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Introduction
Colorectal cancer (CRC) is the third most prevalent cancer 
globally and the second leading cause of cancer-related mortal-
ity. In 2020 alone, there were approximately 1.93 million new 
CRC cases and 935 000 deaths.

Age is a major risk factor for CRC, with most cases occur-
ring in individuals aged 50 or older. Other risk factors include 
a family history of CRC, inflammatory bowel disease, genetic 
mutations, poor dietary choices, obesity, and lack of physical 
activity.1-3 In recent decades, developing countries have experi-
enced an epidemiological shift in CRC, marked by a concern-
ing rise in its incidence.4 CRC has become a major contributor 
to cancer-related mortality worldwide.5 The early detection of 
CRC through screening plays a crucial role in enhancing treat-
ment outcomes and improving patient survival rates. This is 

primarily because early-stage CRC typically presents no 
noticeable symptoms. Consequently, individuals with early-
stage CRC are often diagnosed at later stages, when the cancer 
is more advanced and treatment is more challenging.6 The 
overall survival of patients is intricately linked to the progres-
sion of cancer at the time of diagnosis. This is primarily due to 
the fact that the extent of cancer progression upon diagnosis 
serves as a robust predictor of overall survival.7,8

Early diagnosis has the potential to significantly impact the 
trajectory of treatment.9 Traditional screening methods for CRC, 
such as fecal immunochemical testing (FIT) and guaiac-based 
fecal occult blood test (gFOBT), have become routine practices. 
However, these methods have inherent drawbacks, including low 
sensitivity and the inability to detect CRC in a timely manner. 
These limitations have spurred efforts to develop new screening 
methods that offer improved sensitivity and timely detection.6,10

Biomarkers, as molecular signatures, hold the potential to 
serve as more effective tools for cancer screening compared to 
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traditional methods.6 The dysregulation of genes, both coding 
and non-coding, along with perturbed signaling pathways, 
plays a substantial role in cancer development. Recent research 
has highlighted the significance of leveraging these genes and 
signaling pathways for early cancer detection.11 miRNAs have 
emerged as highly recognized biological molecules and genes 
that intricately regulate the pathways involved in the formation 
of cancer cells, specifically in CRC. These miRNAs engage in 
interactions with proteins and other non-coding RNAs, 
thereby contributing to the pathogenesis of CRC.12 
Extracellular miRNAs have been identified in serum and 
plasma, rendering them non-invasive biomarkers with poten-
tial applications in various disease conditions.12,13 Circulating 
miRNAs in the blood exhibit remarkable stability and repro-
ducibility, rendering them a promising biomarker for CRC. 
Biological processes can influence the expression of miRNAs, 
and epigenetic changes can further contribute to alterations in 
miRNA expression specifically in CRC.14-16 In recent years, 
the study of Differentially Expressed miRNAs (DEmiRs) has 
gained traction in cancer research. DEmiRs are miRNAs 
whose expression levels significantly differ between normal and 
disease conditions, such as in cancerous vs. healthy tissues.

One significant challenge in identifying biomarkers associ-
ated with different clinical outcomes, such as distinguishing 
normal from cancerous tissue samples, is the high-dimensional 
nature of the data. The number of miRNAs often exceeds the 
sample size, requiring specialized methods to address this issue. 
Penalized regression models, including Penalized Logistic 
Regression (PLR), have garnered considerable attention for 
analyzing this type of data. These models enable simultaneous 
variable selection and coefficient estimation. As a result, non-
informative miRNAs receive close to zero estimations, while 
the remaining miRNAs in the model are associated with the 
outcome and can reliably detect CRC.

In this study, we employed PLR with 3 different penalties: 
Smoothly Clipped Absolute Deviation (SCAD), Least 
Absolute Shrinkage and Selection Operator (LASSO), and the 
Minimax Concave Penalty (MCP), to identify miRNAs related 
to CRC. The primary objective of this article was to identify 
miRNAs capable of detecting CRC at an early stage. By lever-
aging systems biology and data mining techniques, we aimed 
to determine non-invasive biomarkers with high accuracy, 
facilitating timely treatment through early diagnosis of CRC.

