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A B S T R A C T   

Proteins play a pivotal role in coordinating the functions of organisms, essentially governing their traits, as the 
dynamic arrangement of diverse amino acids leads to a multitude of folded configurations within peptide chains. 
Despite dynamic changes in amino acid composition of an individual protein (referred to as AAP) and great 
variance in protein expression levels under different conditions, our study, utilizing transcriptomics data from 
four model organisms uncovers surprising stability in the overall amino acid composition of the total cellular 
proteins (referred to as AACell). Although this value may vary between different species, we observed no sig-
nificant differences among distinct strains of the same species. This indicates that organisms enforce system-level 
constraints to maintain a consistent AACell, even amid fluctuations in AAP and protein expression. Further 
exploration of this phenomenon promises insights into the intricate mechanisms orchestrating cellular protein 
expression and adaptation to varying environmental challenges.   

1. Introduction 

Proteins, comprised of 20 amino acids (AAs), are vital components of 
the biological system, serving diverse functions in metabolic reactions, 
cell growth regulation, signal transmission, structural support, and im-
mune defense within living organisms [1]. When the environment 
changes, cells can sense these changes and adapt to them by adjusting 
gene expression [2]. AA composition of an individual protein (referred 
to as AAP) can be easily calculated from the protein sequence, and it is 
well known that different proteins exhibit distinct AA compositions 

[3–5]. Additionally, the expression levels of numerous proteins can vary 
significantly under different cultivation conditions due to gene regula-
tion [6–8]. In the context of general reasoning, one would expect that 
the AA composition for all cellular proteins (referred to as AACell) may 
have great variance under different cultivation conditions. 

On the other hand, AACell can also be measured experimentally, but 
the experimental methods come with a certain degree of error and dif-
ficulty in distinguishing between intracellular aspartate and asparagine, 
as well as glutamate and glutamine. Based on real experimental data, 
Choi et al. discovered that the AACell in Escherichia coli remains 
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relatively stable among 11 studies [9]. Among 20 amino acids, only 
lysine (Lys) and glycine (Gly) exhibited higher coefficient of variation 
(CV) values. Similar trends were observed in Saccharomyces cerevisiae, 
yet this conclusion was based on data from only three studies, necessi-
tating further validation through statistical analysis. Due to a lack of 
experimental data, Chen et al. utilized proteome data to calculate 
AACell [10], revealing its stability through the analysis of 30 datasets of 
S. cerevisiae. The great variance on AAP and the extensive regulation of 
protein expression levels across conditions seems to be in contrast with 
the relatively stable AACell measured experimentally. It is desirable to 
investigate whether AACell remains stable across a wide variety of 
cultivation conditions and test the preliminary finding for more species. 

The wide availability of transcriptomics data offers a new option to 
study AACell under a much wide range of conditions by calculating 
AACell from AAP and the protein (gene) expression levels. In the present 
study, we collected transcriptome data for model organisms, such as E. 
coli, S. cerevisiae, Bacillus subtilis, and Corynebacterium glutamicum from 
literature and public databases. Surprisingly, we found that although the 
AAP of individual proteins and expression levels of proteins varied 
significantly among different samples, the AACell was almost constant. 
This suggests that organisms impose system-level constraints on protein 
expression to maintain the AACell of the entire cell. 

2. Materials and methods 

2.1. Calculation of AAPs of a particular protein 

The mass ratio of amino acid i in a particular protein j (g/g) was 
calculated using the following formula (Eq. 1), based on the protein 
sequence: 

AAPij =
Nij∗MWi

PMWj
(1)  

Here, MWi represents the molecular weight of AA i, Nij represents the 
number of AA i in protein j, and PMWj is the molecular weight of the 
protein j. Protein sequences and molecular weight data for the organ-
isms used in the study were obtained through the UniProt API [11]. 

2.2. Calculation of the mass ratio of individual proteins in all cellular 
proteins at a particular condition 

To calculate the mass percentage (g/g total protein) of a protein in 
the whole transcriptome of a sample, we used Eq. (2): 

MPjk =
Ejk ∗ PMWj

∑n

l
Elk ∗ PMWl

(2)  

Here, Ejk represents the expression value of protein j at a particular 
condition k, PMWj represents the molecular weight of protein j, n is the 
total number of proteins, and l takes values between 1 and n. 

