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The fetal modified myocardial performance index (Mod-MPI) is a noninvasive, pulsed-wave Doppler-derived measure of global
myocardial function.This review assesses the progress in technical refinements of itsmeasurement and the potential for automation
to be the crucial next step.TheMod-MPI is a ratio of isovolumetric to ejection time cardiac time intervals, and the potential for the
left ventricular Mod-MPI as a tool to clinically assess fetal cardiac function is well-established. However, there are wide variations
in published reference ranges, as (1) a standardised method of selecting cardiac time intervals used in Mod-MPI calculation has
not been established; (2) cardiac time interval measurement currently requires manual, inherently subjective placement of callipers
on Doppler ultrasound waveforms; and (3) ultrasound machine settings and ultrasound system type have been found to affect
Mod-MPImeasurement. Collectively these factors create potential for significant inter- and intraobserver measurement variability.
Automated measurement of the Mod-MPI may be the next key development which propels the Mod-MPI into routine clinical use.
A novel automated system of Mod-MPI measurement is briefly presented and its implications for the future of the Mod-MPI in
fetal cardiology are discussed.

1. Introduction

Fetal echocardiography has developed over the past 30 years
as the primary noninvasive modality used to evaluate fetal
cardiac anatomy, haemodynamics, and function [1]. Func-
tional cardiac assessment using echocardiography is becom-
ing increasingly valued because it facilitates the detection
of subtle myocardial dysfunction during development and
can guide management and improve neonatal outcomes [2].
Early intervention can prevent progression into intrauterine
cardiac failure [3].

The myocardial performance index (MPI) is a noninva-
sive pulsed-waveDoppler-derivedmeasure of globalmyocar-
dial functionwhich has been evaluated in fetal cardiology and
is a ratio of isovolumetric to ejection time cardiac time inter-
vals [1]. However, its clinical applications have been limited

due to its poor reproducibility [4]. This review charts the
development of this index as applied to the fetus and progress
in technical refinements of its measurement, with particular
focus on developments since the introduction and acceptance
in 2005 of themodified-MPI, orMod-MPI [5].TheMod-MPI
was defined using specific methodology for measuring the
time periods required in fetal MPI calculation.

2. Development of the Pulsed-Wave
Doppler Derived Myocardial Performance
Index (MPI)

The MPI was first described for adult cardiac evaluation in
cases of dilated cardiomyopathy in 1995 by Tei et al. [7].
Originally known as the Tei Index but later termed the MPI,
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it is traditionally a pulsed-wave derived index which incor-
porates measurement of cardiac time intervals and is defined
as follows [8]:

MPI = (isovolumetric contraction time (ICT)

+ isovolumetric relaxation time (IRT))

× (ejection time (ET))−1.

(1)

Both atrioventricular and ventricular ejection flows are eval-
uated to determine constituent time intervals.The ICT repre-
sents the time whenmyocardial contraction causes increased
intraventricular pressure without an accompanying change
in ventricular volume since all valves are closed during
this phase [9]. The IRT refers to the postsystolic myocardial
relaxation that occurs as calcium reuptake begins in cardio-
myocytes, which decreases intraventricular pressure since no
blood is entering or leaving the ventricles [9]. The ET starts
when the ventricular pressure is raised sufficiently to open the
aortic/pulmonary valves, causing the myocardium to deform
and for blood to be ejected from the ventricle [10].

Myocardial dysfunction results in increased MPI values,
predominantly due to a prolongation of the IRT although
often accompanied by a reduced ET [1]. Calcium reuptake
in cardiomyocytes is suppressed during cardiac functional
deterioration which extends the time required for the
myocardium to fully relax [11], and the IRT is the main MPI
parameter to become abnormal early in cardiac dysfunction
[10].

