[5]

Those compounds are synthetically accessible, and the
achievement of linking the world of natural and synthetic
compounds is a great benefit for medicinal chemistry.[6]

Furthermore, software has been made available that
enables an exploration of the NP-derived chemical space
in correlation with bioactivity profiles.[6–7]

As we are focusing on methods based on 3D
pharmacophores and their application in natural product
inspired drug design, we have reviewed some recently
published drug design projects which relied on the
application of pharmacophore-based techniques. By
employing screening databases, curated from structures
of natural products, the in silico approach could be
successfully linked to pharmacognostic profiles.

2 The Pharmacophore Concept

In medicinal chemistry, pharmacophore-based methods
can nowadays be considered as an indispensable compo-
nent in any modern computer-aided drug design (CADD)
toolbox. Due to their abstract nature, pharmacophores
are easy to comprehend and intuitive which renders
them also useful as a tool for medicinal chemists to
describe, explain and visualize ligand-target binding
modes.

Depending on background and context, the term
pharmacophore was often attributed with different
meanings. Historically,[8] the term “pharmacophore” was
used to vaguely denote common structural or functional
elements of a set of compounds essential for the activity
towards a particular biological target. However, the
official IUPAC definition for pharmacophores[9] is more
specific and states:

‘A pharmacophore is the ensemble of steric and
electronic features that is necessary to ensure the optimal
supra-molecular interactions with a specific biological
target structure and to trigger (or to block) its biological
response’.

According to this definition, pharmacophores do not
represent ensembles of particular functional groups (e. g.
primary amines, thioamide, …) or characteristic structural
fragments (e. g. a pyrrolidine ring), but are an abstract
description of stereoelectronic molecular properties.
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Structurally different molecules possessing similar phar-
macophoric patterns can therefore be assumed to be
recognized by the same binding site of a biological target
and thus also exhibit similar biological profiles.[8] The
pharmacophore concept thus allows medicinal chemists
to postulate pharmacophore models as the “essence” of
the structure-activity knowledge they have gained in an
extensive structural study of a series of active and
inactive molecules for a given drug target.

2.1 3D Pharmacophore Representation

3D Pharmacophores represent the nature, as well as the
location of the chemical features of a molecule involved
in ligand-target interactions as geometric entities like
spheres, planes and vectors. Although simple, this kind of
representation is usually sufficient to capture the active
conformation of a molecule and all essential interactions
contributing to its activity in 3D space. For pharmaco-
phore matching the features of a query model only have
to be met in their spatial arrangement and type but not

in the underlying chemical structures. Therefore, pharma-
cophores have an inherent scaffold hopping ability which
is reflected in a usually high structural diversity of the
compounds in virtual screening hit-lists (given that the
screened compounds are structurally diverse).

Not surprisingly, the choice of the basic feature set for
building pharmacophore models has an inevitable impact
on model quality. While the choice of features used to be
very specific at the early stage of pharmacophore
modeling,[10] recent techniques build pharmacophore
models in a more general way.[11] By using a very general
feature set resulting models are interpretable and easy to
comprehend, but might lack selectivity and have a lower
discriminatory power by neglecting specific character-
istics of functional groups. However, building a very
restrictive model by employing a higher number of
feature types can quickly lead to problems when it comes
to the matching of structurally unrelated compounds
that are active towards the same target. Thus, developing
a feature set that represents a reasonable trade-off
between being too general and being too selective is one
of the biggest challenges current software packages[12]
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for pharmacophore modeling are facing.
Table 1 provides an overview of the most important

feature types and the non-bonding interactions they may
establish in presence of a complementary interaction
partner. Vector and plane representations are used for
feature types whose interactions are directed, i. e. a
certain mutual orientation of complementary features is
required. Spheres can be used for any feature type but
are typically used only for features whose interactions are
of undirected nature or where an orientation cannot be
determined (e. g. a rotatable -OH group).

