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Impact of correlated noise in an 
energy depot model
Chunhua Zeng1,2, Jiakui Zeng1, Feng Liu2 & Hua Wang1

Based on the depot model of the motion of active Brownian particles (ABPs), the impact of cross-
correlated multiplicative and additive noises has been investigated. Using a nonlinear Langevin 
approach, we discuss a new mechanism for the transport of ABPs in which the energy originates from 
correlated noise. It is shown that the correlation between two types of noise breaks the symmetry of 
the potential to generate motion of the ABPs with a net velocity. The absolute maximum value of the 
mean velocity depends on correlated noise or multiplicative noise, whereas a monotonic decrease in the 
mean velocity occurs with additive noise. In the case of no correlation, the ABPs undergo pure diffusion 
with zero mean velocity, whereas in the case of perfect correlation, the ABPs undergo pure drift with 
zero diffusion. This shows that the energy stemming from correlated noise is primarily converted 
to kinetic energy of the intrawell motion and is eventually dissipated in drift motion. A physical 
explanation of the mechanisms for noise-driven transport of ABPs is derived from the effective potential 
of the Fokker-Planck equation.

The motion of active Brownian particles (ABPs) has been studied theoretically and experimentally because 
this phenomenon can explain the mechanism of self-propelled motion1–6. Self-propelled motions such as those 
involved in molecular motors7,8, motile bacteria9,10, migrating cells11, and Brownian swimmers12 are crucial to 
human life; thus, it is important to investigate the motion of microscopic biological entities, such as cells, and 
bacteria. For instance, on the biological level, cells or simple microorganisms are capable of active, self-driven 
motion, which, in several cases, has been successfully described by the Langevin or Fokker-Planck differential 
equations13–16. These mathematical formalisms may help to understand the dynamics of self-propelled entities17,18.

The energy depot model proposed by Schweitzer et al. is a major achievement in the description of 
self-propelled motion19, and the corresponding drag function was based on the idea that particles with energy20–22, 
such as Brownian particles with the ability to take up energy from the environment, can store their energy in an 
internal depot and later use this internal energy to change the environment or perform different activities, such as 
metabolism, motion, or signal-response behaviour23. This active motion has remarkable stochastic features, and 
noise arises from different sources that can be conveniently categorised as internal and external fluctuations24,25. 
Internal (additive) noise describes all of the fluctuations generated from the active nature of the system26. External 
(multiplicative) noise refers to the random variations in the damping parameters27,28; this type of noise and can 
act on ABPs. Historically, research on the depot model has been limited to the case of one simple source of 
additive noise, where the transport of ABPs originates from a force with a parabolic19–21 or linear potential29–32. 
However, a system is always simultaneously disturbed by both internal thermal fluctuations and external random 
perturbations33. Therefore, these investigations of the depot model may neglect key effects induced by external 
noise. In practice, external noise always exists and plays a significant role in dynamics34, such as in spatially 
extended systems35, transcriptional feedback loops36, yeast cell populations37, and so on.

We aim to simultaneously consider both internal and external fluctuations in the depot model and present a 
more realistic model of active motion. A natural question is whether the internal and external fluctuations are 
statistically correlated on the same time scale. One can imagine fluctuations arising from a common origin and 
thus not being independent of each other; which physically would imply that two types of noise have the same 
origin38–40. The microscopic realisation of correlated noise processes has been discussed41. Meanwhile, it appears 
that the correlation of internal and external fluctuations is ubiquitous in nature and often fundamentally changes 
the dynamics of a system42–45, such as in the cases of reentrance phenomena in a bistable kinetic model46, anom-
alous diffusion of overdamped particles47, multiple current reversals in a symmetrical potential48, photoinduced 
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phase transitions in spin-crossover solids49, and resonant activation of a chemical reaction50. We also note that in 
a previous depot model proposed by Schweitzer et al.19, the effects of external noise and of the correlation between 
two types of noise on the mechanism of ABPs transport are ignored. Despite recent advances in active matter 
research, there is still a lack of theoretical foundations describing the impact of correlated noise in an energy 
depot model. For example, to date, no clear distinction has been made between internal and external fluctua-
tions. It was only recently shown how noise can enhance the stability and double stochastic resonance of active 
Brownian motion51. In contrast to the case of one internal noise, the correlation between internal and external 
noises should be considered in the depot model. We believe that correlated noise may lead to a new mechanism 
for the motion of ABPs, namely, transport in which the energy stems from the correlated noise, instead of a par-
abolic or linear potential force.