The MPI has been demonstrated to correlate well with
other invasive and noninvasive measures of left ventricular
function in adults [12]. Pulsed-wave Doppler-derived MPI
was validated and became widely used as a quantitative
measure of global cardiac function first in adults and then in
the paediatric population [13–15]. The MPI is a particularly
valuable index because precise anatomical imaging is not
necessary in order to measure the MPI and it is independent
of heart rate, blood pressure, and ventricular shape because
the index only incorporates time intervals [7, 16, 17]. The fact
that it is relatively easily measurable and can be incorporated
into a routine ultrasound examination adds to its utility in the
fetal context [18].

3. Application of the MPI to Fetal
Cardiac Evaluation

Tsutsumi et al. in 1999 were the first to report the use of the
MPI to evaluate global myocardial function in fetuses, using
two waveforms and therefore two cardiac cycles [17]. Sub-
sequent studies demonstrated a wide variability in normal
reference values, likely contributed to by the lack of clear
landmarks in the Doppler waveforms to calculate time
intervals and the possible impacts of fetal heart rate variation
between the two waveforms [7, 19, 20]. Measurement using
two cardiac cycles also meant that individual measurements
of the ICT and IRT could not be made.

Friedman et al. proposed a new position for the Doppler
sample volume in 2003 which enabled the left ventricular
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Figure 1: Positioning of the Doppler sample volume for acquisition
of the left MPI. Modified from OpenStax College (2013) [6].

MPI to be evaluated from a single Doppler waveform [1].
Close proximity of the mitral inflow and aortic outflow tracts
in the fetal heart allowed isovolumetric periods and ejection
time to each be recorded simultaneously within the same
cardiac cycle (see Figure 1).

The opening and closing of valve leaflets produces Dop-
pler echoes or “clicks,” seen as vertical stripes on the Doppler
waveform. The methodology for calculating the left MPI
was further modified by Raboisson et al. in 2003 when they
proposed that the Doppler click of the aortic valve opening
be used as a landmark in order to better estimate the time
intervals of MPI calculation [21].

In 2005, Hernandez-Andrade et al. introduced the mod-
ified MPI (Mod-MPI) using the beginning of opening and
closing Doppler clicks of both the aortic and mitral valves
as measurement landmarks for determination of the different
time periods (see Figures 2 and 3) [5]. This significantly
reduced the inter- and intraobserver variability and thus
improved reproducibility of the index in fetal medicine. For
the leftMod-MPI, the Doppler sample gate was placed on the
lateral wall of the ascending aorta close to the mitral valve in
an apical four-chamber view of the fetal heart, as shown in
Figures 1 and 2 [5].

The MPI has been used to demonstrate fetal cardiac dys-
function in a number of pathological conditions, including
intrauterine growth restriction [17, 22–25], maternal diabetes
[26–30], twin-twin transfusion syndrome (TTTS) [31–34],
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Figure 2: The schematic diagram at top left shows placement of the Doppler sample volume (SV) in left Mod-MPI measurement. The
corresponding Doppler waveform is shown at bottom and the 2D echocardiograph is at top right. LV: left ventricle; LA: left atrium; RV:
right ventricle; RA: right atrium; AO: aortic outflow tract; adapted from Hernandez-Andrade et al. (2005) [5].
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Figure 3: Time interval measurements are based upon the echoes
from valve movements.

congenital heart malformations [35–39], preeclampsia [40],
and other fetal conditions [41–44].

Figure 4 summarises the developments leading to the
Mod-MPI, and it also highlights the direction of research
since then which will be analysed in the subsequent sections
of this review.

4. Varied Measurements between
Research Groups

Manual placement of a time calliper on the Doppler wave-
form is used to measure the time intervals between various
clicks. Minor variations in calliper placement and hence

alterations of mere milliseconds in time interval measure-
ments result in significantly different Mod-MPIs [47]. For
example, an alteration of only 4 milliseconds in constituent
components of the MPI results in a variation in MPI of
approximately ±12–14% [48].