Material and Methods
The bioinformatics strategy presented in Figure 1 involved the 
utilization of serum microarray datasets to identify miRNAs 
and key genes associated with CRC through systems biology 
methods. Initially, miRNAs were extracted from each sample’s 
profile and subjected to evaluation using PLR. Subsequently, 
an ANN was developed to assess the accuracy of the selected 
miRNAs. The analysis resulted in the identification of 
Differentially Expressed miRNAs (DEmiRs) and their 

respective target genes. To validate the findings, common genes 
were identified between the target genes and Differentially 
Expressed Genes (DEGs) using bipartite miRNA-mRNA 
interactions.

Notably, factors such as age, health status, and patient risk 
factors were not accounted for in this study.

miRNA expression profile dataset

Two miRNAs and gene expression datasets for CRC were 
acquired from the Gene Expression Omnibus (GEO) reposi-
tory, namely GSE106817 and GSE23878. GSE106817 was 
generated using the “3D-Human miRNA V21_1.0.0” plat-
form (GPL21263) and comprised 4043 samples including 
various disease conditions and healthy individuals. Among 
these, 115 samples were from CRC patients, while 2759 sam-
ples were from healthy individuals. In order to maintain bal-
ance, 115 healthy samples were randomly selected using R 
software. The expression levels of 2566 miRNAs were meas-
ured in each sample without any initial screening, providing 
data for subsequent analysis and modeling. Additionally, 
GSE23878, generated with the “Illumina HumanHT-12 
V3.0” platform (GPL6947), consisted of 59 tissue specimens, 
including 35 CRC samples and 24 normal tissue samples. This 
dataset was used as a validation set to assess key genes identi-
fied in the study.

Statistical Analysis
miRNA selection through penalized model

PLR techniques are a class of statistical learning methods that 
can be used for variable selection. These techniques attach a 
penalty to the objective function of the PLR, which shrinks the 
estimates of the regression coefficients toward zero. In this way, 
penalized regression techniques can simultaneously perform 
variable selection and coefficient estimation. In this study, we 
used PLR models with (1) Smoothly Clipped Absolute 
Deviation (SCAD) and (2) Least Absolute Shrinkage and 
Selection Operator (LASSO) and (3) the Minimax Concave 
Penalty (MCP) to identify important miRNAs. Briefly, PLR is 
a shrinkage regression model that adds a penalty term to the 
regression coefficients in the likelihood function. The LASSO 
penalty considers an absolute value term for each variable in 
the likelihood function as the penalty term, more specifically. 
The SCAD penalty is a Smoothly Clipped Absolute Deviation 
penalty that is defined as follows:
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Where t is the regression coefficient and λ is the tuning param-
eter. The MCP a concave penalty function used in penalized 
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regression for variable selection and coefficient estimation. It is 
defined as follows:
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We used a 10-fold cross-validation strategy to select the opti-
mal value of λ. The value of λ that minimized the Bayesian 
Information Criterion was chosen as the optimal value. The 
PLR models with the 3 types of penalties were repeated 1000 

Figure 1.  Flow chart of bioinformatics analysis.
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times and the miRNA that were selected at least by 2 penalties 
were considered as miRNA biomarkers. The “grpreg” package 
was used for gene selection in R software version 4.0.2.17-19 
The source code used for the analysis is available on GitHub at 
https://github.com/ARGHAREBAGHI.

Artif icial neural networks

The analysis involved utilizing the R package version 4.0.2 soft-
ware to train an ANN. To prepare the data for training, it was 
normalized using the maximum and minimum values. 
Subsequently, an ANN model was designed in the R software 
package, incorporating the important variables. The model 
parameters were adjusted to construct a disease prediction model, 
taking into account the weight information derived from the 
expression of miRNAs. In this model, the pathogenicity score 
was computed by summing the weighted scores, which were 
multiplied by the significant miRNAs’ disappearance. For gene 
selection, the “neuralnet” package (version 19) within R software 
version 4.0.2 was employed. To optimize the performance of the 
model, a 10-fold cross-validation strategy was employed, allow-
ing for the fine-tuning of hyper-parameters.20-23

miRNA target prediction

The miRWalk 3.0 online database, available at http://mirwalk.
uni-hd.de/, is a user-friendly and easily accessible resource that 
provides predictive data obtained through a machine learning 
algorithm. The database prioritizes accuracy, simplicity, and 
up-to-date information to facilitate efficient miRNA research. 
In the context mentioned, miRWalk was utilized as a tool to 
search for predicted target genes of miRNAs.24