Ligand Shape Constraints. A pharmacophore model
representing just a set of key interactions usually does
not describe all molecular characteristics, which are
required for high affinity binding. Even if a molecule fits
the pharmacophoric model well it can still fail to bind to
the receptor due to steric clashes. Therefore, pharmaco-
phore models must also account for spatial constraints
imposed by the shape of the binding site. This can be
achieved by the incorporation of so-called exclusion
volumes. Such volumes can be of different size since they
are representing receptor areas where the ligand is not
allowed to occupy space after an alignment[16] with the
pharmacophore. The most reliable information about
spatial restrictions can be extracted from X-ray structures
of ligand-receptor complexes.[14] If such information is not
available, the location and size of exclusion volumes has
to be assigned either manually or by computer-aided
methods that distribute spheres based on the union of
the molecular shapes of a set of aligned known actives.[17]

2.2 Generation of Pharmacophore Models

Pharmacophore models can be constructed manually,
generated in an automated way starting from the
structure of known active ligands (ligand-based), or can
be derived from the three-dimensional structure of the
target receptor (structure-based). Which approach to
choose mainly depends on data availability, data quality,
computational resources and also the intended use of the
generated pharmacophore models.

Manually created Pharmacophore Models. From an
algorithmic point of view, this is the simplest way to
obtain pharmacophore models. Manual construction
usually requires a human user who needs considerable
expert knowledge about the biological target and the key
structural characteristics of a series of known active
compounds. Due to the availability of computational
methods which reliably analyze the common character-
istics of a series of known actives or account for all
possible ligand-target interactions (see below), manual
model construction largely lost its relevance and manual
intervention has moved towards the refinement of
automatically generated models.

Structure-based Pharmacophore Models. Having ac-
cess to the three-dimensional structure of a ligand-
receptor complex[14] is a tremendous advantage when it
comes to the generation of high quality pharmacophore
models. If the bioactive conformation of the ligand is
known, the atomic coordinates can be directly used to
guide the correct placement of pharmacophoric features.
Information about the receptor structure, on the other
hand, enables the identification of relevant interactions
with the ligand and the incorporation of binding site
shape information (see section 2.1). There exists a variety
of software tools[12] which are able to derive structure-
based pharmacophore models and shape constraints in a
fully automated manner from the 3D structure of a
ligand-receptor complex. If only the unbound state
structure of the target is accessible (as it is often the
case), the generation of high quality models becomes
much more challenging. For the generation of pharmaco-
phores in such cases computational methods are
available[18] but in general deliver models of poorer initial
quality caused by the lack of complementary ligand
information. Substantial validation and careful manual
refinement of the initial models is usually required to
work out a refined feature set that allows for a good
discrimination between actual pocket binders and non-
binders.

As an example, Figure 1 shows the structure-based
pharmacophore model of the natural product balanol
which acts as a potent inhibitor of cAMP-dependent

Table 1. Summary of the most important pharmacophoric feature types and their interactions typically observed in biological systems.

Feature Type Geom.
Representation

Complementary
Feature Type(s)

Interaction Type(s) Structural Examples

Hydrogen-Bond Acceptor (HBA) Vector or Sphere HBD Hydrogen-Bonding Amines, Carboxylates, Ketones,
Alcoholes, Fluorine Substituents, …

Hydrogen-Bond Donor (HBD) Vector or Sphere HBA Hydrogen-Bonding Amines, Amides, Alcoholes, …
Aromatic (AR) Plane or Sphere AR, PI π-Stacking, Cation-π Any arom. Ring
Positive Ionizable (PI) Sphere AR, NI Ionic, Cation-π Ammonium Ion, Metal Cations, …
Negative Ionizable (NI) Sphere PI Ionic Carboxylates
Hydrophobic (H) Sphere H Hydrophobic Contact Halogen Substituents, Alkyl Groups,

Alicycles, weakly or non-polar arom.
Rings, …
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protein kinase (cAPK).[13] The model contains only a
subset of the features of balanol, those for which a
suitable complementary interaction partner in the cAMP
binding site environment could be identified.

Ligand-based Pharmacophore Models. Pharmaco-
phores can also be derived in a ligand-based manner
from a sufficient number of known actives. An important
prerequisite for the success of this method is that the
active ligands bind to the same receptor, at the same
binding site and in the same orientation. Otherwise, the
obtained pharmacophore models will not represent the
correct mode of action and cannot be used for the
identification of novel actives. For the generation of
ligand-based pharmacophore models several algorithms
have been published which are described in detail
elsewhere.[19] Since the bioactive conformation of the
training set ligands is usually not known, a crucial
processing step for all algorithms is the generation of
ligand conformers such that at least one represents a
good approximation of the bioactive conformation. In
the next step, a chemical feature pattern has to be
identified[20] that is common to all ligands. Usually,
multiple pharmacophoric patterns can be extracted
which are then ranked according to a suitable fitness
function. Ligand-based pharmacophore modeling is chal-
lenging because several variables have a significant
impact on the outcome. It is therefore crucial to keep a
critical view on the generated models and to validate
them comprehensively.[21]

