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Abstract

Since its discovery in 1923, the biology of photoperiodism remains a mystery in many ways. We sought the link connecting
the circadian system to an endocrine switch, using Antheraea pernyi. PER-, CLK- and CYC-ir were co-expressed in two pairs of
dorsolateral neurons of the protocerebrum, suggesting that these are the circadian neurons that also express melatonin-,
NAT- and HIOMT-ir. The results suggest that a melatonin pathway is present in the circadian neurons. Melatonin receptor
(MT2 or MEL-1B-R)-ir in PTTH-ir neurons juxtaposing clock neurons suggests that melatonin gates PTTH release. RIA showed
a melatonin rhythm with a peak four hours after lights off in adult brain both under LD16:8 (LD) and LD12:12 (SD), and both
the peak and the baseline levels were higher under LD than SD, suggesting a photoperiodic influence. When pupae in
diapause were exposed to 10 cycles of LD, or stored at 4uC for 4 months under constant darkness, an increase of NAT
activity was observed when PTTH released ecdysone. DNA sequence upstream of nat contained E-boxes to which CYC/CLK
could bind, and nat transcription was turned off by clk or cyc dsRNA. dsRNANAT caused dysfunction of photoperiodism.
dsRNAPER upregulated nat transcription as anticipated, based on findings in the Drosophila melanogaster circadian system.
Transcription of nat, cyc and clk peaked at ZT12. RIA showed that dsRNANAT decreased melatonin while dsRNAPER increased
melatonin. Thus nat, a clock controlled gene, is the critical link between the circadian clock and endocrine switch. MT-
binding may release PTTH, resulting in termination of diapause. This study thus examined all of the basic functional units
from the clock: a photoperiodic counter as an accumulator of mRNANAT, to endocrine switch for photoperiodism in A. pernyi
showing this system is self-complete without additional device especially for photoperiodism.
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Introduction

The biological mechanisms of photoperiodism remain a big

mystery since first recognized in 1923, mainly due to the complex

nature of the system. The photoperiodic system is a black-box

consisting of several functional subunits: 1) photoreceptors, 2)

photoperiodic clock, 3) the photoperiodic counter, and 4) an

endocrine switch for altering developmental fate, metamorphosis

and metabolism in insects [1].

The Chinese Tasar Moth, Antheraea pernyi undergoes facultative

diapause at pupal stage; dormancy is induced by short days, while

development continues under long-day conditions. Choice of

either of these phenotypes is regulated by the release or

suppression of release of the prothoracicotropic hormone (PTTH).

In this moth, PER-ir cells have been found in three groups of

dorsolateral neurosecretory cells of the brain [2]; although PER

protein and per mRNA levels oscillated in these cells, extensive

migration of PER to the nucleus was not observed as decisively as

in D. melanogaster. There is no delay in timing of the peak

expressions between per mRNA and PER protein, unlike in D.

melanogaster where massive nuclear translocation of the PER/TIM

heterodimer occurs at particular ZTs [3]. A rhythm in PER

expression in A. pernyi is accompanied by a rhythm in the

expression of antisense per mRNA with an antiphase relationship.

The same patterns have been observed in other insects, Rhodnius

prolixus [4] and Bombyx mori [5]. In Periplaneta americana, PER-ir is

not only distributed in the focused locus of the optic lobe [6] but

also in both the dorso-lateral region of the protocerebrum and the

pars intercerebralis (PI) [7]. Matsui et al., [8] characterized a

circadian clock element in the PI in P. americana; surgical

extirpation of the PI induced arrhythmicity in locomotor activity

in constant darkness (DD).
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Most investigators consider that photoperiodism is a special

mode of circadian system function, although a concrete mecha-

nism has not been identified, at least at the molecular level.

Therefore, knowledge on the molecular architecture of circadian

systems in D. melanogaster could provide accessibility to the

molecular mechanisms of the photoperiodic system, since the

most well-documented circadian pacemaker is that of D.

melanogaster. This clock, which regulates adult locomotor activity

and eclosion, operates based on interlocked negative transcrip-

tion/translation feedback loops [9–12]. In this system, several

clock genes and their proteins are involved in the interlocked

feedback loops. In each loop, positive elements control the

transcription of the negative elements. Briefly, the transcriptional

activators CLOCK (CLK) and CYCLE (CYC) form a heterodi-

mer that binds to E-box sequences on the promoter regions of

period (per) and timeless (tim), triggering their transcription [9]. After

translation of the mRNA of the two key genes per and tim, their

proteins PERIOD (PER) and TIMELESS (TIM) accumulate

throughout the dark phase of the daily cycle. As protein, they form

a heterodimer PER/TIM in the cytoplasm and interact with

several phosphatases and kinases that regulate timing of accumu-

lation and nuclear entry, as well as the stability of PER/TIM and

their ability to dimerize. PER/TIM dimers act as negative

regulators of the CYCLE/CLOCK (CYC/CLK) heterodimer

[13]. CLK, CYC, and PER have an important similarity in their

sequences in that they have PAS domains, which function as

dimerization domains [14]. Kinases such as DOUBLETIME

(DBT), SHAGGY (SGG) and CASEIN KINASE II (CKII), and

phosphatases, such as protein phosphatases 1 (PP1) and 2A

(PP2A), phosphorylate/dephosphorylate PER or TIM and also

CLK inside the nucleus [15–24]. TIM alone is not a sufficient

repressor for CLK/CYC, while PER alone can act as an effective

repressor [25].

CRYPTOCHROME (CRY), a homologue to DNA photolyase,

is an important circadian clock regulator. In D. melanogaster, its

mode of action is to control the degradation of TIM through

JETLAG (JET) [26,27], after activation by blue light. TIM

degradation exposes PER to the kinase DBT that phosphorylates

PER, affecting the stability of PER and the feedback loop [28].

The other possible function of CRY is to mediate cross-talk among

clock cells. CRY is a dimerization partner with PER in

mammalian PER negative feedback system and Lepidoptera has

two CRY types, the Drosophila type and a mammalian type [29].

Apis mellifera has only the mammalian type [30].

A link between the circadian and photoperiodic systems remains

unclear in insects, but they have been more extensively studied in

plants and mammals [31–34]. However, there are some evidence

suggesting the connection between the circadian clock system and

diapause. For example, the mutation in the promoter region of

timeless in the Drosophilid fly, Chymomyza costata, is responsible for

the inability of the mutant strain to diapause [35,36]. Similary, in

Drosophila triauraria, allelic differences in two circadian clock genes

(timeless and cytochrome) in different strains affected differently on the

incidence of diapause [37]. Han and Denlinger [38] showed that

length variation in a specific region of the circadian clock gene

period correlated in different ways on the incidence of pupal

diapause in Sarcophaga bullata. Here, we focus on the pathways

linking the circadian clock with the photoperiodic response. We

propose that the link should reside where circadian controlled

genes (ccg) regulate photoperiodic response via neuroendocrine

mechanism. Our primary target is the indolamine pathway.