A lack of consensus on calliper placement between
research groups has likely contributed to the wide range of
values (0.35–0.60) for quoted “normal” Mod-MPI in single-
ton fetuses [1, 17–19, 45, 47, 49–52]. Some authors describe
almost constant left MPI measurements throughout preg-
nancy, whilst others report gradual increases or decreases in
meanMPI (Figure 5). These factors have restricted the trans-
lational potential of the MPI, as while individual research
groups have demonstrated significant differences between
their pathological subgroups and controls [24, 28, 49, 53], the
lack of a universal reference range makes meaningful com-
parison of pathological findings between research groups
impractical.

5. Technical Considerations

5.1. Calliper Placement. The opening and closing of valve
leaflets produces “original” Doppler clicks in the same direc-
tion as blood flow (for opening clicks) or opposite direction to
flow (for closing clicks). Smaller Doppler echoes may be
present in the opposite direction to the original clicks, termed
“reflected” clicks (see Figures 6 and 7) [4]. The original and
reflected clicks share a common peak time point, and it is
suggested that thinner clicks enable more precise measure-
ment [4].

Although the first normal range for fetal MPI was estab-
lished using calliper positioning at the beginning (just before
the echo) of the valve click [5], the criteria for demarcation
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Figure 4: The main stages of evolution of the MPI since 1995.

Cruz-Martinez et al., 2012, n = 730

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

GA (weeks)

M
PI

Meriki and Welsh, 2012, n = 318

Tsutsumi et al., 1999, n = 50

Friedman et al., 2003, n = 74

Hernandez-Andrade et al., 2007, n = 557

Rozmus-Warcholinska et al., 2010, n = 202

Eidem et al., 2001, n = 125

Chen et al., 2006, n = 225

Van Mieghem et al., 2009, n = 117

Clur et al., 2011, n = 310

Figure 5: Gestational age-adjusted mean values for fetal left MPI in
studies published from 1999 to 2012; adapted from Cruz-Martinez
et al. (2012) [45, 46].

Figure 6: Left Mod-MPI Doppler waveform, showing the time
intervals [47].
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Figure 7: Schematic representation of valve clicks for the left
Mod-MPI Doppler waveform, with a focus for time intervals on
the original mitral valve closure click for simplicity; adapted from
Meriki and Welsh [47].

of time intervals according to valve clicks are conflicting
between subsequent studies. Some position callipers from the
end of one click to the beginning of the next, corresponding to
physiological time intervals as the period of valve movement
is not included in ICT and IRT calculations [49]. A number of
studies have failed to define a methodology for demarcating
time intervals [28, 50, 51]. Other studies have positioned
the calliper at the peak of valve clicks (see Figure 7) [47].
This is a clearer landmark that overcomes variations in valve
click widths, though it does not absolutely correlate with the
physiological time periods because the valves open at the start
and close at the end of valve clicks. However, it has higher
repeatability than the original method and it overcomes the
limitations created by clicks of varying widths and therefore
is likely to be a more useful method [54].
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Table 1: Technique and machine settings used in various studies (adapted fromMahajan et al., in press [46]).

Angle of
insonation (∘)

WMF
(Hz)

Sample volume
(mm)

Sweep velocity
(cm/s) Doppler gain Placement of time cursor

Tei, 1995 [8] ND ND ND 10 ND
Beginning of mitral inflow

and aortic outflow
waveforms.

Hernandez-Andrade et
al., 2005 [5] <30 70 3 15 Min. Beginning of valve clicks.

Van Mieghem et al.,
2009 [49] <15 ≥120 ND 10 ND

End of closing clicks to
beginning of opening

clicks.
Meriki et al., 2012 [48] <15 300 3 15 Min. Peak of valve clicks.
Lobmaier et al., 2014 for
Siemens Antares
machine∗ [56]

<15 281 4 15 60 dB Beginning of valve clicks.

Lobmaier et al., 2014 for
Voluson 730 Expert
machine∗ [56]

<15 210 4 15 −10 dB Beginning of valve clicks.

WMF: wall motion filter; ND: not defined; min.: minimum.
∗Values displayed are the “optimal settings” for each ultrasound machine trialled in this study, as various settings were compared.