2.3 Pharmacophore-based Virtual Screening

The most common application of pharmacophore models
is their use as a query for the virtual screening of large
compound libraries. The ultimate goal here is the
discovery of novel compounds which exhibit a set of
desired pharmacophoric features that are considered
crucial for biological activity towards a particular target
of interest.[22] Due to their abstract nature, pharmaco-
phore screening usually delivers hit compounds with a
high structural diversity. As an additional benefit, the
simplicity of the pharmacophoric representation enables
a fast in silico searching[23] of even large screening
databases containing millions of compounds. Depending
on the selectivity of the query pharmacophore, applica-
tion specific match constraints and database size, tens to
thousands of hit molecules are usually retrieved by a
typical screening run. A portion of the hits will be false
positives and show no significant activity at all, but in
comparison with random sampling, hit rates obtained by
pharmacophore searches are generally much higher and
thus allow an enrichment of potentially active com-
pounds in significantly smaller database subsets. This is
especially important for academic research where the
available resources are often quite limited and only a
low-throughput biological testing of relatively few com-
pounds is possible. As already stated before, pharmaco-
phore screening allows to identify novel and diverse
chemotypes, which are for human eyes not obvious
matches to the query pharmacophore. Hit-lists made up
of molecules belonging to different structural classes can
serve as a valuable source of “ideas” for the development
and optimization of novel lead compounds that might
not have been discovered by a traditional rational drug
design processes alone.

3 Applications of Pharmacophores in Natural
Product inspired Drug Discovery

Natural products are often structurally complex and differ
from synthetic drug-like molecules in many ways.
Studies[24] comparing these two compound classes have
shown, that natural products contain a much larger
fraction of sp3-hybridized atoms at bridgeheads and more
chiral centres than synthetic small molecules.[24] On
average, natural products also have a lower nitrogen but
higher oxygen content and only 38% of the known
natural products contain aromatic ring systems.[24a] Fur-
thermore, around 50% of the structurally resolved natural
products in the Dictionary of Natural Products[25] do not
have synthetic counterparts and only 20% of the ring
systems seen in natural products can also be found in
drugs on the market.[24b] These findings clearly show, that
a sophisticated use of the chemical space offered by
natural products has the potential to drive innovation at

Figure 1. Structure-based pharmacophore model of the NP inhib-
itor balanol in complex with the catalytic subunit of cAMP-
dependent protein kinase[13] (PDB[14] code: 1BX6) generated by
LigandScout.[12d,15] Red arrows represent H-bond acceptors, green
arrows H-bond donors, yellow spheres hydrophobic features and
the blue star a positively ionizable feature.
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nearly all stages of the drug design process. However, the
higher structural complexity and conformational flexibil-
ity of natural products renders drug design also more
challenging. Dedicated databases for pharmacophore-
based virtual screening usually store pre-generated
conformational ensembles of all the contained molecules
in order to speed up the screening process.[23] To
adequately account for a higher conformational flexibil-
ity, larger conformational ensembles need to be gener-
ated which increases both the demand for disk-storage
and required processing time. A further complication
regarding pharmacophore modeling may arise from the
often high polar atom content of natural products. This
leads to a correspondingly higher number of H-bond
donor and acceptor features, many of which might be
irrelevant for an energetically favorable interaction with
the target receptor. Deriving a core set of essential
features which is able to distinguish true actives from
inactives with high confidence requires a considerable
amount of information (like a series of known actives or
co-crystal X-ray structures, see also section 2.2) which is
often not available, especially in the context of natural
products.

The presented “success stories” in the following
sections will show, facing these challenges can be
rewarding. All of the reviewed examples were taken from
literature and apply pharmacophore-based methods for
the discovery of novel NP-based drug candidates. An
excellent and comprehensive review of similar drug
discovery projects was already published by Schuster
et al. in 2010.[26] This short review aims to follow up on
this and will cover only more recent literature that was
published after 2010.