Melatonin may stimulate the release of a critical neurohormone,

PTTH. Melatonin production is dependent upon the enzyme

arylalkylamine N-acetyltransferase (aaNAT). aanat may thus be the

critical ccg in this system. This hypothesis is examined in this

report by a series of RNAi experiments, targeting aanat, two

transcription regulators, clk and cyc, and a negative regulator, per.

RNAi is an effective technique for disrupting expression and

thus function of individual genes that have been otherwise nearly

impossible to analyze [39]. In this report we have successfully used

RNAi technique to demonstrate that in A. pernyi the molecular

mechanism of the circadian system controlling photoperiodism is

similar to the mechanisms controlling circadian rhythms.

Materials and Methods

Ethics Statement
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of Kobe University. The protocol was

approved by the Committee on the Ethics of the Animal

Experiments of Kobe University (Permit Number: 19-5-01). All

surgery on rabbits was performed under sodium pentobarbital

anesthesia. The moth is industrially produced in China for textile

and food purposes and small scale in Japan. Therefore no

permission is required and there is no ecological risk to local

biodiversity; the only reason we bought this stock was to ensure

uniformity of diapause.

Insects
Wild-grown cocoons containing pupae in diaupase and of a

univoltine strain of A. pernyi were harvested in He Nang Province,

PRC, in October and either shipped or personally carried by

researchers to Japan. The strain was shipped or carried from

ShengYan, Liaoning Province, to Japan in October. The cocoons

were stored under LD 12:12 at 25uC for 2 weeks, during which

non-diapause pupae or diapause pupae that resumed development

during transportation and handling emerged as adults. For the

remaining pupae (.95%), diapause was maintained under LD

12:12 at either 25uC or 5uC. Diapause pupae were used for

physiological experiments within 4 months, during which photo-

periodism was securely maintained. Dissection for the brain-

subesophageal ganglion complex (Br-SOG) for the experiments

was conducted during the daytime after activating the diapause

pupae 5 days under long day condition (LD 16:8), unless otherwise

mentioned.

Production of antisera against Pa PER, Dm aaNAT, Ap
aaNAT, Bm CYC and Bm CLK

We raised antibodies against Pa (Periplaneta americana) PER, Ap

(A. pernyi) CYC, Ap CLK, Dm (Drosophila melanogaster) NAT1 and Ap

NAT. The antigens were produced as GST- or MBT-fusion

proteins. Specifically, for construction of the GST-Periplaneta

PERIOD fusion protein, cDNA encoding Periplaneta period was

inserted in pBluescript SK vector provided by Dr. Steven M.

Reppert. This cDNA was digested using EcoRI and XhoI.

Digested cDNA was separated using agarose gel electrophoresis

and an approx. 1000 bp band was recovered using Ultra Clean 15

kit (MO Bio). By using DNA ligation Kit Ver. 2, the digested,

purified cDNA was ligated to the pGEX 5X-1 that was also

digested using EcoRI and XhoI. E. coli was transformed using the

ligation product of this reaction. A transformed colony was

selected and cultured in 4 ml of LB medium at 37uC for 12 hours.

Then, the culture was added to LB medium and incubated at

37uC for 4 hours. One ml of 1 M IPTG was added to this medium

to induce protein synthesis of the fusion protein, which was further

incubated at 30uC for 1 hour. Then, the medium was centrifuged

at 3000 rpm for 20 minutes and the precipitate was collected. The

NAT Gears Moth Photoperiodism
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precipitate was suspended in 20 ml of Tris-HCl buffer (20 mM

pH 8.0 Tris-HCl, 30 mM NaCl, 10 mM EDTA, 2 mM PMSF)

and the destruction of the cell wall was carried out by a series of

freeze-thawing. The sample was supplemented with 1.2 ml of 10%

Triton X-100 and 480 ml of 5 M NaCl. Then, sonication was

carried out using SONIFIER 250 (Branson) for 20 min. The

sonicated sample was centrifuged at 10,000 rpm for 30 min.

Then, precipitate was collected and suspended into 50 ml of 1 M

sucrose. The sample was centrifuged at 8,000 rpm for 20 minutes

and precipitate was suspended into 50 ml of 2% Triton X-100 in

10 mM EDTA buffer and incubated at 4uC for 12 hours. The

incubated sample was dissolved into the SDS-PAGE sample buffer

(25 mM, pH 6.8 Tris HCl, 2% SDS, 3.75% b-mercaptoethanol,

3.75% glycerol, 0.005% Bromo Phenol Blue) and SDS-PAGE was

carried out using 10% acrylamide gel. Then, the band of GST-

PER was cut out from the polyacrylamide gel. The band was

minced and was put into the dialysis tube containing SDS running

buffer. The dialysis tube was soaked in SDS running buffer in the

MUPID. To separate the fusion protein from the polyacrylamide

gel matrix, 100 V was applied for 4 hours. Fusion protein

including buffer was collected in the dialysis tube. The protein thus

separated was dialyzed in distilled water for 12 hours.

For Drosophila aaNAT, we followed the same procedures as with

Periplaneta PERIOD till we had the sonicated sample which was

centrifuged at 10,000 rpm for 30 min. The supernatant was

collected and loaded onto a 1 ml Glutathione Sepharose 4B (GE

Healthcare Bioscience, Buckinghamshire, England) column equil-

ibrated with the column buffer (pH 7.5, 20 mM Tris-HCl,

0.5 mM EDTA, 100 mM NaCl, 5 mM bmercaptoethanol,

0.01% NP-40). This column was washed with 30 ml of the same

buffer and 10 ml of 50 mM Tris-HCl buffer, pH 8.0. The fusion

protein was eluted with 3 ml of elution buffer (pH 8.0, 50 mM

Tris-HCl, 20 mM glutathione). The eluted protein was dialyzed in

2 l of distilled water for 12 hours.

A cDNA containing the complete ORF of Ap aaNAT (261

residues) was obtained from the pupal brain of A. pernyi by

standard techniques and subcloned into pGEX6p-1 (GE) in-frame

downstream of the GST. Recombinant ApNAT was induced in E.

coli DH5a cells by adding 0.1 mM IPTG for 5 hrs at 37uC and

purified on glutathione Sepharose 4B affinity chromatography

columns followed by PreScission protease (GE Healthcare)

digestion according to the manufacturer’s protocol. After diges-

tion, the GST moiety and PreScission protease were absorbed in

glutathione Sepharose 4B resin.