Protein-protein interaction (PPI) network analysis

In this study, an interactive network of proteins was employed 
to investigate gene interactions and identify hub genes. The 
protein-protein interaction (PPI) network for the selected 
genes was constructed using the STRING online tool, with an 
interaction score threshold of 0.4. To visualize and analyze the 
constructed network, Cytoscape software version 3.8.2 was uti-
lized. The CytoHubba plugin version 1.6 within Cytoscape 
was employed to evaluate various network measures, including 
Maximum Neighborhood Component (MNC), Maximal 
Clique Centrality (EPC), and DEGREE, to identify the hub 
genes within the network. Furthermore, a Venn diagram was 
utilized to identify the common genes and select the hub genes 
that appeared consistently across the different measures.25,26

DEGs’ enrichment analyses

In this study, the function of DEGs was explored through 
Kyoto Encyclopedia of Genes and Genomes (KEGG) and 
Gene Ontology (GO) enrichment analyses. The GO classifi-
cation system, encompassing molecular function (MF), cellular 

component (CC), and biological processes (BP), was utilized to 
gain insights into the functional characteristics of the DEGs. 
To conduct the functional enrichment analysis of the gene list, 
the Database for Annotation, Visualization, and Integrated 
Discovery (DAVID) program, accessible at https://david.ncif-
crf.gov, was employed. The analysis involved determining sig-
nificant enrichment of gene functions using an adjusted 
P-value cutoff threshold of <.05.27,28

Potential miRNA-mRNA interactions

In this study, DEmiRs were identified between CRC samples 
and normal tissues, considering an adjusted P-value < .05 and 
|logFC| > 1 as the criteria for differential expression. 
Subsequently, the target genes of the DEmiRs were deter-
mined using the miRWalk database. To understand the 
miRNA-mRNA regulatory interactions comprehensively, a 
bipartite miRNA-mRNA correlation network was constructed 
and analyzed using Cytoscape version 3.8.2 software. The 
interaction score threshold of 0.4 was employed to filter out 
weak interactions in the network. The choice of a bipartite net-
work is appropriate for this study since mRNAs and miRNAs 
do not directly interact with each other. This network structure 
allows mRNAs and miRNAs to be connected solely through 
their interactions with target genes.

Hub gene validation by GEPIA

The Gene Expression Profiling Interactive Analysis (GEPIA) 
database (http://gepia.cancer-pku.cn/) is a web-based tool 
designed for fast and CHECK FOR PLAGIRISM : custom-
izable analyses using data from The Cancer Genome Atlas 
(TCGA) and Genotype-Tissue Expression (GTEx) projects. 
In this study, GEPIA was used to validate the expression of key 
hub genes by comparing cancerous and normal tissue samples, 
specifically focusing on colorectal cancer. Differential gene 
expression was analyzed using ANOVA, with statistical signifi-
cance set at P-value < .05 and a fold change greater than 2.

Result
Differentially expression analysis

The miRNAs expression data series (GSE106817) was utilized 
to identify miRNAs that were DEmiRs, as well as DEGs. In 
order to validate the findings, a total of 3763 DEGs were iden-
tified by applying the criteria of an adjusted P-value < .05 and 
|logFC| > 1. It was observed that these genes overlapped with 
the DEGs identified in the primary data series (GSE23878), 
which was utilized for comparison.

Identif ication of differentially expressed miRNAs

The miRNA expression data was utilized to train the PLR 
model, as outlined in the Methods section, with the aim of 
identifying DEmiRs associated with CRC diagnosis. The PLR 

https://github.com/ARGHAREBAGHI
http://mirwalk.uni-hd.de/
http://mirwalk.uni-hd.de/
https://david.ncifcrf.gov
https://david.ncifcrf.gov
http://gepia.cancer-pku.cn/
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model used the binary outcome variable, where 1 represented 
CRC and 0 denoted healthy controls. In Table 1, we present 
the names of the 14 selected DEmiR profiles and their respec-
tive frequencies, determined over 1000 repetitions using 
LASSO, SCAD, and MCP methods. LASSO selected 11 
miRNA profiles, while SCAD and MCP identified 5 and 2 
miRNA profiles, respectively. Notably, 3 miRNAs (miR-
6765-5p, miR-6787-5p, and miR-1228) were confirmed as 
significant in at least 2 PLR methods.