This paper is organized as follows. First of all, the depot model of noise-driven motion is presented. Using a 
nonlinear Langevin approach, we derive the effective velocity potential of the Fokker-Planck equation. Second, 
we numerically discuss the impact of correlated noise on the transport properties of ABPs. The mechanisms for 
noise-driven transport of ABPs are theoretically explained by the effective potential of the Fokker-Planck equa-
tion. Finally, we summarize our results and provide concluding remarks.

The depot model of noise-driven motion
The ABPs with an internal energy depot are given by19

υ= − − , ( )
de
dt

q ce d e 12
2

where e is the internal energy depot of the ABPs. Furthermore, the ABPs are able to store energy in internal 
energy depots, which may be altered by three different processes20,23,29: (i) gain of energy resulting from the 
environmental fluctuations induced by the noises, where q is the flux of energy into the depot; (ii) loss of energy 
by internal dissipation, which is assumed to be proportional to the internal energy. Here the rate of energy loss c 
is assumed to be constant; and (iii) conversion of internal energy into kinetic energy with a rate d2υ2, which υ is 
the actual velocity of the ABPs, and d2 >  0.0. This shows that the depot energy may be used to drive the motion 
of an active Brownian particle (ABP). Thus, the motion of the ABP is motivated by investigations of active bio-
logical motion, which relies on the supply of energy, which is dissipated by metabolic processes, but can be also 
converted into kinetic energy.

The nonlinear Langevin equation
Let us now construct a dynamics of an ABP with unit mass under an energy depot, and subject to cross-correlated 
noise sources45,47. It can be described by the nonlinear Langevin equation (LE)

∑υ υ γ υ υ η= , = −( − ) + ( ) ( ),
( )=

dx
dt

d
dt

d e h t
2j

j j0 2
1

2

in which x denotes the position of the particle, γ0 is the drag coefficient of the particle at position x, moving with 
velocity υ. hj(υ) is deterministic function that characterize the state-dependent action of Gaussian noise ηj(t), 
where ηj(t) is Gaussian white noise and its statistical property is given by47

η η η δ( ) = , ( ) ( ′) = ( − ′), ( )t t t M t t0 2 3j i j ij

here 


 characterizes averaging with respect to the noise ηj(t), M11 =  M1 and M22 =  M2 are the intensities of the 
noises η1(t) and η2(t), respectively, µ= =M M M M12 21 1 2 , where μ is the intensity characterizing the 
cross-correlation of the noises, µ ⩽ 1. For μ =  0.0, two types of noise are no correlation, while for µ = .1 0, they 
are perfect correlation. Without loss of generality, we assume that the noise η1(t) is external (multiplicative) and 
originates in the random variations in the drag parameter27,28. We vary the drag coefficient by allowing the param-
eter γ0 to vary stochastically, i.e., γ γ η→ + ( )t0 0 1 . And another η2(t) is internal (additive) and originates from the 
active nature of the system. If two types of noise are simultaneously considered, we can rewrite that the motion of 
an ABP subject to multiplicative noise [h1(v) =  − v] and additive noise [h2(v) =  1] as

