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The functional state of mitochondria is vital to cellular and organismal aging in eukaryotes across phyla. Studies in the yeast
Saccharomyces cerevisiae have provided evidence that age-related changes in some aspects of mitochondrial functionality can
create certain molecular signals. These signals can then define the rate of cellular aging by altering unidirectional and
bidirectional communications between mitochondria and other organelles. Several aspects of mitochondrial functionality are
known to impact the replicative and/or chronological modes of yeast aging. They include mitochondrial electron transport,
membrane potential, reactive oxygen species, and protein synthesis and proteostasis, as well as mitochondrial synthesis of iron-
sulfur clusters, amino acids, and NADPH. Our recent findings have revealed that the composition of mitochondrial membrane
lipids is one of the key aspects of mitochondrial functionality affecting yeast chronological aging. We demonstrated that
exogenously added lithocholic bile acid can delay chronological aging in yeast because it elicits specific changes in mitochondrial
membrane lipids. These changes allow mitochondria to operate as signaling platforms that delay yeast chronological aging by
orchestrating an institution and maintenance of a distinct cellular pattern. In this review, we discuss molecular and cellular
mechanisms underlying the essential role of mitochondrial membrane lipids in yeast chronological aging.

1. Introduction

Mitochondria are indispensable for organismal physiology
and health in all eukaryotes [1–9]. The efficiencies with
which these organelles generate the bulk of cellular ATP
and make biosynthetic intermediates for amino acids,
nucleotides, and lipids are known to deteriorate with age
[1, 3, 5, 9, 10]. Such age-related deterioration of mitochon-
drial functionality is the universal feature of aging in evolu-
tionarily distant eukaryotic organisms [11].

Studies in Saccharomyces cerevisiae have uncovered
several mechanisms underlying the essential role of mito-
chondria in the replicative and chronological modes of aging
in this yeast [12–15]. Yeast replicative aging is assessed by
measuring the maximum number of mitotic divisions that a
mother cell can undergo before it enters a senescent state
[16–18]. The replicative mode of yeast aging is likely to

imitate not only aging of mitotically dividing human cells
[16, 17, 19–22] but also aging of postmitotic tissues and
organismal aging in nematode worms and humans [22–24].
Yeast chronological aging is evaluated by measuring the
length of time during which a cell remains viable after
becoming quiescent [12, 20, 25–27]. The chronological mode
of yeast aging is believed to mimic aging of human cells
that are temporarily or permanently unable to divide
[20, 25, 26, 28–31]. It needs to be noted, however, that
the chronological and replicative modes of yeast aging are
likely to converge into a single aging process [12, 31–37].

Mechanisms underlying the essential roles of some
traits of mitochondrial functionality in both modes of yeast
aging have been recently reviewed [12–15, 20]. These traits
in replicatively and chronologically aging yeast include
mitochondrial electron transport chain and oxidative phos-
phorylation, membrane potential, reactive oxygen species
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(ROS) homeostasis, protein synthesis and proteostasis, iron-
sulfur cluster formation, and synthesis of amino acids and
NADPH [12–15, 20, 37–46].

Until recently, it was unknown if such trait of mito-
chondrial functionality as the composition of mitochon-
drial membrane lipids can influence aging in yeast. Our
recent studies have revealed that lithocholic bile acid
(LCA) can delay the onset and decrease the rate of yeast
chronological aging [12, 13, 47–54]. We demonstrated that
the robust geroprotective effect of exogenously added LCA
is due to its ability to cause certain changes in lipid composi-
tions of both mitochondrial membranes. These changes in
mitochondrial membrane lipids enable mitochondria to
establish and maintain an aging-delaying pattern of the
entire cell. Here, we review mechanisms through which
LCA-induced changes in the composition of mitochondrial
membrane lipids trigger a multistep process of converting
mitochondria into signaling platforms that orchestrate such
distinct cellular pattern.