The results of the univariate PLR analysis for the selected 
miRNAs are presented in Table 2, which includes the regres-
sion coefficient, standard error of the coefficient, odds ratio 
(OR), and corresponding P-values. Notably, the results demon-
strate that all 13 miRNAs exhibited statistically significant 
associations with the diagnosis of CRC.

Table 2 presents the outcomes of unpenalized logistic 
regression for estimating the regression coefficients of the 
selected miRNAs. The table reveals that certain miRNAs 
exhibited a positive association with CRC, whereas others dis-
played a negative association with CRC.

• � Positively associated miRNAs: miR-1228, miR-
6765-5p, miR-6768, and miR-1268. This means that an 
increase in the expression of these miRNAs increases 
the chance of CRC.

• � Negatively associated miRNAs: miR-1343, miR-
6787-5p, miR-650, miR-920, miR-3190, miR-4433, 
miR-5100, miR-1343, and miR-6746. This means that 
a decrease in the expression of these miRNAs increases 
the chance of CRC.

The miRNAs identified through PLR were employed as inputs 
for an ANN model to develop classifiers capable of diagnosing 
patients. The ANN model was designed with a 1:1:1 architec-
ture, comprising a single input layer, 1 hidden layer, and 1 out-
put layer. The activation functions used in the model were 
sigmoid for the input layer, hyperbolic tangent for the hidden 
layer, and linear for the output layer.

The input variables for the ANN model were the miRNA 
expression values that were chosen in the preceding step. 
The model’s output was a binary value, either 0 or 1, ena-
bling the classification of patients as non-cancerous or can-
cerous, respectively. This classification holds the potential 
for early cancer detection, offering valuable diagnostic 
capabilities.

The outcomes of the ANN model are displayed in the final 
column of Table 1. Notably, a majority of the miRNAs exhibit 
a total accuracy greater than 90%, underscoring their signifi-
cant potential for cancer detection.

Identif ication of key genes using PPI network 
analysis

In this study, an analysis was conducted using the PPI (Protein-
Protein Interaction) network to explore the 3763 DEGs. The 
resulting PPI network consisted of 443 nodes and 8314 edges, 
as depicted in Figure 4. Additionally, the Venn diagram analy-
sis of the 10 top genes, using the 3 methods, resulted in the 
identification of 7 hub genes: CDC20, MAD2L1, UBE2C, 
CDK1, AURKB, CCNA2, and TOP2A. These findings are 
illustrated in Figure 2.

Table 1.  Frequencies of the selected miRNA over 1000 repetitions using penalized logistic regression by SCAD, MCP, and LASSO penalties.

miRNA SCAD MCP LASSO Total accuracy

MIMAT0005582 1 1000 1000 .966

MIMAT0019776 1000 .983

MIMAT0027430 1 1000 .966

MIMAT0027436 961 .966

MIMAT0027474 1 1000 .966

MIMAT0015079 305 .759

MIMAT0003320 1000 .845

MIMAT0004970 1000 .966

MIMAT0005922 1000 .931

MIMAT0015075 389 .879

MIMAT0018949 1000 .931

MIMAT0022259 1000 .966

MIMAT0019776 1000 .931

MIMAT0027392 1000 .931

No. selected miRNA 5 2 11  
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Functional and pathway enrichment analysis

The results of the GO study, biological processes (BP), cellular 
components (CC) and molecular functions (MF) were signifi-
cantly enriched:

• � Top 10 terms BP: rRNA processing, cell division, 
translation, mitochondrial translation, mitotic spindle 

organization, protein folding, cytoplasmic translation, 
ribosomal large subunit biogenesis, proteasomal ubiqui-
tin-independent protein catabolic process, mitotic sister 
chromatid segregation.