2.3. Calculation of AACells at a particular condition 

To determine the AACells of different samples, we calculated the 
mass distribution of AAs, such as alanine, arginine, and valine, per unit 
mass of total protein. This was achieved by multiplying AAPij by MPjk 

(Eq. (3)). 

AACellik =
∑n

j
AAPij ∗ MPjk (3)  

Here, AACellik represents the mass ratio of amino acid i in all cellular 
proteins at a particular condition k (g/g), AAPij represents the mass ratio 
of AA i in a particular protein j (g/g), MPjk represents the mass ratio of 
protein j in all cellular protein at a particular condition k (g/g). 

2.4. Acquisition of omics data for E. coli 

In order to accurately calculate the AACell of different samples, 
protein sequence, molecular weight, and absolute level protein abun-
dance are needed. However, current technology limits the available 
proteome, making it challenging to cover all proteins in the cell. 
Furthermore, recent studies have shown that in E. coli, changes in gene 
expression (and hence final protein concentrations) are mostly deter-
mined at the transcriptional stage, and researchers have provided simple 
quantitative formulas to link regulation to mRNA and protein levels 
[12]. So, in this study, we used gene expression levels from the tran-
scriptome as a proxy for protein expression levels. The transcriptome of 
E. coli was obtained from Ecomics [13], which converted relative 
expression measurements to absolute RNA copies per cell. To ensure 
data quality, we only included four strains (DH1, W3110, BW25113, and 
MG1655) with more than 100 samples. 

2.5. Acquisition of omics data for other species 

To study the differences in AACell among different species, we ob-
tained transcriptome data for S. cerevisiae, B. subtilis, and C. glutamicum. 
Same as the case of E. coli, we acquired relative quantitative tran-
scriptome data from literature and databases. For B. subtilis (microarray) 
and S. cerevisiae (single-cell RNA-Seq), we directly obtained the tran-
scriptome data from literature-processed expression data [14,15]. For 
C. glutamicum, we retrieved samples from the NCBI Sequence Read 
Archive (SRA, https://www.ncbi.nlm.nih.gov/sra, published before Jan 
12, 2023) and processed the raw sequencing files using the prokaryotic 
RNA-seq processing pipeline (https://github.com/avsastry/modulome 
-workflow). Briefly, the pipeline utilizes fastq-dump (https://github. 
com/ncbi/sra-tools/wiki/HowTo: fasterq-dump), Trim Galore (http 
s://www.bioinformatics.babraham.ac.uk/projects/trim_galore), 
FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) 
for raw data processing. Sequencing reads were aligned to the reference 
genome (BA000036.3) using Bowtie2 [16]. Read counts were generated 
by using featureCounts [17] and converted into log2 transcripts per 
million (TPM). 

2.6. Statistical analysis 

We calculated the standard deviation (SD) and coefficient of varia-
tion (CV) using Equations (4) and (5) to assess the dispersion of the 
dataset, including the number of AAs, MP, AAP and AACell. Further-
more, we calculated the Pearson correlation coefficient (PCC) [18] to 
investigate the characteristics of the AACell (mean value in different 
experiments) of AAs in different species, as described in Equation (6). 
Additionally, we conducted an independent-samples t-test to compare 
the MP under different conditions. When the proteins had equal popu-
lation variances, we conducted a standard independent 2-sample test; 
otherwise, we utilized Welch’s t-test. All of the statistical analyses were 
performed using Python. 

SD=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i (xi − μ)2

N

√

(4)  

CV =
SD
μ (5)  

PCCdata1 ,data2 =
cov(data1, data2)

SDdata1 ∗ SDdata2

(6)  

Here, N represents the number of proteins or cultivation conditions, μ 
stands for the mean value, data represents the dataset for calculation, 
and cov stands for the covariance between two datasets. 
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3. Results 

