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The study aimed to develop and validate a sepsis prediction model using structured electronic medical 
records (sEMR) and machine learning (ML) methods in emergency triage. The goal was to enhance early 
sepsis screening by integrating comprehensive triage information beyond vital signs. This retrospective 
cohort study utilized data from the MIMIC-IV database. Two models were developed: Model 1 based on 
vital signs alone, and Model 2 incorporating vital signs, demographic characteristics, medical history, 
and chief complaints. Eight ML algorithms were employed, and model performance was evaluated 
using metrics such as AUC, F1 Score, and calibration curves. SHapley Additive exPlanations (SHAP) 
and Local Interpretable Model-agnostic Explanations (LIME) methods were used to enhance model 
interpretability. The study included 189,617 patients, with 5.95% diagnosed with sepsis. Model 2 
consistently outperformed Model 1 across most algorithms. In Model 2, Gradient Boosting achieved 
the highest AUC of 0.83, followed by Extra Tree, Random Forest, and Support Vector Machine (all 0.82). 
The SHAP method provided more comprehensible explanations for the Gradient Boosting algorithm. 
Modeling with comprehensive triage information using sEMR and ML methods was more effective 
in predicting sepsis at triage compared to using vital signs alone. Interpretable ML enhanced model 
transparency and provided sepsis prediction probabilities, offering a feasible approach for early sepsis 
screening and aiding healthcare professionals in making informed decisions during the triage process.
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Despite global advances in sepsis management, early identification and treatment of sepsis remain critical 
challenges in emergency medicine, with persistently high morbidity and mortality rates. The 2021 American 
College of Emergency Physicians consensus statement emphasizes the importance of early recognition 
and intervention in suspected sepsis cases1. Emergency departments present a unique opportunity for early 
detection and intervention, as they are often the first point of contact for patients with severe infections. Timely 
implementation of goal-directed therapy in this setting can significantly improve patient outcomes. However, 
current approaches face significant limitations in reliably achieving early identification.

The urgency of early sepsis detection is underscored by a 7.6% decrease in survival for each hour of delayed 
treatment2,3. The 2018 Surviving Sepsis Campaign Bundle mandates critical interventions, including antibiotic 
administration and blood culture collection, within one hour of presentation4. However, achieving this target 
remains challenging due to difficulties in early identification. Epidemiological studies reveal that 86% of sepsis 
diagnoses occur at hospital admission5,6, with 75–80% of treatments initiated in emergency departments7,8. 
These findings highlight the critical role of triage in sepsis identification and the pressing need for reliable early 
warning tools that can be implemented at the initial point of patient contact.

Traditional scoring systems such as NEWS, MEWS, and qSOFA have played valuable roles in clinical decision-
making, particularly in mitigating cognitive biases as demonstrated in recent studies9. However, these systems have 
shown limited effectiveness in sepsis prediction10–15, with qSOFA demonstrating particular weakness compared 
to NEWS and MEWS for early detection16–19. The Third International Consensus Definitions for Sepsis and 
the 2021 Sepsis Guidelines acknowledge these limitations20,21, recommending more comprehensive screening 
approaches for high-risk patients. While these scoring systems provide structured evaluation frameworks and 
reduce clinical judgment biases, their reliance on vital signs alone limits their utility as standalone tools for sepsis 
screening. Recent advances in healthcare technology, particularly in machine learning, offer the potential to 
retain the benefits of standardized assessment while significantly improving predictive accuracy.

Modern healthcare infrastructure, particularly structured electronic medical records (sEMR), enables the 
integration of comprehensive patient data—including vital signs, demographics, medical history, and chief 
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complaints—into advanced analytical systems22,23. Machine learning (ML) models leveraging this rich data have 
demonstrated superior performance in critical illness prediction compared to traditional approaches22,24,25. 
Although the application of machine learning in sepsis prediction is an active area of research, most existing 
studies focus on inpatient or ICU patients rather than triage-stage data. Additionally, its “black box” nature and 
lack of interpretability remain significant barriers to clinical adoption26. Addressing these challenges is essential 
to ensuring that ML models provide actionable insights and are trusted by healthcare professionals.

This study aims to develop an interpretable ML framework that leverages comprehensive triage data to 
enhance sepsis prediction while ensuring clinical transparency. By incorporating SHapley Additive exPlanations 
(SHAP) and Local Interpretable Model-agnostic Explanations (LIME)27, the model not only improves predictive 
accuracy but also provides actionable insights into sepsis risk factors, empowering clinicians to make informed 
and timely decisions during critical triage processes.