2. Some Aspects of the Maintenance of Lipid
Homeostasis Are Essential for Healthy Aging
in Eukaryotes across Phyla

Early studies in the nematode Caenorhabditis elegans, the
fruit fly Drosophila melanogaster, and mice have revealed
that an attenuation of the proaging insulin/insulin-like
growth factor 1 signaling pathway extends organismal life-
span and causes the accumulation of storage lipids [55–61].
These studies have suggested a link between lipid metabolism
and healthy aging. Recent findings provide strong evidence
that certain pathways of lipid metabolism and transport
define lifespan and healthspan in evolutionarily distant
eukaryotes, including the yeast S. cerevisiae, the nematode
C. elegans, the fruit fly D. melanogaster, mammals, and pos-
sibly humans.

2.1. The Yeast S. cerevisiae. In S. cerevisiae cells, the metabolic
pathway for ceramide and sphingolipid synthesis is an essen-
tial node of a complex signaling network known to define
replicative and chronological lifespans [14, 62–66]. Other
nodes of this network include such nutrient-sensing signal-
ing pathways and protein kinases at the proaging TORC1
and TORC2 (target of rapamycin complexes 1 and 2, resp.)
pathways, the antiaging mitochondrial retrograde signaling
pathway, the proaging PKA (protein kinase A) pathway, the
proaging protein kinases Pkh1 and Pkh2, and the proaging
protein kinases Sch9 and Ypk2 [14, 62–66]. The unidirec-
tional and bidirectional flow of information between the
ceramide/sphingolipid synthesis node and other nodes of
the network defines the rate of yeast replicative and chrono-
logical aging because the network orchestrates numerous
longevity-defining cellular processes [14, 62–66]. Among
these downstream cellular processes are general autophagy
and mitophagy, stress response, genomic stability mainte-
nance, ribosomal protein and RNA synthesis, amino acid
synthesis, carbon and energy metabolism, and mitochondrial
respiration [14, 62–66].

Another aspect of lipid metabolism and transport known
to define longevity of chronologically aging yeast is the abun-
dance of triacylglycerols (TAGs) [67–70]. These so-called
neutral lipids are synthesized in the endoplasmic reticulum
(ER) and then deposited in lipid droplets (LDs) [71–73].
The age-related accumulation of TAGs in LDs is a longev-
ity assurance process that extends yeast chronological life-
span independently of the network that integrates ceramide/
sphingolipid synthesis with nutrient-sensing signaling path-
ways and protein kinases [69, 70]. TAGs may delay yeast
chronological aging because their accumulation in LDs
allows to deposit a bulk of unsaturated fatty acids by esterify-
ing them into TAGs [69, 70]. Because unsaturated fatty acids
exhibit high susceptibility to age-related oxidative damage,
their deposition in the form of TAGs may make LDs the
major target of such damage; this would alleviate oxidative
damage to macromolecules in other cellular locations [69,
70]. In addition, the esterification of unsaturated fatty
acids into TAGs may delay yeast chronological aging by
attenuating an age-related form of liponecrotic cell death
known to be elicited by these fatty acids [67, 68, 74–76].

2.2. The Nematode C. elegans. The extent of longevity exten-
sion by various genetic interventions in C. elegans has been
shown to correlate with the following coordinated changes
in the concentrations/activities of enzymes involved in fatty
acid elongation and desaturation: (1) decreased concentra-
tions/activities of elongases involved in the synthesis of very
long-chain fatty acids, which are known to lower membrane
fluidity; (2) increased concentrations/activities of Δ9 desa-
turases involved in the formation of oxidation-resistant
monounsaturated fatty acids (MUFAs); and (3) lowered
concentration/activity of a Δ5 desaturase involved in the
formation of oxidation-sensitive polyunsaturated fatty
acids (PUFAs) [77–82]. The resulting decline in fatty-
acid chain length, increase in MUFA concentrations, and
decrease in PUFA concentrations are believed to constitute
a “signature” of extended longevity and delayed aging in
this nematode [77, 79, 81, 82]. This is likely because the
establishment and maintenance of such prolongevity pattern
of fatty acid composition allow to delay aging by enabling
to sustain membrane fluidity and increase oxidative stress
resistance [77, 80, 81].