υ υ γ υ υη η= , = −( − ) − ( ) + ( ).
( )

dx
dt

d
dt

d e t t 40 2 1 2

Compared to previous investigations, the transport properties of ABPs have been mainly considered for the 
resulting force from parabolic potential19,20 or linear potential29,30. Here, we study impact of resulting force from 
the cross-correlation between two noises η1(t) and η2(t) on their transport properties. Generally, an ABP obeying 
Eqs. (4) with (2) possesses a mean velocity of the particle υ = ( ) − ( ) /→∞ x t x tlim 0t1 , and a mean velocity of 
the internal energy depot υ = ( ) − ( ) /→∞ e t e tlim 0t2 , and undergoes a diffusive spread around this mean 
motion which is characterized by an effective diffusion coefficient = ( ) − ( ) /( )→∞D x t x t tlim [ ] 2eff t

2 2 .

The effective potential of Fokker-Planck equation
To obtain the approximate Fokker-Planck equation, we will first reduce the two coupled ordinary differential 
equations to the state evolution equation of υ(t). Notice that e(t) can be considered to be a fast variable compared 
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with υ(t) since γ  c0 , i.e., by comparison with the time scale of motion, the internal energy depot reaches fast a 
quasistationary equilibrium19. If de/dt =  0.0, we obtain

υ
=
+

.
( )

e q
c d 52

2

Then the fast variable e(t) from Eq. (5) is replaced in the LE (4), so the LE (4) can be rewriten as

υ

υ υ υη η

= ,

= ( ) − ( ) + ( ),
( )

dx
dt
d
dt

f t t 61 2

where the deterministic drag force f(υ) =  − γ(υ)υ, and the nonlinear drag function γ υ γ υ( ) = − /( + )d q c d0 2 2
2 . 

In the limit of large velocities, γ(υ) approaches the normal drag coefficient γ0, but in the limit of small velocities a 
negative drag occurs, as an additional source of energy for the ABPs. Hence slow particles are accelerated, while 
the motion of fast particles is damped29. The fast variable in Eq. (6) can be assumed to be at an effective equilib-
rium, whereas the slow variable is responsible for the dynamics of a system19,20,29. The deterministic velocity 
potential related to the deterministic drag force f(υ) in (6) is

∫υ υ υ
γ
υ υ( ) = − ( ) = − ( + ), ( )U f d q c d

2 2
ln 7

0 2
2

2

has two alternative stable states υ γ= − / − /− q c d0 2, υ γ= / − /+ q c d0 2, and separated by an unstable state 
υu =  0.0.

Let Q(υ, t) denotes the velocity distribution that the velocity of the particle exactly equals υ at time t. Then, 
from Risken52, the Fokker-Planck equation of Q(υ, t) corresponding to Eqs. (6) with (3) can be given by

υ
υ
υ υ

υ
υ υ

∂ ( , )
∂

= −
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∂
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in which F(υ) and G(υ) are obtained, respectively39,46,53

υ υ υ µ υ υ µ υ( ) = ( ) + − , ( ) = − + . ( )F f M M M G M M M M2 91 1 2 1
2

1 2 2

According to Eqs. (8) and (9), the stationary velocity distribution can be given by

υ υ( ) = − ( ) , ( )Q N Uexp[ ] 10st FP

where N is a normalization constant, and the effective velocity potential UFP(υ) of the Fokker-Planck equation 
reads

∫υ υ( ) = ( ) −
( )
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Integrating Eq. (11), we obtain
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An equivalent description to the Fokker-Planck equation, which provides actual stochastic trajectories as 
opposed to probability distributions, is the LE. The LE corresponding to the Fokker-Planck equation (8) is54