Methods
Study design and data source
This was a retrospective cohort study designed according to the transparent reporting of a multivariable 
prediction model for individual prognosis or diagnosis statements28. All data were obtained from the Medical 
Information Mart for Intensive Care IV (MIMIC-IV version 1.4) database, which contains the clinical 
information of patients in the emergency department, inpatient department, and intensive care unit of the 
Beth Israel Deaconess Medical Center, USA from 2008 to 2019. The database was developed by Massachusetts 
Institute of Technology’s Computational Physiology Laboratory and was approved by the Institutional Review 
Committees of Massachusetts Institute of Technology and Beth Israel Deaconess Medical Center. As the original 
data were anonymized and desensitized, the study was approved by the Hospital Ethics Committee. The data for 
this study were extracted by author ZL, who completed the examination of the training plan of the cooperative 
organization (Record ID 45797033).

Study population
Information on adult patients (age ≥ 18 years) in the emergency department was extracted from the MIMIC-
IV-ED database. To ensure the accuracy and completeness of the patient information, we excluded patients who 
had no hospitalization information.

Outcomes
The outcome of the prediction model in this study was sepsis, and the diagnosis of sepsis was based on the 2016 
international guidelines sepsis 3.0 criteria2. As the patients’ visit time in the MIMIC-IV database was from 2008 
to 2019, the data extraction of sepsis in this study was not based on the International Classification of Diseases 
(ICD) code, but the diagnostic criteria of sepsis 3.0. The MIMIC-IV codebase provides the extracted code of 
sepsis 3.0, which can be obtained directly.

Predictor variables
The predictors collected in Supplementary Materials Box1 were based on all possible outcomes-related indicators 
of a patient at the time of emergency triage, including vital signs, demographic characteristics, medical history, 
and chief complaints. For vital signs, we extracted information on the body temperature, heart rate, respiratory 
rate, systolic blood pressure (SBP), diastolic blood pressure (DBP), and pain index. Regarding demographic 
characteristics, we extracted information on sex and age, and age was calculated by subtracting the date of birth 
from the date of hospitalization. The body mass index was not calculated because nearly 1/2 of the patients in 
the MIMIC database had missing height data, and in reality, most emergency departments could not obtain 
body mass index data during triage. For chronic diseases, we screened for common chronic diseases probably 
related to sepsis or having a poor prognosis according to clinical experience and guidelines29,30. For free-text 
chief complaints, we employed natural language processing techniques to address issues of spelling errors and 
language inconsistencies. This involved using spell-checking and text normalization techniques. For complex or 
ambiguous texts that could not be automatically corrected, we conducted manual reviews and made appropriate 
adjustments based on the specific context. The suspected infection was defined as the presence of fever, cough, 
diarrhea, sore throat, chills, cellulitis, and an external abscess visible to the naked eye.

Missing and extreme values
Only complete data were analyzed in this study. Because of the relatively small number of missing values and 
large sample size in this study, we removed all missing values. Similarly, we removed the extreme values of the 
numerical variables based on the clinical situation, as shown in Fig. 1. To improve the accuracy of the model, we 
used a normalization method to scale all the variables and map the data to the [0,1] interval.

Statistical analysis
In this study, continuous variables were described using the median and interquartile range, and the Mann–
Whitney U test was used to determine differences between groups. Categorical variables were described using 
frequencies and percentages, and group comparisons were made using the chi-square test or Fisher’s exact test.

The data were randomly divided into a training set (80%) and test set (20%). We compared two models in 
our study: Model 1, which was based on vital signs alone, and Model 2, which included vital signs, demographic 
characteristics, medical history, and chief complaints. In our research, we selected eight widely-used and diverse 
machine learning algorithms based on their differing assumptions, learning mechanisms, and applicability to 
clinical prediction tasks:
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•	 Logistic Regression (LR): Chosen as the baseline linear model due to its simplicity, interpretability, and fre-
quent use in medical research.

•	 Decision Tree and Extra Tree: Tree-based models were included for their interpretability, ability to handle 
non-linear relationships, and complementary characteristics, with Extra Tree leveraging random splits for 
additional variability.

•	 Gradient Boosting and Random Forest: Modern ensemble learning methods known for their robustness, 
strong predictive performance, and effectiveness in handling large datasets with complex patterns.