3.1. The proportion of the same AA varies greatly among different 
proteins 

The protein sequences and molecular weight information for the 
organisms included in this study were retrieved using the UniProt API, 
which provided us with 4082 E. coli protein sequences, 4160 B. subtilis 
protein sequences, 5619 S. cerevisiae protein sequences, and 3089 
C. glutamicum protein sequences, as well as their corresponding molec-
ular weight data. The ranges of protein molecular weight across 
different species were quite similar, with a distribution between 1.7 kDa 
and 609.6 kDa (Fig. S1). While the average protein molecular weights of 
B. subtilis (32.98 ± 29.7 kDa), E. coli (35.54 ± 22.81 kDa), and 
C. glutamicum (33.72 ± 23.85 kDa) were comparable, S. cerevisiae (54.55 
± 41.84 kDa) exhibited the highest average molecular weight. We also 
observed significant variations in the AAP among the proteins in 
different organisms, with a CV exceeding 0.27 for all AAs (Fig. 1 and 
Table S1). Moreover, we observed that not all proteins encompass the 
entirety of the twenty AAs, with tryptophan, methionine, cysteine, and 
histidine being notably scarce in the majority. Current research indicates 
that, spanning various taxonomic divisions, including bacteria, archaea, 
and eukaryotes, the occurrence frequency of cysteine, histidine, methi-
onine, and tryptophan in proteins is consistently below 3% [19]. It is 
worth noting that tryptophan and methionine, in particular, are each 
encoded by only one codon, while cysteine and histidine have two co-
dons (Fig. S2). For AAs with exceptionally high AAP, such as leucine, 
arginine, and valine, the number of codons is indeed relatively high 
(Fig. S2). However, the correlation between the remaining AAs and the 
number of codons is relatively low (Fig. S2). Therefore, the number of 
codons encoding AAs may be a crucial factor influencing the AAP in 
proteins. 

3.2. The MP varies greatly under different conditions 

Protein expression levels can vary under different cultivation con-
ditions, but it is unclear if the MP of proteins (as defined in Eq. (2)) 
would also differ. To investigate this, we obtained transcriptomic data 
for E. coli, B. subtilis, S. cerevisiae, and C. glutamicum from literature and 
databases (Table 1). For E. coli, we obtained transcriptomic data for 

4080 proteins under 3034 cultivation conditions from the Ecomics 
database [13], including 2307 MG1655 strains, 344 BW25113 strains, 
280 W3110 strains, and 103 DH1 strains. Transcriptomic data for 
S. cerevisiae and B. subtilis were obtained from the literature [14,15], 
including single-cell RNA-Seq data for 5612 proteins under 175 culti-
vation conditions and microarray data for 4160 proteins under 269 
cultivation conditions, respectively. In addition, we analyzed RNA-Seq 
data for 3081 proteins under 292 cultivation conditions for 
C. glutamicum from the SRA database. Upon utilizing Eq. (2), we sub-
sequently computed the MP of proteins across various experimental 
trials. Significant variations in the MP of these proteins were revealed 
across different cultivation conditions. To illustrate, within E. coli 
MG1655, an impressive majority of over 97.2% of the protein pairs 
manifest discernible variances in inter-MPs (t-test, P < 0.05) (Fig. S3). As 
for the C. glutamicum, S. cerevisiae, and B. subtilis, the corresponding 
ratios approximate 96.3%, 87.8%, and 98.4% respectively (Fig. S3). By 
sorting protein-coding genes according to their median MP levels across 
the experiments, we observed that MP levels varied significantly among 
proteins (Fig. 2). Besides, we found that even for the same protein, there 
is a significant difference in MP values under different cultivation con-
ditions (Fig. 2). 

Fig. 1. The distribution of AAP in various species. Twenty AAs are classified into three categories: AAs coded by AT-rich codons (off yellow), AAs coded by GC-rich 
codons (sea mist), and other AAs (azureish white). The meanings of the abbreviations can be found in the abbreviation table. 

Table 1 
Sources and statistics of omics data.  

Species Experiment 
number 

Protein 
number 

Types Sources 

E. coli 
BW25113 

344 4080 Microarray 
and RNA_seq 

Ecomics [13] 

E. coli 
MG1655 

2307 4080 Microarray 
and RNA_seq 

Ecomics 

E. coli W3110 280 4080 Microarray 
and RNA_seq 

Ecomics 

E. coli DH1 103 4080 Microarray 
and RNA_seq 

Ecomics 

S. cerevisiae 175 5612 Single-cell 
RNA-Seq 

Literature [14] 

B. subtilis 269 4160 Microarray Literature [15] 
C. glutamicum 292 3081 RNA-Seq NCBI Sequence 

Read Archive  
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3.3. The AACell in four model organisms remains stable across different 
conditions 