υ υ υ= ( ) + ( )Γ( ), ( )
d
dt

F G t 13
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where Γ (t) is a Gaussian white noise with Γ( ) =t 0, and δΓ( )Γ( ′) = ( − ′)t t t t2 . This LE (13) under the 
action of a noise Γ (t) is equal to the LE (6) under the action of two noises η1(t) and η2(t). Notice that the effective 
drag force in the LE (13) is υ υ υ µ γ υ υ µ( ) = ( ) + − = − ( ) − −F f M M M M M M[ ]1 1 2 1 1 2. If μ =  0, the last 
term of the F(υ) vanishes and we have the contribution to the effective drag force for only the fluctuation pro-
cesses (M1) of the drag coefficient, i.e., υ υ υ γ υ υ( ) = ( ) + = − ( ) −F f M M[ ]1 1 . In fact, for no correlation 
(μ =  0), the additive noise (M2) has no effect on the effective drag force. Therefore, it is shown that the correlated 
noise (μ ≠ 0) can play a key role in transport properties of the ABPs, and the impacts of two types of noise M1 and 
M2 on them depend on the correlated noise. In addition, the noise term appears in the LE (13) with a 
velocity-dependent term, υ( )G , multiplying it.

The transport properties of ABPs
Using stochastic second-order Runge-Kutta algorithm55–57, we have numerically integrated Eqs. (4) with (1–3) 
by a time step Δ t =  0.01. The initial condition is chosen randomly from a symmetric, uniform distribution over 
the interval [− 1, 1]. The data obtained were averaged over 500 different trajectories and each trajectory evolved 
over 105 periods.

The mean velocity of ABPs
The velocity reversal from a negative to a positive net velocity is shown in Fig. 1. Dependent on the value of the 
cross-correlation intensity μ, we see the switch from the negative to the positive value of the net velocity at a crit-
ical value of the parameter μ =  0.0. Because of the definition of μ, the results for μ <  0.0, are the inverse of the 
results for μ >  0.0. Obviously, for μ =  0.0, it is no net velocity occurs, because the two main velocities compensate. 
This phenomenon is noteworthy since in the absence of parabolic or linear potential, the velocity should be zero 
no matter what values the noise takes17,19, and different from the case in which transport depends on the bias 
force18,29. In our case, however, the transport reversal depends on the correlated noise. The fact that the 
cross-correlation between two types of noise induces a net velocity, can provide a valuable way to control the net 
velocity by manipulating the cross-correlation between two types of noise. For a small multiplicative noise inten-
sity (M1 =  0.01), the absolute value of the υ1  increases first and then decreases, exhibiting a maximum with the 
increase of µ , there exists one optimal value of the cross-correlation between two types of noise, in which the 
mean velocity takes its maximum. However for a large multiplicative noise intensity (M1 =  2.0), the absolute value 
of the υ1  increases as µ  increases. That is to say, the cross-correlation between two types of noise can play oppo-
site roles in the υ1  for a small multiplicative noise intensity. One is that the particle can benefit from the fluctu-
ations induced by the cross-correlation between two types of noise, and the increase of the cross-correlation 
intensity can enhance the directional motion and facilitate the particle to move to the potential minimum. 
Another is that the strong cross-correlation between two types of noise induces the weakening influence of poten-
tial42,58, and thus leads to a decrease of the υ1 . The competition of these two opposite roles leads to a maximum 
in the υ1  as a function of the μ. However for a large multiplicative noise intensity, the cross-correlation between 
two types of noise can just enhance the influence of the potential, and consequently an increase of the υ1 .

The variation of mean position x  as a function of the cross-correlation intensity μ is shown in Fig. 2(a,b) for 
different values of the M1. It is shown that when two types of noise are uncorrelated (μ =  0.0), the x  is zero, 
which implies the net velocity is zero. For μ <  0.0, the departure of the x  from zero towards the negative direc-
tion indicates the preferential distribution of the ABP in the < .x 0 0. But for μ >  0.0, the departure of the x  from 
zero towards the positive direction indicates the preferential distribution of the ABP in the > .x 0 0. This indicates 
that the υ1  is negative for μ <  0.0, and positive for μ >  0.0, as shown in Fig. 1(a,b). For M1 =  0.01, the x  exhib-

Figure 1. The mean velocity υ1  vs. μ for M1 = 0.01, and 2.0. The other parameters are γ0 =  20.0, q =  2.0, 
d2 =  1.0, c =  0.01, and M2 =  0.05.
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its a maximum with the increase of the µ . But for M1 =  2.0, the x  increases as the µ  increases. It also means 
that the υ1  exists one optimal value of the cross-correlation between two types of noise, in which the mean 
velocity takes its maximum for case of M1 =  0.01, while for case of M1 =  2.0, the υ1  increases as the µ  increases.