•	 k-Nearest Neighbor (KNN) and Support Vector Machine (SVM): Non-linear algorithms were selected to 
evaluate their ability to capture local and non-linear relationships in the data.

•	 Naive Bayes: Included for its probabilistic framework and computational efficiency, providing a contrasting 
approach to tree-based and ensemble models.

Class imbalance can lead to overfitting and suboptimal performance in machine learning models. In this 
dataset, the majority class (non-septic patients) accounts for 94.05%, whereas the minority class (septic patients) 
represents only 5.95%. To investigate the impact of class imbalance handling on model performance, we 
used the LR algorithm as an example and compared the performance of three resampling methods (SMOTE, 
SMOTE Tomek, and RandomUnderSampler) with the original, non-resampled data in Models 1 and 231. 
The model performance was evaluated using metrics including Precision, Sensitivity, and F1-Score, with 
a primary focus on improving the prediction ability for the minority class (septic patients). By adjusting the 
regularization parameters to control model complexity, we aimed to improve the model’s generalization ability 
and performance. The performance of different algorithms on the test set was evaluated using several metrics: F1 
Score, Accuracy, Sensitivity, Specificity, Area Under the Precision-Recall Curve (AUC-PR), Positive Predictive 
Value (PPV), Negative Predictive Value (NPV), Area Under the ROC Curve (AUC), Brier Score, calibration 
curves, and Decision Curve Analysis (DCA) curves.

Based on the characteristics of the algorithms, either SHAP or LIME methods were used for interpretation. 
In our study, SHAP was applied to the Gradient Boosting and Random Forest models due to its ability to provide 
comprehensive feature importance insights for tree-based models. LIME enables rapid interpretation of any 
model, providing quick insights into model predictions. However, it falls short in effectively capturing the overall 
model performance and the complex interactions between features. SHAP’s slower computation speed in the 
context of Extra Tree and SVM limits its practical applicability in clinical settings.

Data extraction was conducted using Navicat Premium software (version 15.0), while statistical analysis and 
ML were carried out with R (version 4.1.3, The R Foundation for Statistical Computing, Vienna, Austria) and 
Python (version 3.8.5, Python Software Foundation). The main code and libraries used in the ML section of this 
study were detailed in the Supplementary Materials.

Fig. 1.  Flow Chart. MIMIC Medical Information Mart for Intensive Care, SBP systolic blood pressure, DBP 
diastolic blood pressure, o2sat oxygen saturation, AUC area under the receiver operating characteristic curve, 
AUC-PR area under the precision-recall curve, PPV positive predictive value, NPV negative predictive value, 
SHAP SHapley Additive exPlanations, LIME Local Interpretable Model-agnostic Explanations.
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Results
Study population
This study included 189,617 patients: 178,343 (94.05%) non-septic patients and 10,824 (5.95%) septic patients 
(Table 1). Of the 171,584 patients without symptoms of infection, 9,095 (5.3%) were septic patients and of the 
17,313 patients with symptoms of infection, 1,729 (10.0%) were septic patients (Supplementary Materials Table 
S1). In this study, most symptoms had a different proportion of septic patients (Supplementary Materials Table 
S1).

Impact of resampling on the data
The results showed that SMOTE, SMOTE Tomek, and RandomUnderSampler all significantly improved 
the Precision, Sensitivity, and F1-Score of the minority class compared to the original non-resampled data 
(Supplementary Materials Table S2), with their performances being relatively similar. Considering that the 
RandomUnderSampler relies solely on real data, it avoids the risk of overfitting associated with synthetic 
sample generation and requires fewer computational resources. Given the large-scale dataset and the need for 
multi-model analysis in this study, random undersampling was selected as the primary method to address class 
imbalance, achieving a balance between performance and computational efficiency.

Validation results of free-text preprocessing
To evaluate the performance of text preprocessing, we conducted validation on key steps of the workflow. For 
spell-checking, 500 randomly selected entries were manually reviewed, achieving a correction accuracy of 94.2% 
and a false positive rate of 4.5%, with most errors occurring in medical terms. For text normalization, a random 
sample of 300 entries showed a consistency improvement rate of 87.6%, with abbreviations such as “SOB” 
successfully standardized to "shortness of breath."