3.1 Identification of Novel Natural Inhibitors of
Trypanosoma brucei
Glyceraldehyde-3-phosphate-dehydrogenase

This work aimed at the identification of natural inhibitors
of Trypanosoma brucei Glyceraldehyde-3-phosphate-de-
hydrogenase (TbGAPDH).[27] Trypanosoma brucei is a
protozoan parasite which can cause human African
trypanosomiasis (HAT), also known as “sleeping sickness”.
Being classified as one of the “Neglected Tropical
Diseases” (NTDs) by the World Health Organization
(WHO), this infectious disease is endangering more than
70 million sub-Saharan African people.[28] Suggested as
potential drug target to deprive the parasite of energy
supply,[29] inhibitors of GAPDH represent promising
trypanocidal agents.[29–30] Offering a vast structural diver-
sity, natural products are known to exhibit high potential
against protozoan infection diseases.[31]

For the virtual screening runs that were performed in
this study, the natural product database MEGx[32] was
selected. From the 4803 natural compounds contained in

this database, 700 were kept after several filtering steps
such as the Lipinski’s rule of five[4] or limits on the
number of stereocenters.

Three crystallographic structures (PDB-IDs: 2X0N, 3IDS
and 1GYP) of GAPDH from human pathogenic trypanoso-
matids were taken from the Protein Data Bank (PDB)[14]

and used to generate four pharmacophore models by
means of the software MOE.[12c] Three of them were
structure-based pharmacophore models established on
co-crystallized NAD+ (see Figure 2) and the last one was
manually built by analyzing an electrostatic map of the
glyceraldehyde-3-phosphate (G-3-P) binding site, due to
the absence of the substrate.

A virtual screening run was performed for each
pharmacophore model and the resulting hits were then
docked in the respective binding site from which the
initial pharmacophore model was derived. Based on their
docking and virtual screening scores, 13 natural products
were experimentally tested to validate the inhibition of
GAPDH. Five compounds displaying an enzyme inhibition
superior to 50% at a concentration of 50 μM were
eventually selected and their IC50 values determined.

The structures of the selected natural products are
shown in Table 2. Three of the compounds are gerany-
lated benzophenone derivatives extracted from the
fungus Geniculosporium sp., one is a flavaspidic acid AB
extracted from the fern Dryopteris crassirhizoma, and the
last one is a tetradecane derivative extracted from the
tree Grevillea whiteana. All of the five compounds
inhibited GAPDH and had IC50 values below 30 μM, with
two of the geranylated benzophenone derivatives even
showing IC50 values below 8 μM.

Figure 2. Structure-based pharmacophore model of NAD+ in com-
plex with GADPH (PDB[14] code: 2X0N) generated by
LigandScout.[12d,15] Red arrows represent H-bond acceptors, green
arrows H-bond donors. The binding pocket surface is colored by
lipophilicity where yellow corresponds to lipophilic areas and blue
to polar areas.
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3.2 Ginkgolic Acid as a Multi-target Inhibitor of Key
Enzymes in Pro-inflammatory Lipid Mediator Biosynthesis

The primary goal of this project was the identification of
novel NP-based microsomal prostaglandin E2 synthase-1
(mPGES-1) inhibitors.[33] The enzyme mPGES-1 has been
found to be responsible for massive prostaglandin E2
(PGE2) biosynthesis at inflammatory sites and is thus
considered as an attractive therapeutic target for the
treatment of inflammation-related disorders and also
cancer.[34] Besides prostaglandins (PGs), leukotrienes (LTs)
formed by 5-lipoxygenase (5-LO) are also heavily involved
in the inflammatory response regulation network. Recent
pharmacological strategies therefore focus on multiple
target concepts, such as dual mPGES-1/5-LO inhibitors.[34]

For this purpose, mPGES-1 and 5-LO pharmacophore
models were established that in combination with virtual
screening lead to the identification of various small
synthetic molecules showing an inhibition of both PGE2
and LT synthesis.[35] The authors of this study used an
analogous approach and screened an in-house Chinese
Herbal Medicine (CHM) database comprising 10,216
unique compounds with two earlier reported mPGES-1
inhibitor pharmacophore models.[36] From the hit list of

the less restrictive second model, ginkgolic acid (GA,
shown in Figure 3), a 6-alkenyl derivative of salicylic acid

contained in Ginkgo biloba, was finally selected as the
most promising candidate and subjected to extensive
biological testing.

Table 2. List of the five natural products exhibiting more than 50% TbGAPDH inhibition at a concentration of 50 μM.