The mean velocity υ1  of the ABPs as functions of the multiplicative and additive noise intensities M1 and M2 
is shown in Figs 3 and 4 for different values of cross-correlation intensity μ, respectively. It is found that υ > .0 01  
for μ >  0.0, υ = .0 01  at μ =  0.0, and υ < .0 01  for μ <  0.0. In Fig. 3, the curve is observed to be bell shaped, which 
shows the feature of resonance, i.e., the υ1  increases first and then decreases, exhibiting a maximum with the 
increase of the M1, there is an optimized value of the M1 in which the υ1  takes its maximum value. This means 
that a multiplicative noise intensity can facilitate the transport of ABPs. In Fig. 4, the υ1  decreases as the addi-
tive noise intensity M2 increases. When M2→ 0.0, the υ1  tends to zero for all values of the µ . It must be pointed 
out from Figs 3 and 4 that for a small multiplicative noise intensity (see Fig. 3 and M1 =  0.01 in Fig. 4), the υ1  
increases first and then decreases when the µ  increases, but for a large multiplicative noise intensity (see Fig. 3 
and M1 =  2.0 in Fig. 4), the υ1  increases when the µ  increases. These findings are also consistent with the 
results of Fig. 1(a,b).

We provide a pictorial understanding of some of noise-driven transport of ABPs. From the physics point of 
view, it is well-known that the effective potential (or force) determines the transport properties of ABPs52. The 
effective potential UFP(υ) as a function of the υ is shown in Fig. 5 for different values of cross-correlation intensity 
μ. For μ =  0.0, the effective potential UFP(υ) is symmetrically distributed, thence no mean velocity of ABPs can 

Figure 2. The mean position x  vs. μ for M1 = 0.01 and 2.0. The other parameters are γ0 =  20.0, q =  2.0, 
d2 =  1.0, c =  0.01, and M2 =  0.05.

Figure 3. The mean velocity υ1  vs. M1 for μ = −0.9, −0.5, 0.0, 0.5 and 0.9. The other parameters are 
γ0 =  20.0, q =  2.0, d2 =  1.0, c =  0.01, and M2 =  0.05.
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be caused. But for μ ≠ 0.0, the presence of cross-correlation between two noises breaks the symmetry of potential 
and makes the probability of the fluctuations on the two sides of the potential barrier different, thus a net veloc-
ity of ABPs arises. The negative correlation (μ =  − 0.5) causes the potential well at υ =  υ− much lower than the 
potential well at υ =  υ+, but the positive correlation (μ =  0.5) makes the potential well at υ =  υ+ much lower than 
the potential well at υ =  υ−. Therefore, a negative (or positive) correlation may be enough to displace the ball far 
enough to push it over the hill (potential maximum υu), resulting in a shift to the alternative stable state υ− (or 
υ+). Since the mean velocity of ABPs corresponds roughly to the asymmetry of the potential and the depth of the 
potential minimum45, thus the negative correlation leads to an increase in the negative velocity, while the positive 
correlation leads to an increase in the positive velocity(also see Fig. 1(a,b)).