Performance of the models
Figure 2 showed a comparison of AUC values for sepsis prediction using two models across eight algorithms. 
Except for Naive Bayes, Model 2 showed a significant improvement over Model 1 in all cases (Table 2). In Model 
2, the AUC values of the eight algorithms, listed from highest to lowest, were as follows: Gradient Boosting 
(0.83), Extra Tree (0.82), Random Forest (0.82), SVM (0.82), LR (0.79), KNN (0.76), Naive Bayes (0.74), and 
Decision Tree (0.65). The training set performance metrics of Model 2 were presented in the Supplementary 
Materials (Table S3). By comparing the performance metrics between the training and testing sets, we found 
that most algorithms demonstrated consistent performance without significant overfitting. Table 3 presents the 
overall performance, discrimination, and calibration metrics of different algorithms across the two models. We 
selected the four ML algorithms with the best AUC performance in Model 2—Gradient Boosting, Extra Tree, 
Random Forest, and SVM—for further comparison. The calibration curves showed good performance for all 
four algorithms (Fig. 3a), and the DCA curves demonstrated that Gradient Boosting slightly outperformed the 
other three algorithms (Fig. 3b). Table 4 showed that Gradient Boosting achieved the highest net benefit (0.47) 
at the 5% threshold, outperforming Extra Tree (0.41), Random Forest (0.44), and SVM (0.44), with a consistent 
advantage observed across clinically relevant thresholds.

Feature importance and interpretation of the models
Figure 4 shows the feature importance for each of the top-performing four ML algorithms in Model 2. Using 
Case 1 as an example, we interpreted the predictions of the four algorithms and provided the probability of 
sepsis occurrence (Fig. 5). Generally, a probability of less than 20% indicates a low risk; 20%-50% suggests that 
observation might be appropriate; above 50% requires attention; and over 80% is highly suggestive of sepsis. The 
probabilities of sepsis predicted by the four algorithms were: Gradient Boosting (47%), Random Forest (50%), 
Extra Tree (46%), and SVM (64%). The explanations provided by the SHAP method were more comprehensible 
(Fig. 5).

Discussion
Our study found that modeling with more comprehensive triage information, rather than relying solely on 
vital signs, can more effectively predict sepsis at triage. The best-performing machine learning algorithm was 
Gradient Boosting, achieving an AUC of 0.83. The SHAP method enhanced the model’s transparency through 
improved interpretability.

The 2016 sepsis guidelines recommend screening for infections or suspected infections2. However, defining 
these terms is challenging, as early sepsis symptoms may not align with infection indicators. Our study found no 
international consensus, with definitions often based on physician experience. We identified suspected infections 
by symptoms like fever, cough, or visible abscesses. As shown in Table S1, 10% of patients with suspected 
symptoms and 5.3% without were septic. This suggests that screening based solely on suspected infections may 
miss cases. Early sepsis signs are often non-specific1,6–8,30, with many cases lacking fever, especially in older 
or immunocompromised individuals. Approximately one-third of sepsis cases lack fever, presenting instead 
with symptoms like hypothermia or altered mental status32, and about 20% of septic shock patients show no 
early infection signs30. Additionally, 20%-40% of suspected infections are non-infectious33,34. Therefore, sepsis 
screening should encompass all patients, not just those with suspected infections.

Sepsis is highly heterogeneous, making early prediction, particularly during triage, quite challenging. 
Furthermore, traditional warning models are designed to predict critical illness rather than sepsis, highlighting 
the need for remodeling. Additionally, these models convert vital signs into categorical variables for ease of 
application, which can somewhat diminish predictive efficiency. We initially explored the maximum efficacy 
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Variable Non-Sepsis (n = 178,343) Sepsis (n = 10,824) P-Value

Vital signs in triage

 Oxygen saturation (%) 98 (97, 100) 96 (95, 99.)  < 0.001

 Heart rate (beats/min) 84 (73, 97) 93 (78, 110)  < 0.001

 Respiratory rate (times/min) 17 (16, 18) 19 (16, 20)  < 0.001

 Temperature range (℃) 36.7 (36.4, 37.0) 37.1 (36.5, 37.3)  < 0.001

 Systolic blood pressure (mmHg) 133 (119, 150) 122 (105, 141)  < 0.001

 Diastolic blood pressure (mmHg) 76 (66, 86) 69 (58, 80)  < 0.001

 Pain index 3 (0, 7) 0 (0, 7)  < 0.001

Demographic characteristics

 Age (year) 58 (43, 71) 66 (54, 77)  < 0.001

 Male [n (%)] 86,666 (48.6%) 5954 (55.0%)  < 0.001

Past history [n (%)]