• � Top 10 terms CC: nucleoplasm, cytosol, membrane, 
extracellular exosome, cytoplasm, nucleus, endoplasmic 
reticulum, mitochondrion, chromosome, ribosome.

• � Top 10 terms MF: protein binding, RNA binding, 
identical protein binding, structural constituent of ribo-
some, cadherin binding, enzyme binding, chaperone 
binding, ATPase activity, snoRNA binding, unfolded 
protein binding.

On other hand, KEGG pathway analysis indicated the follow-
ing pathways involved: Nucleocytoplasmic transport, 
Proteasome, DNA replication, Spliceosome, Glutathione 
metabolism, Ribosome, Protein processing in endoplasmic 
reticulum, p53 signaling pathway (Figure 3).

BiPartite miRNA and mRNA network analysis

mRNA-miRNA network analysis is a valuable computational 
approach utilized for understanding the underlying mecha-
nisms contributing to CRC pathogenesis. In this particular 
study, the MiRwalk database was employed to identify target 
genes of DEmiRs. By assessing the overlap between the 

Table 2.  Results of fitting univariate logistic regression for the selected genes using penalized logistic regression by SCAD, MCP, and LASSO 
penalties.

miRNA SCAD MCP LASSO

β (S.E) OR P-value β (S.E) OR P-value β (S.E) OR P-value

MIMAT0005582 10.95 (2.80) 56954 <.0001 10.95 (2.80) 56954 <.0001 10.95 (2.80) 56954 <.0001

MIMAT0019776 −3.04 (.56) .048 <.0001  

MIMAT0027430 12.23 (2.46) 204843 <.0001 12.23 (2.46) 204843 <.0001

MIMAT0027436 1.81 (.34) 6.11 <.0001  

MIMAT0027474 −5.84 (1.24) .003 <.0001 −5.84 (1.24) .003 <.0001

MIMAT0015079 −1.44 (.28) .237 <.0001  

MIMAT0003320 −2.01 (.26) .134 <.0001

MIMAT0004970 −3.36 (.59) .035 <.0001

MIMAT0005922 9.99 (1.60) 21807 <.0001

MIMAT0015075 −1.74 (.21) .176 <.0001

MIMAT0018949 −4.69 (.59) .009 <.0001

MIMAT0022259 −2.27 (.40) .103 <.0001

MIMAT0019776 −3.04 (.56) .048 <.0001

MIMAT0027392 −6.57 (1.38) .001 <.0001

Figure 2.  The overlap between the top 10 predicted target genes, ranked 

by MNC, EPC, and DEGREE illustrated in a Venn diagram. The number 7 

in the image’s center describes the 3 groups’ commonalities.
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identified miRNA targets and the validated DEmiGs, key hub 
genes such as CDK1 and MAD2L1 were identified as both tar-
gets of mir-6787 and pivotal players in CRC. Notably, the 
expression of miR-6787-5p was significantly downregulated in 
cancer tissue samples compared to normal tissue samples, with 
CDK1 and MAD2L1, being identified as its target genes. These 
findings highlight the intricate regulatory network involving 
miRNAs and their target genes in CRC (Figure 4).

Gene expression analysis of the central hub genes

We used the GEPIA database to analyze the expression of 2 
candidate genes in cancer tissues and normal samples from the 

TCGA-COAD dataset. The results revealed that CDK1 and 
MAD2L1 were both significantly upregulated in tumors in 
comparison to normal tissues presented in Figure 5.

Discussion
CRC is a leading cause of global mortality, making early detec-
tion vital for improved treatment response and reduced mortal-
ity rates. Biomarkers play a critical role in CRC diagnosis and 
treatment, and bioinformatics tools facilitate the identification 
of CRC-related biomarkers and molecular interactions.29-31 In 
this study, a bioinformatics approach was employed, utilizing 2 
databases, GSE106817 and GSE23878, to identify DEmiRs 
and hub genes associated with the progression of CRC. The 

Figure 3.  Gene Ontology (GO) and KEGG pathway enrichment analyses were performed for the module genes. The top 10 GO terms in Biological 