Recombinant CYC and CLK proteins were obtained by

subcloning of cDNA corresponding to a 191-amino-acid region

of BmCYC (496 to 686 residues), and a 185-amino-acid region of

BmCLK (378th to 562nd), into pET22b plasmid (Novagene,

Darmstad, Germany) in-frame and upstream of 6xHis. Both

recombinant BmCYC and BmCLK proteins were induced in

BL21 (DE3) cells of E. coli by incubation in 0.1 mM IPTG for 3 h

at 37uC. Recombinant proteins were purified on a HiTrap

Chelating HP column (GE Healthcare) according to the manu-

facturer’s protocol. Following purification, both recombinant

proteins were dialyzed against phosphate buffer (PB; 50 mM

sodium phosphate pH 5.5) and trapped on a HiTrap Q HP

column (GE Healthcare) to exclude imidazole completely.

Immunization to Rabbit
Fifty micrograms of protein (PaPER, DmNAT, ApNAT, BmCYC

and BmCLK as GST-, MBT-hybrid or His-tag), solution in PBS

and 1.2 volumes of Freund’s complete adjuvant were mixed until

emulsified. This emulsion was injected subcutaneously into (New

Zealand white female rabbits). The immunization was repeated.

Three weeks later, 50 mg of protein solution in PBS and 1.2

volumes of incomplete Freund’s adjuvant were mixed to complete

emulsification. After 1 week, the blood of each rabbit was collected

and incubated at 37uC for 1 hour. Then, the blood was incubated

at 4uC for 12 hours and centrifuged at 3,000 rpm for 15 min. The

supernatant was collected and used as the antiserum.

Production of Other Antibodies and Anti-peptide
Antibodies

Anti-rat liver HIOMT (monoclonal) and anti-ApPTTH were

gifts from the late Dr. Takeo Deguchi and Dr. Ivo Sauman,

respectively. Anti-melatonin and anti-hMT2 sera were purchased

[5,40]. Specificities of other antibodies have been described

elsewhere [2], and technical data provided by the manufacturer

(Santa Cruz).

Immunohistochemical Staining
Dissected brains were fixed in 50x volumes of Bouin solution for

2 hours, and then were washed 3 times in 80% ethanol for 15 min.

Then, the brains were passed through 90% ethanol (15 min), 95%

ethanol (15 min), 100% ethanol (15 min), 100% ethanol (30

minutes) and xylene (10 minutes, 2 times) sequentially for

dehydration and dealcoholation. Tissues were embedded in

paraffin and 8 mm sections were cut. The sections were stained

based on an ABC method using the Vectastain elite ABC

peroxidase kit (Vectastain, Vector Laboratories, Burlingame,

CA, USA) following the manufacturer’s instructions. For depar-

affinization and blocking, the sections were passed through xylene

(30 minutes, twice), 100% ethanol (15 minutes, twice), 90%

ethanol (15 minutes), 80% ethanol (15 minutes), 70% ethanol (15

minutes), 50% ethanol (15 minutes), water (5 minutes, twice), TBS-

Tween (TBST, 10 minutes) and TBST-containing 1% BSA (1

hour), sequentially. The sections were incubated in the primary

antiserum solutions (1,000x anti-PaPER antiserum or 200x anti-

ApNAT antiserum diluted 1,000x with TBST containing 1% BSA)

at 4uC, for 12 hours. After washing 3 times in TBST for 15

minutes, the sections were incubated in the biotinylated anti-rabbit

IgG diluted 200x with TBST for 1 hour. After washing 3 times in

TBST each for 15 minutes, the sections were incubated in the

biotinylated peroxidase and avidin mixed solution for 30 minutes.

After washing three times in TBST for 15 minutes each, the

sections were stained with the DAB solution (pH 7.2, 0.1 M Tris-

HCl, 0.1% DAB, 0.02% H2O2) for 5 minutes.

Colocalization of two antigens was conducted either on adjacent

sections or by double labeling of identical sections (antibodies

derived from different animals). ApPTTH/hMT2 double labeling

was conducted as follows: ApPTTH antibody was diluted at

1:2000, and hMT2 antibody at 1:800. Drop cocktail of both

primary antibodies (anti-ApPTTH and anti-hMT2) diluted in

TBST containing 1% BSA was used to incubate the sections

overnight at 4uC. After rinsing (36) with TBST, the slides were

incubated with horse anti-goat IgG (H+L)-biotin (Vector Labora-

tories) for 1.5 h. After rinsing (36) with TBST, the slides were

incubated with Alexa Fluor 488-conjugated (green) goat anti-

rabbit IgG for 60 minutes at rT (Invitrogen, Tokyo, Japan). After

washing in TBST, the biotin signal was visualized with red

fluorophore using a TSA Labeling Kit #42 with Alexa Fluor 555

(Invitrogen, Tokyo, Japan). Finally, the slides were rinsed (36)

with TBST, mounted in Aqua Ploymount and observed using a

BX50F4 microscope (Olympus, Japan).

For the double labeling (antibodies derived from the same

animal), experiments were performed according to the method

mentioned in Hiragaki [41]. For example, anti-BmCYC and

BmCLK (rabbit) with anti-PaPER (rabbit) and anti-BmCLK

NAT Gears Moth Photoperiodism
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(rabbit) with anti-ApNAT (rabbit) were used as follows. Antibody 1

(Table 1) was diluted and the slides were incubated in the antibody

solution overnight at 4uC. After rinsing (36) with TBST, the slides

were again incubated with the secondary antibody for 60 minutes.

After rinsing (36) with TBST, they were treated for 30 minutes

with VECTASTAIN ABC reagent (Vectastain ABC KIT PK-

6101). Then, sections were treated with TSA Biotin System

(PerkinElmer), which can induce covalent bonds between tissue

and biotin on the position of first color. After the photography was

taken, antibody 1 was stripped out of the sections for 24 h at rT in

stripping buffer (100 mM 2-mercaptoethanol, 50 mM glycine-

HCl, pH2.2) in a 40 V horizontal electric field. The sections were

then incubated with antibody 2 (Table 1) overnight at 4uC. The

sections were then treated for 30 minutes with VECTASTAIN

ABC reagent. After rinsing (36) with TBST, the slides were

incubated with Alexa Fluor 488-conjugated (green) goat anti-

rabbit IgG for 60 minutes at rT. After rinsing (36) with TBST, the

biotin signal was visualized with green fluorophore using a TSA

Labeling Kit #42. Finally, the slides were rinsed (36) with TBST,

mounted in Aqua Ploymount and observed using a BX50F4

microscope (Olympus, Japan).