 Smoke 34,322 (19.2%) 3158 (29.2%)  < 0.001

 Chronic obstructive pulmonary disease 973 (0.5%) 176 (1.6%)  < 0.001

 Chronic kidney diseases 24,897 (14.0%) 2808 (25.9%)  < 0.001

 Chronic heart failure 5325 (3.0%) 824 (7.6%)  < 0.001

 Coronary heart disease 30,818 (17.3%) 2950 (27.3%)  < 0.001

 Tumor 5166 (2.9%) 462 (4.3%)  < 0.001

 Hypertension 31,405 (17.6%) 1931 (17.8%) 0.541

 Diabetes 45,305 (25.4%) 3939 (36.4%)  < 0.001

 Cirrhosis 5701 (3.2%) 1056 (9.8%)  < 0.001

Chief complaints [n (%)]

 Fever 8597 (4.8%) 1302 (12.0%)  < 0.001

 Chills 360 (0.2%) 42 (0.4%)  < 0.001

 Tachycardia 1042 (0.6%) 175 (1.6%)  < 0.001

 Weakness 8043 (4.5%) 704 (6.5%)  < 0.001

 Diarrhea 2038 (1.1%) 116 (1.1%) 0.499

 Dizziness 3900 (2.2%) 118 (1.1%)  < 0.001

 Dyspepsia 12,855 (7.2%) 1372 (12.7%)  < 0.001

 Headache 3476 (1.9%) 134 (1.2%)  < 0.001

 Fatigue 763 (0.4%) 34 (0.3%) 0.076

 Blood pressure low 1090 (0.6%) 485 (4.5%)  < 0.001

 Blood pressure high 785 (0.4%) 18 (0.2%)  < 0.001

 Lethargy 941 (0.5%) 229 (2.1%)  < 0.001

 Jaundice 782 (0.4%) 126 (1.2%)  < 0.001

 Syncope 3374 (1.9%) 112 (1.0%)  < 0.001

 Abscess 756 (0.4%) 48 (0.4%) 0.761

 Mantal altered 3665 (2.1%) 729 (6.7%)  < 0.001

 Swelling 4346 (2.4%) 181 (1.7%)  < 0.001

 Anxiety 1100 (0.6%) 6 (0.1%)  < 0.001

 Palpitations 1503 (0.8%) 25 (0.2%)  < 0.001

 Hemoptysis 429 (0.2%) 79 (0.7%)  < 0.001

 Hematuria 1016 (0.6%) 62 (0.6%) 0.967

 Nausea or vomiting 9767 (5.5%) 531 (4.9%) 0.011

 Bradycardia 342 (0.2%) 22 (0.2%) 0.791

 Cough 3524 (2.0%) 291 (2.7%)  < 0.001

 Sore throat 761 (0.4%) 35 (0.3%) 0.107

 Dysuria 806 (0.5%) 34 (0.3%) 0.036

 Cellulitis 794 (0.4%) 27 (0.2%) 0.003

 Hyperglycemia 1550 (0.9%) 134 (1.2%)  < 0.001

 Hypoglycemia 503 (0.3%) 37 (0.3%) 0.258

 Seizure 1841 (1.0%) 118 (1.1%) 0.564

 Rash 715 (0.4%) 27 (0.2%) 0.014

 Gastrointestinal bleeding 1261 (0.7%) 171 (1.6%)  < 0.001

 Slurred speech 637 (0.4%) 35 (0.3%) 0.566

Continued
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of predicting sepsis based on triage vital signs using the AUC value. The best-performing algorithm was 
Gradient Boosting, with an AUC of 0.76, compared to the traditional LR algorithm, which had an AUC of 
0.72 (Fig.  2a,d). Previous studies have demonstrated that certain demographic characteristics and medical 
histories are risk factors for sepsis, such as age ≥ 65  years, diabetes, chronic kidney disease, cirrhosis, and 
cancer30,35–37. Additionally, some symptoms have been shown to correlate with the occurrence of sepsis29,32. For 
instance, psychiatric symptoms are positively correlated37,38, while abdominal pain and chest pain are negatively 
correlated39. Demographic information, medical history, and chief complaints are structured data that can be 
obtained through sEMR during triage and analyzed using machine learning algorithms. In our Model 2, the 
best AUC value was 0.83 for Gradient Boosting, demonstrating a significant improvement over traditional 
models. While the improvement in AUC from 0.72 to 0.83 may appear modest, this enhancement represents 
a clinically meaningful advancement in sepsis prediction. Given that each hour of delayed treatment results in 
a 7.6% decrease in survival rate, even incremental improvements in early detection accuracy can translate to 
significant clinical benefits. Our model leverages existing electronic medical record infrastructure and readily 
available triage data, making implementation both feasible and cost-effective. Although traditional scoring 
systems (NEWS, MEWS, qSOFA) require minimal resources, their limited effectiveness in early sepsis detection 
may result in higher downstream costs due to delayed interventions. Furthermore, our model’s interpretability 
features provide clear, actionable insights that support clinical decision-making, potentially improving workflow 
efficiency in emergency settings. These advantages justify the implementation of our improved model, as the 
potential benefits in patient outcomes outweigh the modest resource requirements.