5.2. Machine Settings and Acquisition Technique. Hernandez-
Andrade et al. described optimal settings as summarised in
row 2 of Table 1 and suggested use of the fastest possible sweep
velocity [55]. Higher sweep velocities create greater hori-
zontal “stretch,” with clearer visualisation of valve clicks for
more accurate time interval measurement. LowDoppler gain
and a high-pass wall motion filter (WMF) were suggested in
order to limit artefacts and noise and enable more precise
recognition of clicks [55]. Meriki et al. further defined a
fixedWMFat 300Hz as providing improved repeatability and
additionally stated that the angle of insonation should be kept
less than 15∘ and Doppler aliasing avoided [48].

Lobmaier et al. have since investigated the impact on left
Mod-MPI values of differing ultrasound settings (namely,
sweep speed, gain, and WMF) and equipment [56]. They are
the first to investigate the effect of using different equipment
on Mod-MPI calculation and repeatability of measurement,
specifically by comparing Mod-MPI values obtained from
the Siemen Antares and Voluson 730 Expert ultrasound
machines.

Lobmaier et al. concluded that raised sweep velocities
and WMF resulted in superior measurement repeatability
because of the association of those settings with higher
intraclass correlation coefficients (ICCs), although optimal
machine settings differ between manufacturers. Their results
and the settings used by other groups are summarised in
Table 1 [56]. In future research similar methodology needs to
be applied to optimising MPI settings for different machines,
which may result in different reference ranges depending on
machine type used.

6. Automation of the MPI

The establishment of universal agreement for machine set-
tings does not appear too distant if future studies can build
on the findings of Lobmaier et al. [56]. Lack of a standardised

method of selecting cardiac time intervals for Mod-MPI
calculation remains another key barrier to the development
of a universal reference range to replace the various gestation-
adjusted normal ranges published to date. There is an inhe-
rent subjectivity in manual selection of time points for
measurement of cardiac time intervals, as reflected by ICCs of
0.8-0.9when intra- and interobserver variability ofMod-MPI
calculation is studied, even when calculation is performed
by experienced operators using stringent, predefined criteria
[47, 54]. With machine settings now having been optimised,
we feel that the automated measurement of the Mod-MPI is
the crucial next step towards the development of the Mod-
MPI as a routinely utilised clinical tool.

We have developed a novel automated MPI system in a
collaboration between fetal medicine practitioners and
biomedical engineers [57]. The automation algorithm auto-
matically locates valve click peaks and calculates the Mod-
MPI using the morphological characteristics of the aortic
and mitral flow in the Doppler ultrasound waveform and
the intensity signals (or “brightness”) from waveform images
[57]. Repeatability of the fetal left Mod-MPI when obtained
using this automated system for fetalMod-MPImeasurement
and a comparison with manual measurement have been
the focus of recent research. Preliminary data suggest that
Mod-MPI automation is sensitive, precise, and feasible when
compared to an experienced human observer’s acquisition
of Mod-MPI values [57]. Our automation system is in the
process of being internationally tested with the intention of
ultimately open sourcing the algorithm.

Lee et al. have also proposed a system of automatically
measuring the Mod-MPI [58]. Their Auto Mod-MPI system
(Samsung Electronics Co. Ltd., Suwon, South Korea) detects
valve clicks using a methodology which first requires the
operator tomanually select a region of interest in the Doppler
waveform before any further image analysis can take place
[59]. In comparison, our automated MPI system does not
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require manual selection of a region of interest, instead it
analyses the entire image automatically. The valve clicks in
our automated MPI system are found by a weighted sum
of various signals in the region surrounding the valve click.
Whilst both automation systems use the morphology of the
waveform to identify the clicks, our system also uses intensity
information of the image for identification of all four valve
clicks. This is only possible for two of the four clicks in the
automation system proposed by Yoon et al. [59]. Further,
our automation system localises valve clicks independently
of each other rather than sequentially [60].