It’s crucial to emphasize that existing literature predominantly 
concentrates on analyzing protein sequences when considering the 

aspect of AAP. The exploration of AACell, particularly concerning pro-
tein abundance, has received comparatively limited attention. Our study 
seeks to bridge this gap by precisely examining how the abundance of 
proteins correlates with their AACell. In doing so, we aim to provide 
novel insights into the relationship between protein abundance and 

Fig. 2. The distribution of MP for different proteins (only the proteins with a median MP among the top 50 are displayed). The plotting procedure involves 
calculating the median MP for each protein, sorting them in descending order, and then generating MP distribution plots for the top 50 proteins. The meanings of the 
abbreviations can be found in the abbreviation table. 

Fig. 3. The distribution of AACell in different species. Twenty AAs are classified into three categories: AAs coded by AT-rich codons (off yellow), AAs coded by GC- 
rich codons (sea mist), and other AAs (azureish white). The meanings of the abbreviations can be found in the abbreviation table. 
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AACell, thereby enhancing our understanding of cellular processes at 
the molecular level. 

We analyzed data from E. coli MG1655, B. subtilis, S. cerevisiae, and 
C. glutamicum, and revealed that when we compared the AACell, we 
found that there was a systemic stability of AA levels in these four or-
ganisms, with a CV being less than 0.06 for all AAs (Fig. 3 and Table S2). 
Further analysis revealed that in E. coli, AACell calculated through 
transcriptome and the AACell computed by Choi et al. [9] using 
experimental data exhibited a high PCC of 0.94 (Table S3). Similarly, in 
S. cerevisiae, the AACell calculation results showed a PCC of 0.987 
concerning Chen’s AACell computation [10] based on the proteome 
(Table S4). Additionally, we conducted a comparison between the 
AACell obtained through transcriptome analysis and the AACell derived 
from four models (iML1515R [20], iCW773R [21], iBsu1147R [22], and 
Yeast8 [23]). Remarkably, we observed a high level of consistency (PCC 
approximately 0.86) between the calculated AACell and the 
model-derived AACell for three species: E. coli, S. cerevisiae, and 
B. subtilis (Table S5). Furthermore, our analysis revealed significant 
discrepancies in the model for C. glutamicum (iCW773R), where the 
levels of alanine, glutamate, and glutamine were notably higher than the 
computationally derived AACell and exceeded the corresponding values 
in the other three species (Table S5). This anomaly resulted in a lower 
PCC of 0.717 between the computed AACell and the model-derived 
AACell for C. glutamicum. This highlights a potential requirement for 
adjustments to the AACell of the iCW773R model and emphasizes the 
value of computationally derived AACell in refining models. 

We also observed that AACell of leucine was significantly higher than 
others in these three species, while cysteine was relatively less abundant 
(Fig. 3). Additionally, we observed that this systemic stability was 
species-specific (Fig. 3). In comparison to E. coli MG1655, the PCC for 
the AACell was 0.955 for C. glutamicum, 0.876 for B. subtilis, and 0.832 
for S. cerevisiae. This indicates a generally consistent trend in the AACell 
across the 20 different AAs in these diverse species. Interestingly, we 
observed a pattern that the smaller the difference in GC content in the 
genomes of the species (E. coli is 50.79% [24], C. glutamicum is 53.8% 
[25], B. subtilis is 43% [26], and S. cerevisiae is 38.3% [24]), the closer 
the distribution of the AACell (Table S6). Extensive research has 
demonstrated a correlation between genomic GC content and interspe-
cies variations in codon frequencies [27,28] as well as AAs [29,30]. 
Previous study indicated that the investigation of GC-rich coding se-
quences would yield proteins with elevated levels of glycine, alanine, 
arginine, and proline, while AT-rich coding sequences would encode 
proteins rich in phenylalanine, tyrosine, methionine, isoleucine, aspar-
agine, and lysine [4]. Recent research also indicates that the ratios of 
AAs in the last universal common ancestor (LUCA) proteins, coded by 
GC-rich codons, positively correlate with the GC content of various 
bacterial genomes, while the ratios of AAs coded by AT-rich codons 
exhibit a negative correlation with the increasing GC content of genomes 
[31]. In order to investigate the influence of GC content on the AACell, 
we classified twenty AAs into categories: AAs coded by AT-rich codons 
(lysine, phenylalanine, and tyrosine), AAs coded by GC-rich codons 
(proline, glycine, and alanine), and other AAs. Our study, conducted on 
four species, including three bacteria and one eukaryote, suggests that 
those with higher GC content tend to exhibit elevated levels of proline, 
glycine, and alanine per unit mass of total protein, but lower levels of 
lysine, phenylalanine, and tyrosine (Figs. S4 and S5). This finding con-
firms the association between genomic GC content and the AACell. 