The differences in predicted sepsis probabilities among the algorithms (e.g., Gradient Boosting at 47% vs. 
SVM at 64%) can be attributed to the fundamental differences in their learning mechanisms and probability 
calibration. Tree-based models, such as Gradient Boosting and Random Forest, tend to provide more conservative 
and better-calibrated probability estimates due to ensemble smoothing, while SVM is more sensitive to features 
near decision boundaries, which can lead to higher or more variable probabilities. These discrepancies highlight 
the need for caution when interpreting probabilities, particularly in clinical settings. We compared eight 
common ML algorithms, and Gradient Boosting consistently performed the best across all metrics, including 
AUC and other model evaluation criteria. Gradient Boosting excels at capturing complex nonlinear interactions 
among diverse clinical features while reducing overfitting. Previous studies have consistently demonstrated that 
Gradient Boosting is among the best-performing algorithms for predicting critical illness and hospitalization 
rates across various clinical datasets and methodologies. For example, in a study predicting hospital mortality 
in ICU patients, Gradient Boosting exhibited superior performance compared to traditional scoring systems 
such as APACHE II, achieving an accuracy of 0.86 and an area under the ROC curve (AUC) of 0.8140. Similarly, 
Gradient Boosting Decision Trees were successfully employed in a population-based study to predict unplanned 
hospitalizations, achieving promising AUC values ranging from 0.789 to 0.80241. In the context of emergency 
department triage, a Gradient Boosting model stood out by predicting early mortality with an AUC of 0.962, 
highlighting its effectiveness in identifying high-risk patients42. These findings collectively underscore the 
robustness of Gradient Boosting algorithms in healthcare predictive analytics, particularly in critical care 
settings. In our study, the preference for Gradient Boosting aligns with its well-documented strengths in 
handling complex, non-linear relationships and datasets with missing or imbalanced variables, both of which are 
common challenges in sepsis prediction. Compared to alternative algorithms, Gradient Boosting also provided 
better-calibrated probabilities and feature importance metrics (as analyzed using SHAP values), thereby 
enhancing interpretability and actionable insights for clinical settings. These findings collectively underscore 
the robustness and adaptability of Gradient Boosting in healthcare predictive analytics, particularly in critical 
care and emergency contexts where timely and accurate predictions are crucial. The DCA demonstrated that 
Gradient Boosting achieved the highest net benefit across clinically relevant thresholds, particularly at the 5% 
threshold where early sepsis detection is critical. Its higher net benefit at lower thresholds reflects an optimal 
balance between sensitivity and specificity, effectively capturing more true positives while minimizing false 
positives. This is especially important for early intervention, which can significantly improve patient outcomes. 
Although net benefit decreased as thresholds increased, Gradient Boosting consistently outperformed other 
models, highlighting its robustness and potential to enhance clinical decision-making in sepsis risk prediction.