Process (BP), Molecular Function (MF), and Cellular Component (CC), along with significant KEGG pathways, are presented.
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analysis of these databases enabled the identification of specific 
miRNAs and genes that play a crucial role in CRC progression. 
By investigating the expression patterns and interactions of 
these DEmiRs and hub genes, valuable insights into the 
molecular mechanisms underlying CRC development and 
progression can be gained. miRNAs such as miR-6765-5p, 
miR-6787-5p, and miR-1228 were selected based on their 
intersection in LASSO, MCP, and SCAD regression methods. 
The overall accuracy of these 3 miRNAs exceeded 95%, under-
scoring their potential as promising biomarkers for stable 
plasma level determination in CRC patients. The study also 
demonstrated the utility of an ANN employing 3 different 
penalty functions to effectively identify miRNAs significantly 
associated with CRC.

miRNAs have emerged as key regulators in cancer biology, 
functioning as both tumor suppressors and oncogenes depend-
ing on their expression patterns and the cancer type. These 
small non-coding RNAs play a pivotal role in a range of can-
cer-related processes, including initiation, malignant transfor-
mation, progression, and metastasis. Recent research has 
demonstrated that certain cancers have unique miRNA signa-
tures, making them valuable diagnostic and prognostic markers 

as well as potential therapeutic targets. Advances in techniques 
such as microarray analysis, RT-PCR, and next-generation 
sequencing have facilitated the profiling of miRNAs in various 
cancer types, even from archived tumor tissues. Emerging 
detection methods, such as nanoparticle-based and hybridiza-
tion chain reaction (HCR) amplification, aim to enhance 
miRNA detection sensitivity. miRNAs are also stable in body 
fluids, making them promising candidates for non-invasive 
cancer diagnostics. Their dysregulation in cancer cells, influ-
enced by both genetic and epigenetic factors, highlights their 
role in tumorigenesis, and disruptions in the miRNA biogen-
esis process could significantly contribute to cancer 
development.32,33

In CRC, miR-1228 is often downregulated. This down-
regulation is associated with poor prognosis. The exact role of 
miR-1228 in CRC is not fully understood, but it is thought 
to play a role in tumor growth and progression. miR-1228 
targets a number of genes that are involved in cell prolifera-
tion, angiogenesis, and apoptosis. By targeting these genes, 
miR-1228 helps prevent cancer cells from growing and 
spreading. Numerous studies have shown that miR-1228 
plays an essential role in the proliferation of cancer cells and 

Figure 4.  Bipartite mRNA-miRNA subnetwork for CRC. Blue diamonds consist of hub genes between CRC and normal tissues. Green diamonds consist 

of 2 hub genes targeting miR-6787. Cytoscape v.3.8.2 was used to visualize the network.
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can be used for early detection of cancer.34,35 miR-1228 regu-
lates stress-induced cellular apoptosis by targeting the 
MOAP1 protein.36 In another report, the findings showed 
that miR-1228 has a role in metabolism, maintaining cell 
survival, regulating apoptosis, stimulus- response, and sur-
vival. However, some studies have investigated the target gene 
miR-1228 for CRC.37,38 LRP1 is the target gene of miR-
1228 and is located on chromosome 12.39,40 This gene mainly 
plays a role in basic metabolism and cell structure, which is a 
key component of maintaining cell survival. In past research, 
the expression level of miR-1228-3p has been checked in 
drug resistance of breast cancer, chronic heart failure, endo-
metrial carcinoma, prostate cancer, CRC, and cancer secre-
tions. The expression level of miR-1228-3p is stable in blood 
circulation and can be used as a biomarker.41 In a study by 
Yang et al,37 it was revealed that miR-1228 remained unaf-
fected by surgical treatment, indicating its suitability as an 
optimal reference gene for treatment studies. Additionally, 
the circulating level of miR-1228 was found to be independ-
ent of tumor stage.

In CRC, miR-6787-5p is often downregulated. This down-
regulation is associated with poor prognosis. The exact role of 
miR-6787-5p in CRC is not fully understood, but it is thought 
to play a role in tumor growth and progression. miR-6787-5p 
targets a number of genes that are involved in cell proliferation, 
angiogenesis, and apoptosis. By targeting these genes, miR-
6787-5p helps prevent cancer cells from growing and spread-
ing.42 The exact role of miR-6765-5p in CRC is not fully 
understood.