Measurement of Brain Melatonin Content and N-
acetyltransferse Activity

The brain-subesophageal ganglion complex (Br-SOG) was

dissected from pupae in ice-cold PBS solution. Samples were

immediately frozen and stored at 270uC until use. The samples

were homogenized individually with 100 ml of chloroform,

centrifuged and evaporated. Five hundred ml of assay buffer was

added to dissolve the dried content. MEL content was measured

by Radioimmunoassay (RIA) procedure. Anti-MEL serum and

tritiated [3H]-MEL were purchased from Stockgrand Ltd. and

Amersham International, respectively. Crystalline MEL was

obtained from Sigma-Aldrich, St Louis, USA, with which a stock

solution of 1 mg/ml MEL was prepared and stored at 220uC.

The antiserum was stored at 280uC and diluted with assay buffer

before use to give an initial dilution of 1:600. Two hundred ml of

tissue sample was added to a tube with an additional 100 ml of

assay buffer, 100 ml of [3H]-MEL and 100 ml of diluted antibody.

After incubation for 24 hours at 4uC, 500 ml of DCC (Dextran

Coated Charcoal) was added to the reaction mixture, which was

then incubated for 15 minutes at 4uC. This was centrifuged at

7006g for 15 minutes at 4uC and the supernatant was added to

vials containing 3.6 ml of scintillation cocktail (Atomlight,

Packard). Radioactivity was then measured using a scintillation

counter (Aloca, LSC-3500).

Enzymatic activity of NAT was measured based on the

radioenzymatic assay. Briefly, stored, frozen (Br-SOGs) those

were dissected out at ZT6 and ZT18 were homogenized using a

homogenizer in ice-cold buffer. Samples were centrifuged and the

supernatant was used as a crude enzyme solution. NAT activity

was measured by counting radioactivity of N-acetyltryptamine

formed from tryptamine, and [14C]-acetyl-CoA [40,41]. 0.1 M

citric acid-Na2NPO4 (pH 5.0–6.0), 0.1 M Clark-Lubs KH2PO4-

NaOH (pH 6.0–8.0) and 0.1 M Clark-Lubs H3BO3-KCl-NaOH

(pH 8.0–10.0) were used to construct a pH curve. Samples were

incubated at 37uC for 15 minutes. 100 ml of 5% acetic acid was

added to the sample to stop the reaction, and then one ml of

scintillation cocktail was added and the tube was vortexed for one

minute. Liquid scintillation cocktail consisted of toluene:isoamy-

lalcohol (97:3) containing 4 g of PPO, and 0.1 g of POPOP in one

liter of solution. The plastic tube was placed in a glass vial and

radioactivity was measured using a scintillation counter (Aloca,

LSC-3500).

Protein Measurement
Protein determination for radioimmunoassay was performed

according to Bradford [42] with BSA as standard (Sigma-Aldrich,

St Louis, USA). Optic density (OD 595 nm) of the mixture versus

reagent blank was measured using an Epoll 20 spectrophotometer.

The values are given as the mean of duplicate determinations.

Inverse PCR for Amplification of Upstream Regulatory
Region

Genomic DNA was isolated from the brains of the pupae using

Mammalian Genomic DNA kit according to the manufacturer’s

instructions (Sigma-Aldrich, St Louis, USA). The promoter region

of nat was identified using a BD GenomeWalkerTM kit (Clontech,

Takara, Japan). Four genomic DNA libraries were constructed by

digesting the genomic DNA with four different restriction enzymes

(DraI, EcoRV, PuvI and StuI). These libraries were ligated to

GenomeWalker Adaptors. For the primary PCR, 1 ml of each

library was subjected to Gene-Specific Primer 1 (NAT-GSP1)

(Table 2), Adaptor Primer 1 (AP1) (provided with the kit) (Table 2)

and Advantage 2 polymerase Mix (Clontech, Takara, Japan). The

25-fold-diluted primary PCR products were used as the template

for the nested PCR with AP2 (provided with the kit) and NAT-

GSP2 (Table 2). Secondary PCR products were cloned into

pT7Blue, a TA cloning vector (Novagen, Darmstadt, Germany),

by using ligation high Ver.2 (Toyobo, Osaka, Japan). Sequencing

was performed using an ABI prism Big-Dye terminator cycle

sequencing ready reaction mixture (PE Applied Biosystems, CA,

USA) and a 3100xl Genetic Analyzer Sequencer (PE Applied

Biosystems, CA, USA).

Table 1. Summary of double-labeling (both primary antibodies from the rabbit) experiments.

Combination Antibody 1 Dilution Antibody 2 Dilution

BmCYC+PaPER CYC 1:600 PER 1:1000

BmCLK+PaPER CLK 1:600 PER 1:1000

ApNAT+PaPER NAT 1:1000 PER 1:1000

hMT2+ApPTTH hMT2 1:800 PTTH 1:2000

ApNAT+ApPTTH NAT 1:1000 PTTH 1:2000

We employed other antibodies based on antigens from species other than A. pernyi but effectively similar data were obtained.
Source: BmCYC, PaPER, BmCLK and ApNAT from M. Takeda, Kobe University, Japan: ApPTTH from Sauman and Reppert, 1996: hMT2 purchased from Santa Cruz; sc-
13174.
doi:10.1371/journal.pone.0092680.t001
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RNA Extraction and Synthesis of cDNA
The brain-suboesophageal complexes (BR-SOGs) of A. pernyi

were dissected from pupae and immediately transferred to liq.N2.

Total RNA was extracted from the BR-SOGs using RNAiso Plus

reagent (Takara, Japan) following the instructions of the manu-

facturer. For construction of cDNA, total RNA was incubated at

70uC for 3 minutes, and then we used ReverTra Ace (Toyobo,

Osaka, Japan) for cDNA construction following the instructions of

the manufacturer.