Variable Non-Sepsis (n = 178,343) Sepsis (n = 10,824) P-Value

 Gait unsteady 643 (0.4%) 23 (0.2%) 0.012

 Wound 3375 (1.9%) 175 (1.6%) 0.040

 Lightheaded 776 (0.4%) 29 (0.3%) 0.009

 Fall 8521 (4.8%) 382 (3.5%)  < 0.001

 Chest pain 15,331 (8.6%) 444 (4.1%)  < 0.001

 Abdominal pain 24,282 (13.6%) 1224 (11.3%)  < 0.001

 Back pain 4832 (2.7%) 180 (1.7%)  < 0.001

 Flank pain 1880 (1.1%) 76 (0.7%)  < 0.001

 Arm pain 962 (0.5%) 26 (0.2%)  < 0.001

 Arthralgia pain 4505 (2.5%) 101 (0.9%)  < 0.001

 Limb pain 4876 (2.7%) 150 (1.4%)  < 0.001

Table 1.  The relationship between sepsis as an outcome and each variable.
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The purpose of interpretability in ML is to enhance model transparency, thereby effectively assisting 
healthcare professionals in decision-making. SHAP and LIME both have their pros and cons in explaining 
machine learning models. SHAP is theoretically robust and fairly allocates contribution values to each feature, 
explaining the difference between an individual sample’s predicted value and the model’s average. However, it 
can be computationally intensive. LIME, while lacking a strong theoretical foundation and not guaranteeing fair 
attribution of predicted values to features, is versatile and applicable to most models without requiring specific 
types43. In our study, the SHAP method provided explanations that were easier to understand and was highly 
compatible with the Gradient Boosting algorithm, eliminating concerns about computational speed. In scenarios 
where triage resources are limited, the high heterogeneity and atypical presentation of sepsis make early screening 
challenging yet highly valuable. We are the first to use interpretable ML to explore sepsis prediction based on 
more comprehensive triage information. By integrating sEMR with machine learning, we can quickly output 
sepsis prediction probabilities and explanations during triage, rather than just simple prediction outcomes. This 
approach offers feasibility for early sepsis screening and intervention in busy and resource-limited emergency 
settings. However, while our ML model demonstrates promising performance in sepsis prediction, its successful 

Fig. 2.  Comparison of ROC Curves of Different Algorithms on Two Models. (a) Logistic Regression; (b) 
Decision Tree; (c) Extra Tree; (d) Gradient Boosting; (e) k-Nearest Neighbor: (f) Naive Bayes; (g) Random 
Forest; (h) Support Vector Machine. ROC receiver operating characteristic curve, AUC area under the receiver 
operating characteristic curve.
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implementation in clinical practice still faces several challenges. Specifically, the integration of ML models into 
existing electronic medical record systems requires user-friendly interfaces to ensure predictions are presented 
in an intuitive and actionable format. Moreover, clinician education programs are essential to help healthcare 
professionals understand the model’s capabilities and properly interpret its outputs. Thus, future work should 
prioritize developing interfaces that seamlessly integrate with existing workflows and establishing training 
protocols to support effective model deployment in emergency department settings.

This study has several limitations that merit discussion. Firstly, the chief complaint content is unstructured 
data, and even with the use of natural language processing techniques, inevitable errors and inconsistencies 
may arise,  potentially limiting the model’s accuracy and generalizability.  Secondly, while the removal of 
missing and extreme values was implemented to improve data quality, this approach might have introduced 
bias or inadvertently excluded clinically significant outliers. Therefore, the application of advanced imputation 
techniques and sensitivity analyses in future studies could better evaluate the impact of these handling methods 
on model performance44. Additionally, although eight widely-used machine learning algorithms were employed, 
the selection process in this study was not as systematic as it could have been. Hence, future research could adopt 
a more structured approach to algorithm selection, including the exploration of newer methods and conducting 
thorough preliminary assessments to identify the most appropriate algorithms for specific clinical prediction 
tasks. Furthermore, to address the variability in predicted probabilities among different algorithms, combining 
predictions from multiple models (e.g., ensemble averaging) or applying advanced probability calibration 

F1 Score Accuracy Sensitivity (Recall) Specificity AUC-PR Precision (PPV) NPV Brier score