Bioinformatics analysis was then performed using the 
MNC, EPC, and DEGREE tools in Cytoscape software. The 
functional and biological interactions between the DEGs were 
investigated using Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) analyses. In 
the present study, the nucleoplasm was identified as one of the 
significant enrichment pathways of DEGs in CRC. Network 
analysis demonstrated that 4 genes of DEGs are involved in 
this pathway. These findings suggest that the DEGs are 
involved in a number of biological processes that are important 
for the pathogenesis of CRC. Further research is needed to 

Figure 5. V alidation of hub genes in colorectal cancer using TCGA-COAD. Two hub genes including CDK1, and MAD2L1 were significantly upregulated 

in CRC tissues compared to normal tissues in TCGA- COAD data.
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confirm these findings and to identify new diagnostic targets 
for CRC.43 Therapeutic modulation of cell membrane lipid 
composition and organization is an emerging field with poten-
tial applications in a variety of diseases, including cancer. 
Research has shown that this approach could be used to treat a 
variety of diseases, including cancer.44 It has been shown that 
GO terms such as rRNA processing,45 translation,46 
Mitochondrial translation,47 mitotic spindle organization,48 
extracellular exosome.49 and protein binding50 were associated 
with CRC

By using miRNA-mRNA expression profiling, CDK1 and 
MAD2L1 were identified as the most important genes playing 
an important role in CRC. The CDK1 gene encodes a protein 
known as cyclin-dependent kinase 1, which belongs to a family 
of enzymes involved in the regulation of the cell cycle. The cell 
cycle is a fundamental process responsible for cell growth, divi-
sion, and the generation of new cells. In CRC, the CDK1 gene 
can undergo mutations, resulting in abnormal functioning. 
These mutations can lead to excessive production of the cyclin-
dependent kinase 1 protein. Scientific investigations have dem-
onstrated that dysregulation of CDK1 accelerates tumor 
growth and uncontrolled proliferation of cancer cells.51,52 
Zhang et al53 revealed that CDK1, in addition to being overex-
pressed and sensitive to apoptosis in CRC cells, plays a crucial 
role in controlling the cell cycle and contributes to the develop-
ment of colorectal tumors through an iron-regulated signaling 
axis. Previous studies have established a link between CDK1 
overexpression and the development of colorectal, liver, and 
lung cancers, ultimately impacting patient survival.54

MAD2L1 plays a crucial role as a tumor suppressor gene in 
regulating the cell cycle. Mutations in the MAD2L1 gene can 
disrupt the normal control of cell growth and division, which 
can contribute to the development of cancer. Deletion of the 
MAD2L1 gene has been found to impede the growth of CRC 
cells.55,56 Venugopal et al57 revealed that there is a higher expres-
sion of MAD2L1 in CRC cell lines and tissues, and this overex-
pression has been associated with poor prognosis. Li et  al55 
revealed that MAD2L1 gene has demonstrated potential as a 
biomarker for colorectal cancer, according to previous studies.

The present study introduced a novel set of gene expression 
profiles that are predictive of CRC patients using a miRNA-
mRNA model. This model provides a different perspective 
than the traditional proportional point of view.

Conclusions
This study identified 3 novel miRNAs (miR-1228, miR-
6765-5p, and miR-6787-5p) that are potentially associated 
with CRC and could serve as biomarkers. Additionally, the tar-
get genes related to these miRNAs, namely CDK1 and 
MAD2L1, were found to be upregulated in CRC compared to 
normal tissues. The miRNAs associated with the hub genes in 
the mRNA-miRNA bipartite network played a pivotal role in 

Abbreviation Definition

miRNAs microRNAs

CRC Colorectal cancer

ANN Artificial neural networks

PLR Penalized logistic regression

SCAD Smoothly clipped absolute deviation

LASSO Least absolute shrinkage and selection 
operator

MCP The minimax concave penalty

GEO Gene Expression Omnibus

DEmiRs Differentially Expressed miRNAs

PPI Protein-protein interaction

DEGs Differentially expressed genes

CRC. However, further molecular studies are warranted to 
validate the role of these genes in CRC tumorigenesis.
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