Compound Structure % of TbGAPDH
inhibition at 50 μM

IC50 (μM) Compound Class

66 24.56�1.03 Geranylated benzophenone derivative

98 4.73�1.03 Geranylated benzophenone derivative

>90 6.68�1.04 Geranylated benzophenone derivative

88 21.97�1.03 Flavaspidic acid AB

>90 22.79�1.01 Tetradecane derivative

Figure 3. Structure of GA together with a schematic representation
of the five pharmacophoric features that were matched by the
mPGES-1 inhibitor pharmacophore model used as a query for
virtual screening. Yellow spheres correspond to lipophilic features
and the red sphere specifies a negative ionizable feature.
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In cell-free assays, a fully reversible potent suppres-
sion of mPGES-1 activity (IC50=0.7 μM) could be observed
that was largely independent of substrate concentration.
Cyclooxygenase (COX) 1 and thromboxane A2 synthase
(TXAS) were identified as additional targets of GA with
lower affinity (IC50=8.1 and 5.2 μM). 5-LO was potently
inhibited by GA with an IC50 value of 0.2 μM in a
reversible and substrate-independent manner. Docking
studies that were performed in addition to the biological
tests further substantiated a direct molecular interaction
of GA with mPGES-1 and 5-LO binding sites. Analyses of
lipid mediator (LM) profiles from bacteria-stimulated
human M1- and M2-like macrophages finally confirmed
the multi-target features of GA and have shown a LM
redirection towards the formation of 12-/15-LO products
including specialized pro-resolving mediators (SPMs).

Unfortunately, the allergic and genotoxic potential of
GA renders its direct use as drug for humans highly
unlikely. However, the revealed favorable multiple-target-
inhibitor profile of GA makes it still perfectly suited to
serve as a tool compound for the investigation of novel
pharmacological strategies in the fight against diseases
linked to inflammation-related disorders.

3.3 Identification of Steroid Sulfatase Inhibiting
Lanostane Triterpenes

This study aimed at the identification of potent steroid
sulfatase (STS) inhibitors from natural sources.[37] STS is a
membrane-bound catabolic enzyme located in the rough
endoplasmatic reticulum and responsible for the con-
version of sulfated estrogenic steroids into free steroid
hormones. The underlying mechanism is based on the
hydrolysis of the sulfate ester moiety of the inactive
precursor molecule releasing the active steroid
hormone.[38] STS is a key enzyme involved in the increase
of free steroid concentrations in tumors and thus has
significant potential as a novel drug target in hormone-
dependent breast and prostate cancers and also in
conditions like endometriosis.[39]

Although since the early 1990s reversible and irrever-
sible STS inhibitors have been under heavy
investigation,[40] the chemical space of natural products
as a source of potential inhibitors remained largely
unexplored.[41] For the identification of STS inhibiting
natural compounds, the authors chose a pharmacophore-
based virtual screening approach employing ligand-
based pharmacophore models. In total three different
models were generated:

Model 1 was generated from two known steroidal STS
inhibitors (CAS: 1360613-74-6, 1215117-28-4) and contained
one HBA, one mixed HBA/HBD, and four hydrophobic
features in addition to one optional hydrophobic feature.
Model 2 was a variation of model 1 where the HBA feature
in model 1 was converted to an HBD feature based on the

observation that most of the known steroidal STS inhibitors
contain a hydroxyl group instead of a carbonyl group in the
concerned position. Model 3 was based on two non-
steroidal inhibitors (CAS: 634908-04-6, 512818-32-5) and
contained one HBD, one HBA, one aromatic, and four
hydrophobic features (see Figure 4).

For model validation, the authors compiled a dataset
including both steroidal and non-steroidal scaffolds
comprising 65 known STS inhibitors and 113 proven
inactive compounds from literature sources. The steroid-
based models matched 58 (model 1) and 57 (model 2) of
the known actives, but none of the inactive compounds.
Pharmacophore model 3 matched 5 of the active

Figure 4. Ligand-based pharmacophore modeling of STS inhibitors:
A) Pharmacophore model based on two known steroidal STS
inhibitors, B) model based on two potent non-steroidal inhibitors.
The models were generated by LigandScout[12d,15] and are replicas
of the models 1 (A) and 3 (B) described in section 3.3. Red spheres
represent H-bond acceptors, green spheres/arrows H-bond donors,
yellow spheres hydrophobic features, and the blue ring specifies an
aromatic feature.
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molecules and also none of the inactive compounds.
Taken together, the models were able to selectively
retrieve 63 of the 65 active molecules without matching a
single inactive molecule.