Model 1

 LR 0.66 0.67 0.63 0.71 0.73 0.68 0.66 0.21

 Decision Tree 0.60 0.60 0.60 0.59 0.70 0.60 0.60 0.39

 Extra Trees 0.66 0.68 0.65 0.70 0.73 0.68 0.67 0.20

 Gradient Boosting 0.68 0.70 0.65 0.75 0.76 0.72 0.68 0.19

 KNN 0.62 0.64 0.59 0.67 0.69 0.64 0.62 0.24

 Naive Bayes 0.60 0.67 0.49 0.85 0.73 0.76 0.62 0.22

 Random Forest 0.67 0.68 0.65 0.70 0.73 0.68 0.67 0.20

 SVM 0.67 0.70 0.62 0.77 0.75 0.73 0.67 0.20

Model 2

 LR 0.72 0.73 0.71 0.73 0.79 0.72 0.72 0.18

 Decision Tree 0.64 0.65 0.65 0.66 0.73 0.64 0.64 0.35

 Extra Trees 0.74 0.75 0.74 0.76 0.80 0.75 0.74 0.17

 Gradient Boosting 0.75 0.75 0.74 0.78 0.83 0.77 0.74 0.16

 KNN 0.68 0.70 0.65 0.76 0.76 0.72 0.68 0.20

 Naive Bayes 0.71 0.71 0.72 0.70 0.74 0.70 0.71 0.25

 Random Forest 0.74 0.74 0.75 0.74 0.81 0.73 0.74 0.17

 SVM 0.74 0.75 0.73 0.76 0.81 0.75 0.74 0.17

Table 3.  Performance of different algorithms in models 1 and 2. LR Logistic Regression, KNN K-Nearest 
Neighbors, AUC area under the receiver operating characteristic curve, AUC-PR area under the precision-
recall curve, PPV positive predictive value, NPV negative predictive value, SVM Support Vector Machine. 
Model 1 utilizes vital signs for modeling, Model 2 incorporates vital signs, demographics, medical history, 
and chief complaints. Note: Sensitivity and Recall refer to the same metric and are used interchangeably in the 
table. Similarly, Precision is equivalent to PPV.

 

Algorithm Model 1 (AUC) Model 2 (AUC) DeLong Test (z) p-value

LR 0.72 0.79 − 4.3391  < 0.001

Decision Tree 0.60 0.65 − 4.2912  < 0.001

Extra Trees 0.73 0.82 − 5.8787  < 0.001

Gradient Boosting 0.76 0.83 − 4.6764  < 0.001

KNN 0.68 0.76 − 4.9441  < 0.001

Naive Bayes 0.74 0.74 − 0.3877 0.698

Random Forest 0.74 0.82 − 5.9244  < 0.001

SVM 0.75 0.82 − 4.3505  < 0.001

Table 2.  DeLong test-based comparison of AUC between model 1 and model 2 across different algorithms. LR 
Logistic Regression, KNN K-Nearest Neighbors, SVM Support Vector Machine, AUC area under the receiver 
operating characteristic curve.
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techniques could improve the consistency and reliability of the outputs. However, this study does not explore 
these strategies in detail, and future studies should focus on incorporating and validating such approaches to 
enhance the interpretability and usability of predictive models in real-world clinical applications. Lastly, while 
the study demonstrated promising results, further validation is essential in real-world clinical settings using 
prospective data and diverse patient cohorts.  Moreover, practical implementation of the model may also be 

Fig. 3.  Calibration Curves and Decision Curve Analysis Curves for the Four Best-Performing Algorithms in 
Model 2. (a) Calibration Curves; (b) Decision Curve Analysis Curves; SVM Support Vector Machine.
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Fig. 4.  Feature Importance of Four Algorithms in Model 2.

 

Threshold (%) Gradient boosting Extra tree Random forest SVM

5 0.47 0.41 0.44 0.44

10 0.35 0.32 0.33 0.35

20 0.20 0.18 0.19 0.19

Table 4.  Comparison of net benefits of different algorithms in DCA at various threshold probabilities in model 
2. SVM Support Vector Machine, DCA Decision Curve Analysis.
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Fig. 5.  Interpretation of Four Algorithms in Model 2. SHAP SHapley Additive exPlanations, LIME Local 
Interpretable Model-agnostic Explanations. In the SHAP method, f (X) represented the final prediction 
result, which equaled the baseline value E [f (X)] plus the sum of all variable SHAP values. The SHAP values 
quantified the quantity and direction of each variable’s influence on predicting the outcome. Blue and red 
respectively represented decreases or increases in risk, with longer arrows indicating greater effects. The 
baseline value E [f (X)] was equivalent to the average risk in the dataset. The LIME method provided the 
overall prediction probability of the model and the prediction weight for each variable. Orange indicated an 
increase in risk, while blue indicated a decrease in risk.
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influenced by factors such as existing workflows, resource availability, and other contextual considerations, 
which future studies should address to enhance the model’s applicability and reliability.

Conclusion
This study provided a feasible approach for early sepsis screening at triage. Our findings indicated that modeling 
with more comprehensive triage information using sEMR and ML methods was more effective in predicting 
sepsis at triage compared to relying solely on vital signs. Interpretable ML enhanced transparency and provided 
sepsis prediction probabilities, aiding healthcare professionals in making informed medical decisions during the 
triage process.

Data availability
Publicly available datasets were analyzed in this study. These data can be found at https://mimic.mit.edu/. The 
datasets generated during and/or analysed during the current study are available in the figshare repository, 
“https://doi.org/10.6084/m9.figshare.26098048.v1”.
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