Multiple groups have found that the IRT is the cardiac
time interval for which repeatability has been demonstrated
to be the poorest [54, 56] which is important because the
IRT is often the first time interval to be affected in cardiac
dysfunction [10]. The morphological characteristics of the
mitral valve opening include lack of a reflected click and
tendency for the valve opening to be thick and tilted [47].
This is an additional reason why the subjectivity in operator-
dependent calliper placement is likely to be the major source
ofmeasurement imprecision and contributor to interoperator
measurement variability, especially for the IRT but to a lesser
extent the other time intervals. Automation of the Mod-
MPI may facilitate the incorporation of the MPI as a routine
measure of fetal cardiac function by removing the significant
subjective component of manual calliper placement for mea-
surement of the constituent time intervals.

Further, manual calculation is time-consuming and
requires highly trained staff. An average of 65 fetal MPI
measurements is required to attain competence at producing
reliable measurements [61]. Automated calculation of the
Mod-MPI is likely to significantly reduce the amount of time
needed for a Mod-MPI value to be generated and facilitate
Mod-MPI signal capture amongst sonographers with limited
expertise in Mod-MPI acquisition [57]. If automated Mod-
MPI proves to be readily applicable to the clinical setting,
the subsequently generated automated Mod-MPI normal
values will provide a universal reference range to replace the
multiple prior manually derived ranges. This in turn will
allow definitive assessment of whether differences in Mod-
MPI values in pathological subgroups versus uncomplicated
controls are sufficient forMod-MPI to translate from research
tool to clinical utility.

7. A Note on the Right Heart MPI

Progressive refinement of left Mod-MPI measurement has
been facilitated by the fact that only a single waveform is
required [1, 5, 48]. The Mod-MPI for the right heart has tra-
ditionally been a slightly more cumbersome measure. This is
because the tricuspid and pulmonary valves are located in dif-
fering anatomical planes so that twowaveforms from two dif-
ferent planes have been necessary for right Mod-MPI calcu-
lation, and the waveforms have not been obtainable from the
same cardiac cycle [5]. Hernandez-Andrade et al. suggested
that small potential variations in the fetal heart rate between
recordings of the two waveforms could affect the repro-
ducibility of the rightMod-MPI, although the degree of heart

rate variation sufficient to impact reproducibility is uncertain.
This concern regarding reproducibility may have contributed
to most MPI research focusing on the left ventricle rather
than the right in normal and pathological pregnancies follow-
ing the introduction of the Mod-MPI [26, 40, 48, 62].

However, Meriki et al. have since demonstrated similar
reproducibility of left and right MPI [54]. The right MPI is
considered an important parameter because the fetus is
right-heart dominant [63]. Furthermore, the right MPI may
provide an earlier indication of the development of pathology
because changes in right heart function precede changes in
left heart function in the context of pathology such as TTTS
[54]. Recently we have found that the right MPI can be
acquired using a single plane, single waveform technique in
fetuses until approximately 26 weeks of gestation when the
tricuspid and pulmonary valves diverge (unpublished data).
Thus earlier in pregnancy, a fetal right Mod-MPI may be
derivable from awaveform identical to that which is currently
used for left Mod-MPI calculation. This will allow an auto-
mated process to calculate the right Mod-MPI in the same
way as for the left, thereby increasing the ease of clinical
application and utility of the right Mod-MPI.

8. Conclusion

The MPI is a noninvasive marker of global myocardial fun-
ction and a sensitive tool for detecting fetal cardiac dysfunc-
tion. Its translational potential is now mainly constrained by
the lack of standardised methodology for demarcation of the
time periods used in its calculation and the need for improve-
ment of its repeatability and ease of measurement. Since
the introduction of the Mod-MPI, various studies have been
necessary to evaluate technical refinements in order to stan-
dardise its measurement. Automation of the measurement
process may be considered as the next logical step towards
unification of the Mod-MPI measurement process, and
we hope towards its role as a cornerstone of functional fetal
echocardiography.
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