In Fig. 6(a,b), we present that the effective potential UFP(υ) as a function of the υ for different values of the 
multiplicative noise intensity M1 and additive noise intensity M2, respectively. For μ =  0.5, it is found from 
Fig. 6(a) that the depth of potential minimum at υ =  υ+ is increased and the asymmetry of the potential is 
enhanced as the M1 increases from 0.01 to 2.0. But further increasing M1 (M1 =  3.0) can also reduce the potential 
asymmetry in a slightly different way. This is the reason for a maximum in the υ1  with the increase of the M1 
(also see Fig. 3). From Fig. 6(b), it is seen that the minimum potential located at υ =  υ+ is shallower and the asym-
metry of the potential is also reduced as the M2 increases, which is the reason for the decrease of the mean velocity 
υ1  with the increase of M2 (also see Fig. 4). In short, a physical explanation of the mechanisms for noise-driven 

transport of ABPs is derived from the effective potential of the Fokker-Planck equation.

The mean velocity of internal energy depot
The mean velocity υ2  of the internal energy depot is depicted in Fig. 7 for different values of the multiplicative 
noise intensity M1. For small noise intensity (M1 =  0.01), the interesting point here is that there is only one peak 
at a value of μ =  0.0. However, when the value of the M1 is increased, the peak at μ =  0.0 vanishes and the two 

Figure 4. The mean velocity υ1  vs. M2 for μ = −0.9, −0.5, 0.0, 0.5 and 0.9. (a) M1 =  0.01; (b) M1 =  2.0. The 
other parameters are γ0 =  20.0, q =  2.0, d2 =  1.0, and c =  0.01.
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Figure 5. The effective velocity potential UFP(υ) vs. υ for μ = −0.5, 0.0, 0.5. The other parameters are 
γ0 =  20.0, q =  2.0, d2 =  1.0, c =  0.01, M1 =  0.5, and M2 =  0.05.
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peaks appear at values of μ ≠ 0.0. As the value of the multiplicative noise intensity M1 increases continuously, the 
two peaks vanish and one valley appears at a value of μ =  0.0.

In Figs 8 and 9, we present the υ2  as functions of the multiplicative and additive noise intensities M1 and M2 
for different values of cross-correlation intensity μ, respectively. From Fig. 8, it is found that for small 
cross-correlation intensity μ, the υ2  decreases as the multiplicative noise intensity M1 increases. But for large 
cross-correlation μ, there appears a maximum value of the υ2  at .M 1 751  as the M1 increases. Furthermore, 
for small multiplicative noise intensity M1, the υ2  decreases as the cross-correlation intensity μ increases, while 
for large multiplicative noise intensity M1, the υ2  increases as the cross-correlation intensity μ increases. From 
Fig. 9, it is found that the υ2  always decreases as the additive noise intensity M2 or the cross-correlation intensity 
μ increases.

Further support for this mechanism comes from the energy depot of the active motion, the ABPs have the 
ability to take up energy from the environmental fluctuations, to store it in an internal depot, and to convert inter-
nal energy into kinetic energy19,20,23,29. It is found from Figs 7 and 8 that there exists an optimal value of the mul-
tiplicative noise intensity M1 or the cross-correlation intensity μ at which the υ2  of the internal energy depot is 
maximised. However, the υ2  decreases monotonically as the additive noise intensity M2 increases (see Fig. 9). 
This is also for the reason that a multiplicative noise or a cross-correlation can facilitate the transport of the ABPs 
in which the its mean velocity of the ABPs takes a maximum (see Figs 1 and 3), and the mean velocity of the ABPs 
tends to zero with the increase of additive noise intensity(see Fig. 4). Therefore, facilitated transport of ABPs can 
be induced by multiplicative noise or by the cross-correlation between two types of noise, and the multiplicative 
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Figure 6. The effective velocity potential UFP(υ) vs. υ (a) M2 =  0.05, M1 =  0.01, 2.0, and 3.0; (b) M1 =  2.0, 
M2 =  0.05, 0.1, and 0.2. The other parameters are γ0 =  20.0, q =  2.0, d2 =  1.0, c =  0.01, and μ =  0.5.

Figure 7. The mean velocity υ2  vs. μ for M1 = 0.01, 1.0, and 2.0. The other parameters are γ0 =  20.0, q =  2.0, 
d2 =  1.0, c =  0.01, and M2 =  0.05.
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noise intensity or cross-correlation intensity can be used as a valuable parameter for controlling the internal 
energy depot.