A prospective virtual screening of a database contain-
ing 32,119 secondary metabolites of natural products
used in Traditional Chinese Medicine (TCM
Database@Taiwan[42]) returned a total of 21 hits. Model 1
retrieved 20 molecules, model 2 one molecule, and
model 3 did not match any molecules. 20% of the hits
retrieved by model 1 solely belonged to the structure
class of lanostane-type triterpenes (LTTs) which are the
main constituents of polypore fungi. Based on this
observation, the authors focused their investigations on
the general STS inhibition potential of LTTs and prepared
extracts of the polypores Ganoderma lucidum Karst. (GL),

Gloeophyllum odoratum Imazeki (GO), and Fomitopsis
pinicola Karst. (FP) in order to have access to a higher
number of LTT candidates for in vitro testing. In this way,
18 LTTs were finally obtained whose inhibitory activity
towards STS was tested at 20 μM in JEG-3 cells with the
potent STS inhibitor STX64 (irosustat) serving as a
positive control and reference for 100% inhibition. Three
of the tested compounds (Table 3), i. e. piptolinic acid D
(1), pinicolic acid B (2), and ganoderol A (3), showed an
STS inhibition and 74% (IC50=10.5 μM), 72% (IC50=

12.4 μM), and 62% (IC50=15.7 μM), respectively and
represent the first non-sulfated/non-sulfamated STS in-
hibitors from natural sources reported so far. The
remaining isolates showed only moderate, weak or no
inhibition of STS.

The identified STS inhibiting LTTs are by far not as
potent as the irreversible inhibitors currently in clinical
trials. However, they nevertheless provided valuable
insight regarding the traditional use of TCM polypores in
the field of cancer related conditions and might act as
starting points for the design of alternative, but equally
potent non-sulfated/non-sulfamated STS inhibitors.

3.4 Further Reading

For the interested reader, the following tabular overview
provides references to further recently published projects
and studies which successfully applied pharmacophore-
based methods in the field NP-inspired drug discovery
and design:

4 Summary

In this review we summarized selected published exam-
ples for natural product related drug design projects
where the application of pharmacophore-based techni-
ques played an important role in achieving the set
research goals. In modern computer-aided drug design,
medicinal chemists usually navigate solely in the less
complex chemical space of molecules that strictly follow

Table 3. List of the three most potent LTT based STS inhibitors
isolated from two polypore species: Fomitopsis pinicola Karst. (FP),
Ganoderma lucidum Karst. (GL).

Comp. Structure % of STS
Inhibition
at 20 μM

IC50

(μM)
Fungal
Source

1 74 10.5 FP

2 72 12.4 FP

3 62 15.7 GL

Table 4. List of further notable research projects applying pharmacophore-based methods in the context of NP-inspired drug design.

Resarch Topic Appl. Pharm. Methods Year Ref.

Synthesis, antimycobacterial evaluation and pharmacophore
modeling of analogues of the natural product formononetin

Ligand-based pharm. modeling 2015 [43]

Pharmacophore modeling and in silico toxicity assessment of
potential anticancer agents from African medicinal plants

Structure-based pharm. modeling, virt.
screening

2016 [44]

Identification of hERG channel blocking Ipecac alkaloids by
combined in silico – in vitro screening

Virt. screening 2016 [45]

Identification of natural products as novel PI3Kβ inhibitors Ligand-based pharm. modeling, virt.
screening

2018 [46]

Pharmacophore mapping of natural products for pancreatic
lipase inhibition

Ligand-based pharm. modeling, virt.
screening

2020 [47]
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the traditional rules of drug-likeness.[4] These rules have
been derived from careful statistical analyses and have
proven their validity in the development of many
successful present day drugs. Natural products with their
higher structural diversity and complexity often violate
the established rules but have throughout human history
shown, that they can act as equally powerful weapons in
the treatment of a wide variety of diseases. For the
present day medicinal chemist natural products can serve
as a valuable source of ideas for the design of novel lead
compounds outside the synthetic drug space and taking
this chance may eventually lead to findings that were not
accessible before. The reviewed examples have shown,
that pharmacophore-based methods which were primar-
ily designed for the work with less complex synthetic
drug-like molecules can also be applied to the natural
product space and thus represent a powerful addition to
the toolbox of any researcher in field of natural product
inspired drug design.
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