3.4. The AACell in distinct strains of the same species remains stable 
across different conditions 

To determine whether these AA distribution characteristics exist in 
distinct strains of the same species, we gathered transcriptomes of other 
E. coli strains with transcriptome profiles exceeding 100 (e.g., BW25113, 
DH1, and W3110), and computed the AACell. Surprisingly, we discov-
ered that these E. coli K-12 strains consistently maintained a stable 

AACell, with a CV of less than 0.06 for all AAs (Table S7). There were no 
significant differences in the distribution pattern of AAs (Fig. 4), indi-
cating that this may be a common characteristic among E. coli strains. 

In exploring whether this systemic stability is shaped by the cell or 
the pathway, a systematic analysis of E. coli MG1655 was conducted, 
making use of its comprehensive transcriptome data. We firstly obtained 
55 pathways belonging to the second level (level B) of BRITE from the 
KEGG [32] database, such as ‘Carbohydrate metabolism’, ‘Energy 
metabolism’, and ‘Translation’. After mapping the transcriptomic data, 
we finally identified 25 pathways that contained genes expressed in the 
transcriptome. Then, we compared the distribution of AACell in these 
KEGG pathways and found that there were significant differences in the 
distribution of AACell in the various pathways (Fig. S6). Thus, we 
concluded that this stable value was reached only when considering the 
whole cell level. 

Furthermore, we compared the calculated values with two latest sets 
of experimental AACell [33,34], and we found a very high degree of 
similarity between the calculated and experimental values (PCC all 
exceeding 0.91). The standard procedure for experimental determina-
tion of AACell involves measuring the total cellular protein content via 
acid hydrolysis. Subsequently, AA derivatization and quantification are 
conducted using HPLC, following the protocol outlined by Noble et al. 
[35] However, a limitation arises during this process as glutamine and 
asparagine undergo deamination, leading to the formation of glutamate 
and aspartate [36]. Consequently, the experimental methods face 
challenges in distinguishing between aspartate and asparagine, as well 
as glutamate and glutamine. However, AACell calculated through 
transcriptome allowed for quantitative determination, and the total 
values closely matched the experimental data (Table S3). For instance, 
the sum of the AACell of aspartate and asparagine was calculated to be 
0.095 g/g total protein, while the experimental value was 0.097, and 
0.099, respectively (Table S3). 

4. Discussion 

Proteins play a crucial role in the functioning of living organisms, 
and their AA composition varies greatly among different species. This 
variation is closely related to the evolutionary process of the species and 
the environment in which the organisms grow [37–40]. For instance, the 
frequency of oxygen, sulfur, carbon, and hydrogen in proteins of eu-
karyotes is higher than that of prokaryotes [37]. Moreover, the AAP of 
different proteins also varies considerably, depending on various factors 
such as subcellular localization (e.g., membrane proteins are rich in 
hydrophobic or non-polar AAs) [41,42], protein function (e.g., 
oxygenated photosynthetic proteins contain more oxygen atoms) [43, 
44], and GC content (e.g., GC-rich coding sequences produce proteins 
rich in glycine, alanine, arginine, and proline) [3–5]. 