The effective diffusion of ABPs
Figure 10 displays the effective diffusion Deff as a function of the cross-correlation intensity μ for different values 
of the multiplicative noise intensity M1 and the additive noise intensity M2, respectively. It is shown that the effec-
tive diffusion increases first and then decreases, exhibiting a maximum at μ =  0.0 with the increase of μ from 
− 1.0 to 1.0. On the one hand, the effective diffusion is stronger in the μ =  0.0 (symmetric) case than in the μ ≠ 0.0 
(asymmetric) case, which is most pronounced when the underlying potential is symmetric. On the other hand, in 
the case of μ =  0.0 (no correlation), the ABPs perform pure diffusion with υ = .0 01 , whereas in the case of 
µ = .1 0 (perfect correlation), the ABPs perform pure drift with Deff =  0.0. The reason for suppressing the diffu-
sion means that the cross-correlation between two types of noise breaks the symmetry of the potential to generate 
motion of the ABPs with a net velocity, i.e., the diffusion is suppressed because the energy stemming from the 
correlated noises is primarily converted to kinetic energy of the intrawell motion and finally dissipated in the drift 
motion. In addition, it is shown from Fig. 10(a) that the effective diffusion increases first and then decreases as the 
multiplicative noise intensity M1 increases. However from Fig. 10(b), it is found that the effective diffusion always 
decreases as the additive noise intensity M2 increases.

Figure 8. The mean velocity υ2  vs. M1 for µ = . , .0 0 0 5 and 0.9. The other parameters are γ0 =  20.0, 
q =  2.0, d2 =  1.0, c =  0.01, and M2 =  0.05.

Figure 9. The mean velocity υ2  vs. M2 for µ = . , .0 0 0 5 and 0.9. The other parameters are γ0 =  20.0, 
q =  2.0, d2 =  1.0, c =  0.01, and M1 =  0.01.
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Concluding remarks
In this paper, we have studied the impact of correlated noise on the transport properties of ABPs in an energy 
depot model. Using a nonlinear Langevin approach, we demonstrate a new mechanism for the transport of ABPs, 
in which the energy stems from the correlated noise. The correlation between two types of noise breaks the sym-
metry of the potential to generate motion of the ABPs with a net velocity. This is different from the case in which 
transport depends on the bias force18,29. The absolute maximum value of the mean velocity of ABPs depends on 
the correlated noise or the multiplicative noise, whereas a monotonic decrease in the mean velocity occurs with 
additive noise. Further support for this mechanism is obtained from the energy depot of the active motion19,20. It 
is found that there exists an optimal multiplicative noise intensity or cross-correlation intensity at which the mean 
velocity of the internal energy depot is maximised; however, the velocity decreases monotonically as the additive 
noise intensity increases. This phenomenon occurs because a multiplicative noise or a cross-correlation can facili-
tate the ABP transport when the mean velocity of the ABPs is maximised, while a monotonic decrease is observed 
with additive noise. Therefore, the ABP transport can be induced by multiplicative noise or by cross-correlation 
between two types of noise, and the multiplicative noise intensity or cross-correlation intensity can be used as a 
valuable parameter for controlling the internal energy depot. When there is no correlation, the ABPs undergo 
pure diffusion with zero mean velocity, but when there is perfect correlation, the ABPs undergo pure drift with 
zero diffusion. The diffusion is suppressed because the energy stemming from the correlated noises is primar-
ily converted to kinetic energy of the intrawell motion and finally dissipated in the drift motion. A physical 
explanation of the mechanisms for noise-driven transport of ABPs is derived from the effective potential of the 
Fokker-Planck equation. Our findings may be helpful in understanding the active (self-propelled) motion of 
biological processes, especially in understanding the single cell motility and intracellular transport that appears 
in various biological contexts, both within cells and on the multicellular level.
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