Preparation and Injection of dsRNA
Four groups of specific dsRNA were prepared by the same

method. The first group was for nat (accession no. DQ372910)

(dsRNANAT); PCR product (585 bp) was prepared using gene-

specific primers (NAT-T7-F and NAT-T7-R) (Table 2) in which

T7 promoter was attached to the 59 end of each primer with a gap

of four nucleotides. The cDNA was used as a template for the

PCR. The PCR product was purified with GFX PCR DNA and

Gel Band purification kit (GE Healthcare, UK). The purified PCR

product was used as a template for synthesizing dsRNA using

MEGAscript RNAi kit (Ambion, CA, USA) according to the

manufacturer’s instructions. The same protocol was used for

generating the other three groups of the dsRNA, cycle (also known

as Bmal) (accession no. AY330487) (dsRNACYC), clock (accession

no. AY330486) (dsRNACLK) and period (accession no. U12769)

(dsRNAPER) using gene-specific primers for each of them (CYC-

T7-F, CYC-T7-R; CLK-T7-F, CLK-T7-R and PER-T7-F, PER-

T7-R, respectively) (Table 2), and the size of the PCR products

were 531 bp for cyc, 511 bp for clk and 407 bp for per. The control

dsRNA was generated from a GFP gene of jellyfish (dsRNAGFP),

which does not have any effect on the target gene [43]. Before

injection of any of the four kinds of dsRNA, transfection reagent,

Metafectene PRO (Biontex, Planegg, Germany), was mixed with

dsRNA at a ratio of 1:1 v:v. 1 mg of dsRNA was injected into the

pupae for two successive days (total 2 mg dsRNA/pupa).

qRT-PCR
RNAs and template cDNAs were prepared as mentioned above.

qRT-PCR was performed by using SYBER Green Realtime PCR

master mix (Toyobo, Osaka, Japan) and Applied Biosystem 7500

real PCR system (Applied Biosystems, CA, USA). Actin of A. pernyi

(accession no. GU176616) was amplified with gene-specific

primers (Actin-F, Actin-R) (Table 2) and quantified for CT in

each sample as an internal control. Each treatment was replicated

three times. Quantitative analysis followed by a comparative CT

(DDCT) method was used for analysis [44]. For each gene, the

primers used in qRT-PCR were designed for the outer region of

dsRNA, namely, primers for nat (NAT-F, NAT-R), cyc (CYC-F,

CYC-R), clk (CLK-F, CLK-R) and per (PER-F, PER-R) (Table 2).

Table 2. List of primers used in the experiments. Underlined sequences are the T7 promotor.

Name of the primer Sequence of the primer Use Size of the product (bp)

NAT-GSP1 GTTCATGGGTTCGTCGCGGAAGAAGAA Promotor assay –

NAT-GSP2 GCCTTTGTATCGTGTATGAGGGTTGCG Promotor assay –

AP1 GTAATACGACTCACTATAGGGC Promotor assay –

AP2 ACTATAGGGCACGCGTGGT Promotor assay –

pT7-F ATGACCATGATTACGCCAAG TA cloning –

pT7-R GTTTTCCCAGTCACGAC TA cloning –

NAT-T7-F TAATACGACTCACTATAGGGAGATCGAAGTGATTGAAGAAGAGGA dsRNA synthesis 585

NAT-T7-R TAATACGACTCACTATAGGGAGACAGAACCCCTTAGTTTAGCG dsRNA synthesis

NAT-F GCGTAATAAGGCCGTCAGAA qRT-PCR 250

NAT-R AGATTCACGTGGACATTTCAGC qRT-PCR

CYC-T7-F TAATACGACTCACTATAGGGAGAATCAGATCGGCAGCACCAT dsRNA synthesis 531

CYC-T7-R TAATACGACTCACTATAGGGAGATCGTATTACGCGGTACCTACTT dsRNA synthesis

CYC-F GTTACTGAACCGTAACACTCTCCAG qRT-PCR 227

CYC-R TCTCAGTATCCGGTTTCTCTTTGTA qRT-PCR

CLK-T7-F TAATACGACTCACTATAGGGAGACGCAAAGTCTCTGAGCCAGT dsRNA synthesis 511

CLK-T7-R TAATACGACTCACTATAGGGAGAGGCAAGCGATTGCGTTTA dsRNA synthesis

CLK-F TATGGAGAAAGATATGAAGCAGGAG qRT-PCR 250

CLK-R GTAGTACTAACCGTCTGGACAGTGG qRT-PCR

PER-T7-F TAATACGACTCACTATAGGGAGATGTACTATACGCCAGTGACTGCTAC dsRNA synthesis 407

PER-T7-R TAATACGACTCACTATAGGGAGAGCACAGAGAGGAATCTGATGAATTT dsRNA synthesis

PER-F AAGCCTATACGTCTCACTGAATCCT qRT-PCR 219

PER-R CTTTTCGTATACCGATGGTGTGTTA qRT-PCR

GFP-T7-F TAATACGACTCACTATAGGGAGACCTGAAGTTCATCTGCACCAC dsRNA synthesis 543

GFP-T7-R TAATACGACTCACTATAGGGAGAACGAACTCCAGCAGGACCAT dsRNA synthesis

Actin-F ACCAGAGAGGAAGTACTCTG qRT-PCR 211

Actin-R TTACAAAGCCTGAGTTGAGC qRT-PCR

doi:10.1371/journal.pone.0092680.t002
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Statistical Analysis
Data were expressed as the mean 6 SEM. Significance of

differences was determined using a one-way ANOVA followed by

Fisher’s PLSD test using SPSS program (SPSS Statistic 17.0.1,

2008). All studies were performed by Sigma Plot 2004 version 9.01

(Systat Software).

Results

Colocalization of Circadian Clock Gene Products and
Melatonin Synthesizing Pathway

Brains of A. pernyi were stained immunohistochemically, using

anti-Pa PER, anti-Ap CYC, anti-Ap CLK, anti-Bm CYC, anti-Dm

and Ap NAT, anti-rat HIOMT and anti-melatonin antibodies.

Individual or adjacent sections of the same brain were compared

after staining with combinations of two different antisera.

A pair of neurosecretory cells showed PER/CYC/CLK-ir in

the dorsolateral (DL) region of each hemisphere in the pupal brain

(Fig. 1B, D, E, F–K). These results indicate that these cells are

putative ‘‘clock neurons’’. NAT-ir was also co-localized in the

same neurons as PER-ir/CLK-ir/CYC-ir cells (Fig. 1L-N).

Melatonin-ir (MT-ir) and HIOMT-ir were also co-localized in

the same ‘‘clock neurons’’ (Fig. S1). These results implicate that

these ‘‘clock neurons’’ have a functional arylalkylamine metabolic

pathway leading to melatonin.

The PTTH-producing Neurons Express Melatonin
Receptor 2 (hMT2)-ir

hMT2-ir and PTTH-ir were co-localized symmetrically in a pair

of neurosecretory neurons in the DL (Fig. 1O–Q) that were

juxtaposed to the PER/CYC/CLK/NAT-ir cells (Fig. 1R–T).

This result suggests that the PTTH neurons possess melatonin

receptor, which is a possible channel for circadian gating for

PTTH release.

Day/Night Fluctuation of Melatonin Content in the Head
Ganglia

Changes in melatonin content in the head ganglia from 2–3

days old adults maintained under LD 16:8 were investigated by

RIA. The results clearly showed a rhythmic fluctuation with a

peak 4 hours after lights off. The peak level, 42.18 pg ‘‘melato-

nin’’/mg protein, was significantly higher (p = 0.003) than the

basal level of 12.64 pg/mg (Fig. 2A). Both the peak and the

baseline levels were higher under LD 16:8 than under 12:12, a

photoperiodic influence.