In this study, we observed that despite the significant variability of 
AAP across proteins and the upregulation or downregulation of 
numerous proteins under different cultivation conditions, AACell re-
mains largely unchanged. This consistency aligns well with experi-
mental measurements, exhibiting a high PCC of 0.94 for E. coli and an 
impressive 0.987 for S. cerevisiae. The robust correlation underscores the 
reliability of inferred AACell and its reflection of evolutionary conser-
vation in AA levels across species. Despite challenges in experimental 
methods distinguishing certain AAs [36], our transcriptome-based 
AACell calculations demonstrated quantitative accuracy, closely 
matching experimental data. This suggests that the genuine AACell 
within cells can be directly deduced from genomic and transcriptomic 
information. Additionally, when comparing AACell derived from tran-
scriptomics with high-quality Genome-Scale Metabolic Models (GEMs) 
of four model organisms, including E. coli, S. cerevisiae, and B. subtilis, a 
high consistency (PCC approximately 0.86) was observed. However, 
anomalies in the model for C. glutamicum (iCW773R) resulted in a 
reduced PCC of 0.717, emphasizing the need for adjustments to enhance 
model accuracy. 
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This study hints at a systemic constraint on the regulation of indi-
vidual proteins. When a group of proteins rich in a particular AA is 
upregulated, another set of proteins with a high content of the same AA 
needs to be downregulated. This systemic constraint allows cells to 
maintain a stable distribution of intracellular fluxes toward different 
AAs, even when protein content changes in varying conditions, to meet 
the growth requirements of different AAs. This may confer an evolu-
tionary advantage, as the nearly constant AACell appears to be a result of 
the lengthy evolutionary process involving the replacement of AA resi-
dues in cellular proteins. There appears to be a trade-off between 
functional optimization at the individual protein level and optimization 
at the whole-cell level. Certain enzymes, with low impact on controlling 
pathway fluxes, experience lower selective evolutionary pressure [45, 
46] and thus exhibit flexibility in protein structure and AA usage. 
Moreover, many AA residues that are distant from the protein’s active 
center can be substituted without affecting protein function. This flexi-
bility in AA composition at the protein level is likely shaped by evolu-
tionary pressure at the whole-cell level. This finding holds significance 
for metabolic engineering research, where foreign proteins are 
frequently introduced into a host organism to gain new metabolic ca-
pacity, or the foreign protein itself is the objective to produce. The 
constraint on AA composition at the whole-cell level implies that opti-
mizing a foreign protein involves considerations not only at the codon 
level but also at the AA composition level. A highly expressed protein 
with a markedly different AA composition than that of the host cell will 
necessitate widespread changes in intracellular fluxes and trigger a 
global cellular response. 

5. Conclusions 

This study utilized omics data to analyze cellular AACell at a wide 
range of conditions and discovered that the distribution of AACell re-
mains constant across different cultivation conditions. This systemic 
stability of AAs is exclusive to each species and shows no difference 
between distinct strains of the same species. The findings imply that 
there are whole cell level constraints on the up/down regulation of 
proteins so that the intracellular fluxes toward different AAs do not need 

to change significantly despite the great expression variance of indi-
vidual proteins. These system level constraints are the results of the long 
evolution process and should be considered in engineering organism for 
the expression of foreign proteins. 
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Fig. 4. The distribution of AACell in different E. coli K-12 strains. The strains are arranged based on different cultivation conditions from left to right, namely DH1, 
W310, BW25113, and MG1655. The data in the figure is sourced from the Ecomics database, with DH1 having 103 cultivation conditions, W310 having 280 
cultivation conditions, BW25113 having 344 cultivation conditions, and MG1655 having 2307 cultivation conditions. Twenty AAs are classified into three categories: 
AAs coded by AT-rich codons (off yellow), AAs coded by GC-rich codons (sea mist), and other AAs (azureish white). The meanings of the abbreviations can be found 
in the abbreviation table. 
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Abbreviation 

Abbreviation Full Name/Explanation 
AA Amino Acid 
AAPij The mass ratio of amino acid i in a particular protein j (g/g) 
AACellik The mass ratio of amino acid i in all cellular proteins at a 

particular condition k (g/g) 
MPjk The mass ratio of protein j in all cellular protein at a particular 

condition k (g/g) 
SD Standard Deviation 
PCC Pearson Correlation Coefficient 
Ala Alanine 
Arg Arginine 
Asn Asparagine 
Asp Aspartate 
Cys Cysteine 
Gln Glutamine 
Glu Glutamate 
Gly Glycine 
His Histidine 
Ile Isoleucine 
Leu Leucine 
Lys Lysine 
Met Methionine 
Phe Phenylalanine 
Pro Proline 
Ser Serine 
Thr Threonine 
Trp Tryptophan 
Tyr Tyrosine 
Val Valine 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.synbio.2024.03.001. 
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