Changes in NAT Activity with Diapause Termination
Radioenzymatic assay analysis showed that NAT activity in the

head ganglia of the bivoltine strain of A. pernyi had two pH optima

at 7.6 and 8.6. The activity of NAT from diapause pupae of this

strain increased sharply between 5 and 10 days of exposure to LD

16:8 following 4-months at 4uC, DD, which corresponded to a

surge of ecdysteroid [45]. The activity also changed during cold

storage. The level of activity in diapause pupae stored at 4uC, DD,

for up to 4 months was as low as that of diapause pupae that were

maintained under short-day conditions (LD 12:12) at 25uC, but it

gradually increased thereafter at both pH 7.6 and 8.6. (Fig. 2B, C).

Analysis of Upstream Regulatory Region of Ap nat and
Transcription Patterns in nat, cyc and clk

We cloned a cDNA encoding this NAT from A. pernyi (accession

number DQ372910) and expressed the enzyme using a baculo-

virus expression system and confirmed the enzymatic activity [46].

We then investigated the upstream promoter region. The

sequence is given in Fig. S2, as is a diagrammatic figure for the

upstream sequence (Fig. 3) showing the sites of 2 perfect E-boxes

(CACGTG) and 4 canonical E-boxes (CANNTG) as well as 2

CREs. To confirm the transcription regulation of nat by CLK/

CYC we investigated the transcription patterns of nat, clk and cyc by

real-time PCR. Transcription patterns of all three genes were

rhythmic with the same phase relationship (Fig. 4).

RNAi Against nat and the Effect on Photoperiodism
After the injection of dsRNANAT, diapause pupae were kept

either under LD 16:8 or LD 12:12 at 25uC. nat expression level

was reduced 48 hours after the injection of dsRNANAT (Fig. S3A).

The pupae to which the dsRNANAT was applied failed to emerge

even under LD 16:8 (Figs 5A, S4A), while the control as well as

dsRNANAT-injected pupae stayed in diapause under LD 12:12

(Figs 5B, S4B). Photoperiodism was intact upon the mock injection

of control GFP dsRNA. Photoperiodism was thus impaired after

RNAi mediated knockdown of N-actyltransferase. These results

strongly suggest that nat is causally involved in photoperiodism.

RNAi Against cyc and clk
We then sought the link between nat regulation and the

circadian clock using RNAi against two transcription modulators,

CYC and CLK, which bind as heterodimers to E-box elements.

The expression level of cyc declined significantly 48 hours after the

injection of dsRNACYC (Fig. S3B), but the expression level of clk

decreased only 24 hours after the injection of dsRNACLK, (Fig.

S3C). The expression level of nat was measured by real-time PCR.

Fig. 6A shows that RNAi against either cyc or clk suppressed the

expression level of nat. This result shows that nat is a clock-

controlled gene (ccg) that is responsible for transmitting circadian

output to an endocrine switch to release PTTH. Build-up of nat

transcript may function as a condenser that is physiologically

termed a photoperiodic counter [47].

RNAi Against per and the Effect on Photoperiodism
To confirm that photoperiodism in A. pernyi operates based on

the same basic framework of the circadian system in D. melanogaster,

that is, a negative feed-back loop, we injected dsRNA against per

(Fig. S3D) expecting it would upregulate nat transcription. Fig. 6B

shows that this is indeed the case. RNAi against per inhibited the

inhibition of transcription by PER, resulting in increased nat

transcription. Pupae injected with dsRNAPER showed a high

proportion of emergence even under short-day conditions (L:D

12:12) (Figs 7A, S4C). Meanwhile the dsRNAPER-injected pupae

kept under L:D 16:8 showed accelerated emergence compared

with the control pupae (Figs 7B, S4D). This suggests that, in A.

pernyi, photoperiodic time measurement is a function of the

circadian system shared by different organisms such as D.

melanogaster and rodents.

‘‘Melatonin’’ Content After Silencing nat and per
Using RIA, melatonin level was measured in the brain of

diapause pupae injected with dsRNANAT, dsRNAPER and

dsRNAGFP. The results showed a great decline 48 hours after

the injection of dsRNA against nat. The results also showed that

melatonin level was significantly higher after knocking down per by

24 hours. (Fig. 8).

Discussion

Melatonin was previously identified as a hormone that affects

melanophore concentration in frog tadpole [48]. Structurally, it is
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Figure 1. NAT-ir, PER-ir, CYC-ir and CLK-ir in the brain of A. pernyi, early pupal stage. (A) The topography of immunoreactive cells. Lower-
case letters in the map indicate regions shown in the photographs (e.g., b is the site of B). (B) Two PER-ir neurons in the dorsolateral protocerebrum
(DL). (C) Two NAT-ir neurons in the adjacent section to B in the DL. (D) CYC-ir in the DL region. (E) Two large CLK-ir neurons in the adjacent section to
D in DL region. (F, I, L) CYC/CLK/NAT-ir in the DL region, respectively. (G, J, M) PER-ir in the same sections as (F, I, L) in the DL region, respectively. (H, K,
N) Merged image of PER-ir and CYC/CLK/NAT-ir respectively in the DL region. (O) hMT2-ir in the DL regio. (P) PTTH-ir in the DL region. (Q) Merged
image of hMT2- and PTTH-ir in the DL region. (L) MT-ir in the DL region. (M) PTTH- ir in the DL region. (N) Merged image of PTTH-ir and MT-ir in the DL
region. Scale bars = 100 mm (B–E) and 100 mm (F–N).
doi:10.1371/journal.pone.0092680.g001
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an indolamine, and among many vertabrates it is synthesized in

the pineal organ, retina and gastrointestinal organs [49]. It is

found in a wide range of organisms, including Paramecium, through

higher plants, thus indicating that it has phylogenetically ancient

origins. In early 1970s, it was found that the pineal organ contains

circadian oscillations and that the organ synthesizes melatonin in a

highly rhythmic manner due to an enzyme, arylalkylamine N-

acetyltransferase (aaNAT). aaNAT is highly photosensitive and

Figure 2. Changes in melatonin content and aaNAT activity in the brain-SOG in A. pernyi. Data are presented as mean 6 SEM, n = 4–6 for
each time point and treatment. A) Melatonin content at different Zeitgeiber times (ZTs), 2–3 days adults were kept under LD 16:8 and 12:12 at 25uC.
Melatonin content was measured by RIA. B) Activity of aaNAT after diapause pupae were stored for designated months at 4uC. C) aaNAT activity after
diapause pupae were kept for designated cycles of LD 16:8 The activity was measured by radioenzymatic assay at pH 7.6 and 8.6. *P,0.05, **P,0.01.
doi:10.1371/journal.pone.0092680.g002

Figure 3. A diagramatic figure showing cis-elements in the promotor region of nat. Two perfect E-boxes (CACGTG) in orange, 4 canonical
E-boxes (CANNTG) in pink, 2 CREs (NNNCGTCA) in red and 2 TATA motifs (TATAAA or TATAAAA) in blue were recognized.
doi:10.1371/journal.pone.0092680.g003
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critical to photoentrainment in the melatonin rhythm; in some

species, its levels fluctuate several hundred fold, in a circadian

manner. Melatonin functions as an endocrine or biochemical

token of uninterrupted darkness.

Although NAT sequences are not highly-conserved between

vertebrates and invertebrates and roles for melatonin in inverte-

brate circadian rhythm regulation remain inconclusive, many lines

of evidence suggest that, as seen in vertebrates, equivalent system

also plays a critical role invertebrates. Melatonin has been

identified by GC-mass analysis from locust compound eyes [50].

B. mori, which is taxonomically closely related to A. pernyi, has also

shown a circadian rhythm for melatonin levels and has enzymatic

activities of NAT and HIOMT [51]. Also, melatonin intake

synchronized a locomotor rhythm in the house cricket, Acheta

domestica [52].

PER-, CYC-, CLK-, HIOMT-, melatonin- and NAT-ir were

found to be coexpressed in the dorsolateral neurosecretory cells.

This suggests that these neurons function as circadian clock

neurons. Importantly, the most external set of these putative clock

neurons in the dorsal region of the protocerebrum in A. pernyi are

juxtaposed to PTTH-secreting cells that expressed MT-ir. Takeda

et al., [1] have shown rhythmic fluctuations of melatonin content

in the BR-SOG of A. pernyi by RIA under LD cycles. These results

Figure 4. Real time PCR analyses of Ap nat, Ap clk and Ap cyc
transcriptional levels. Transcriptional rhythms of the three genes
have the same acrophase at Zt 12. *P,0.05, **P,0.01, ***P,0.001.
doi:10.1371/journal.pone.0092680.g004

Figure 5. Photoperiodic terminations of diapause puape after RNAi against nat. dsRNAs against Ap nat (dsRNANAT) or GFP (dsRNAGFP) were
injected into the pupae. Nuclease-free water (NFW) is used as negative control (Cont.). The control and treated pupae were placed under LD 16:8 or
12:12. A) NFW- injected group and dsRNAGFP- injected group responded to long-day photoperiod producing moth emergence at 100% after 40 days
under long-day condition but dsRNANAT- injected group stayed in diapause for 40 days even under LD 16:8. B) On the contrary, under LD 12:12 all
groups produced moth emergence not more than 20% after 40 days. n = 25–30 for each treatment.
doi:10.1371/journal.pone.0092680.g005
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strongly suggest that melatonin is the output messenger of the

circadian clock cells in A. pernyi.

An approximate 4–6 hour lag was observed between per mRNA

and PER protein expression in D. melanogaster [53]. This time lag is

due to the combination of accumulation of mRNA and

degradation of protein. The present study may show that A. pernyi

has a somewhat unique biological clock system different from that

of D. melanogaster. PER of A. pernyi, as in P. americana, does not

exhibit massive migration to the nucleus, even though a trace

amount of PER does make a nuclear translocation [54] and the

nuclear localization signal (NLS) is present, although its sequence

is less conserved between Drosophila and Antheraea than between

Drosophila and Periplaneta.

Pigment dispersing factor (PDF), thought to be the output

messenger of the biological clock in D. melanogaster [18] is not co-

localized in PER-expressing cells in A. pernyi [2]. These results

suggest that the clock cells entrain a melatonin rhythm, but not

PDF in A. pernyi, and melatonin may signal the endocrine effector,

PTTH. This notion is supported by the fact that repeated injection

of melatonin in vivo terminated diapause [55]. As Richiter et al.,

[56] have reported, melatonin stimulates PTTH secretion in an

in vitro system in P. americana, and inhibited it. This effect was

blocked by luzindole, a melatonin receptor antagonist.

In addition to the photoperiodic clock itself, photoperiodism

requires a counter, or accumulator, in order for a threshold of the

number of effector signals to be reached to execute a hormonal

switch in a developmental program. The ‘‘melatonin’’ synthesis or

transcript accumulation of nat could serve as this critical

information.

The presence of MT-ir on PTTH cells also suggests that

melatonin could release or gate the release of PTTH. Photope-

riodism has long been speculated as a function of circadian systems

and it is this subject that the ‘‘father of chronobiology’’, Colin S.

Pittendrigh, examined in his last study [57], however the

molecular nature of this function remains unresolved. The current

results align nearly all of the functional subunits comprising the

photoperiodic system along the indoleamine pathway in A. pernyi;

with the exception of the photoreceptor, this includes the circadian

clock, photoperiodic counter and the endocrine switch mecha-

nism.

It must be noted that two serotonin (5HT) receptors have been

found in the PTTH neurons in this species. Although ‘‘melatonin’’

Figure 6. Effect of dsRNAs injections against some circadian clock genes on nat transcription. Data are presented as mean 6 SEM, n = 5–
8 for each time point and treatment. Pupae were maintained under LD 12:12. A) dsRNAs of cyc, clk, and GFP were synthesized and injected to
diapause pupae. NFW is used as negative control (Cont.). dsRNACYC and dsRNACLK suppressed nat transcription. B) dsRNAPER up-regulated nat
transcriptional levels after 24 hours from injection of dsRNAPER. *P,0.05, **P,0.01, ***P,0.001.
doi:10.1371/journal.pone.0092680.g006
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Figure 7. Effect of dsRNA against per on adult emergence under LD and SD. Pupae were injected with dsRNAPER, dsRNAGFP and NFW (-
negative control) (Cont.). n = 25–30 for each treatment. A) Diapause was terminated after injection of dsRNAPER even under short-day (LD 12:12). B)
Injection of dsRNAPER showed no difference from the controls under long-day (LD 16:8).
doi:10.1371/journal.pone.0092680.g007

Figure 8. Effect of injection of dsRNAs against nat and per on melatonin level. Data are presented as mean 6 SEM, n = 15 for each time
point and treatment. Silencing nat decreased melatonin content at 48 hours after injection dsRNANAT, while knocking down per upregulated
melatonin level at 24 hours after dsRNAPER injection. *P,0.05, ***P,0.001.
doi:10.1371/journal.pone.0092680.g008
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may trigger the release of PTTH, serotonin interferes with this

release in order to more strictly regulate the process of diapause

[58]. This binary mechanism likely serves for the stability in

photoperiodic system. NAT can balance the ratio of melatonin

and 5HT. 5HTRB levels have been shown to be regulated by

photoperiod and dsRNA5HTRB injection stimulated diapause

termination even under shortened day conditions. Also 5HT

injection intensified diapause and a 5HT depletion compound, 5,7

dihydroxytryptamine, terminated it [58].

NAT activity was shown to gradually increase during diapause

termination at a low temperature and sharply increased when

exposed to a long day [1]. A parallel increase in ‘‘melatonin’’

content in the brain is expected no matter whether the synthesized

‘‘melatonin’’ is directly released or accumulated until the gated

release with a suitable quantity. Activation of nat may be affected

not only via photoperiodic conditions but also via neurotransmit-

ters, as in mammals, low temperature or other stresses. Mechan-

ical shaking can terminate pupal diapause of A. yamamai, a closely

related species of A. pernyi. Analyses of the nat promoter revealed

CRE elements, in addition to the E-boxes. PTTH release may

thus be regulated by multichannel mechanisms, though further

analyses are required in this regard.

Direct evidence that nat is the cogwheel or critical gear of

photoperiodism came from RNAi experiments. Direct engage-

ment of circadian transcription modulator CYC/CLK in nat

transcription was demonstrated by RNAi targeting of cyc and clk.

This claim is further supported by the presence of multiple E-

boxes in the promoter region of nat.

dsRNA against per also demonstrated that this photoperiodic

time measurement is based on a very common circadian system

shared by many different organisms such as fruit fly, rodents and

humans, namely a negative feedback loop. Indeed, this is a very

simple facet of the circadian clock system and one of its key

functions is indolalkylamine metabolism. It is also evolutionarily

very reasonable because melatonin is involved in many light-

mediated physiological mechanisms such as pigmentation, photo-

reception, circadian rhythms, sleep and ROX scavenging in a

wide range of organisms including Paramecium as well as higher

plants. These are collectively regarded as UV adaptations and

have an old evolutionary origin.

Disruption of photoperiodism with RNAi against circadian

clock genes has been documented in several cases in insects, for

example, the larval photoperiodic diapause of the drosophilid fly

Chymomyza costata [59] and the regulation of nymphal development

in the cricket Modicogryllus siamensis [60]. In the case of C. costata,

RNAi against tim forced the insect to express a non-diapause

phenotype, even under diapause-inducing short-day conditions

[59]. In the second case, RNAi against per produced arrhythmic

locomotor activity under light-dark conditions as well as constant

darkness [60]. In the bean bug, Riptortus clavatus, RNAi of some

circadian clock genes disrupted photoperiodic responses in

females: RNAi targeting per and cry-m influenced the ovarian

development even under diapause-inducing short-day conditions,

but RNAi against cyc suppressed ovarian development even under

non-diapause-inducing long-day conditions [61,62]. RNAi against

clk is similar to cyc RNAi, not only abolishing the cuticle deposition

rhythm but also photoperiodic response. However, these studies

have not clarified how circadian system affects photoperiodism.

Diapause initiation/maintenance and termination are two

distinct phenotypic expressions and are mutually exclusive. Our

proposed model based on the first phenotypic expression being

executed by 5HT and the second by melatonin can be explained

with a simple assumption that nat is the critical gene that regulates

1) relative amounts of seratonin and melatonin, 2) the circadian

influence on photoperiodism and 3) a discrete switch for two

exclusive phenotypic expressions. To the best of our knowledge the

current study provideds first evidence for a molecular system-

regulating pathway from the clock to endocrine switch of insect

photoperiodism in a step-by-step fashion.

Conclusion

The molecular mechanisms of photoperiodism, considered as a

function of circadian system, remain an unsolved mystery.

Through employing RNAi, immunohistochemistry, RIA and

radioenzymatic assay to a classical system of insect endocrinology,

Antheraea pernyi, we demonstrated that arylalkylamine N-acetyl-

transferase (aaNAT) is the critical conjunct between the circadian

system to the endocrine switch releasing or blocking the release of

prothoracicotropic hormone (PTTH), and avoiding/terminating

or initiating/maintaining pupal diapause, respectively. dsRNANAT

disrupted photoperiodic effect, dsRNACLK or CLC suppressed NAT

transcription, which showed that: the aaNAT is a circadain-

controlled gene, and the circadian transcription factor CLK/CYC

heterodimer binds to E-boxes in the upstream regulatory region of

nat. RNAi against PER, a repressor to this binding released the

inhibition, significantly amplifying aanat transcription and resulting

in early diapause termination. The PTTH neurons have been

shown to co-express a melatonin receptor (MT)- and two 5HTRs-

ir. Repeated injections of melatonin stimulated early diapause

termination and the injection of 5HT correlated with diapause

continuation, and 5HT and melatonin antagonist injections

resulted in the opposite effect. Melatonin, NAT activity, CYC,

CLK and NAT transcription all fluctuated in circadian manner

and NAT can change the 5HT/melatonin balance in an

antagonistic manner. This parsimoniously explains all basic

elements underlying photoperiodism.

Supporting Information

Figure S1 Immunohistochemical reactivities to antisera
against (A) melatonin, (B) DmaaNAT, (C) HIOMT, and
(D) DmaaNAT in adjacent 8 mm sections (A/B and C/D).

(TIF)

Figure S2 The nucleotide sequence of the promoter
region for A. pernyi nat. Red highlighted sequences are perfect

E-boxes, brown are CRE, Pink are canonical E-boxes, blue are

TATA-motif and the green highlighted sequence is the start codon

of nat.

(TIF)

Figure S3 Effect of dsRNA injections on mRNA levels.
Diapause pupae were injected and kept under LD 12:12 at 25uC
after dsRNA injections. Data are presented as mean 6 SEM,

n = 5–8 for each time point and treatment. A) mRNAnat after

injections of dsRNAGFP and dsRNANAT. B) mRNAcyc after

injections of dsRNAGFP and dsRNACYC. C) mRNAper after

injections of dsRNAGFP and dsRNAPER. D) mRNAclk after

injections of dsRNAGFP and dsRNACLK. NFW is used as negative

control (Cont.). *P,0.05, **P,0.01, ***P,0.001.

(TIF)

Figure S4 Adult emergence after injection of dsRNANAT,
and dsRNAPER. Effect of dsRNANAT on adult emergence
under LD and SD (A, B, respectively). dsRNAPER effect on

adult emergence after keeping the diapause pupae under SD and

LD (C, D, respectively). n = 25–30 for each treatment.

(TIF)
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