Furthermore, an activation of the lipolysis of TAGs
delays nematode aging because it increases the concentration
of arachidonic acid, a polyunsaturated omega-6 fatty acid
known to stimulate the prolongevity process of autophagy
[81–86]. Nematode aging can also be decelerated by the accu-
mulation of TAGs, either in a certain tissue and at a distinct
stage of development or in response to some diets. Such
aging-delaying accumulation of TAGs has been reported
under the following conditions: (1) upon entry into dauer,
due to an LKB1/AMPK- (liver kinase B1/AMP-activated
protein kinase-) driven inhibition of TAG lipolysis in the
adipose-like hypodermis tissue [87]; and (2) in response to
nutrient-rich food, due to a mutation in the Rictor protein
component of TORC2 [88].

In addition, some lipid classes have been shown to delay
aging in C. elegans because they act as signaling molecules
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that can establish and maintain a prolongevity transcription
pattern; these lipid classes include the bile acid-like steroids
called dafachronic acids of germ-line ablated nematode
mutants as well as the N-acylethanolamine fatty acid deriva-
tive called oleoylethanolamide [80, 89–95].

Moreover, an attenuation of mitochondrial proteostasis
in C. elegans is known to activate the mitochondrial unfolded
protein response (UPRmt) [96, 97]. UPRmt has been shown to
delay nematode aging in part because it elicits a global
remodeling of lipid metabolism, which includes the accumu-
lation of cardiolipins and fatty acids [98]. This global remod-
eling of lipid metabolism allows to turn on a so-called
mitochondrial-to-cytosolic stress response, thereby enabling
to maintain the prolongevity process of cytosolic protein
homeostasis [98].

2.3. The Fruit Fly D. melanogaster. The accumulation of
TAGs in fruit fly mutants deficient in LD-associated TAG
lipase Brummer has been shown to delay fruit fly aging only
under starvation conditions [99]. Furthermore, the macrocy-
clic lactone rapamycin is known to delay aging and increase
the concentration of TAGs in fruit flies [100]; it remains to
be seen, however, if such rapamycin-driven rise in TAG con-
centration in fruit flies has a causal role in the aging-delaying
effect of this macrocyclic lactone.

2.4. Mammals and Humans. Aging of laboratory mice can
be delayed in response to a decrease in the concentration
of TAGs in white adipose tissue (WAT), which can be
achieved either by genetically eliminating the WAT-
specific insulin receptor [101] or by replacing the C/EBPα
(CCAAT/enhancer-binding protein α) protein with its
paralogue C/EBPβ [102].

Moreover, the sirtuin SIRT1 has been shown to repress
transcription of nuclear genes needed for the synthesis of
TAGs in WAT of laboratory mice [103]. It has been pro-
posed that the resulting decrease in TAG concentration in
WAT is in part responsible for the delay of aging by calo-
ric restriction, a robust longevity-extending dietary inter-
vention known to increase the abundance of SIRT1 and
also to activate the lipolytic degradation of TAGs in mice
WAT [104].

The mass spectrometry-based identification and quan-
titation of numerous lipid classes have been recently used
for comparative profiling of the plasma lipidomes and lipi-
domes of different tissues in long-lived and short-lived
mammalian species, in ad libitum-fed mice and in mice
placed on a CR diet, as well as in healthy human individ-
uals with exceptional longevity and in their children. Such
correlative profiling has revealed the following trends of a
so-called “lipidomic signature” of extended longevity and
delayed aging in mammals and humans: (1) a decreased
extent of fatty acid unsaturation, which lowers both the
double bond and peroxidizability indexes of different lipid
classes; (2) declined concentrations of long-chain free fatty
acids; (3) increased MUFA-to-PUFA ratio; (4) decreased
levels of several sphingolipids, certain lysophosphatidylcho-
lines and phosphatidylcholines, as well as highly polyunsatu-
rated TAGs and diacylglycerols (DAGs); and (5) increased

concentrations of some sphingomyelins and cholesteryl
esters, as well as TAGs and DAGs with low extent of fatty
acid unsaturation [81, 105–111]. Although the establishment
of the key trends of this lipidomic signature is an essential
first step towards defining lipid biomarkers of healthy aging
and extended lifespan, it remains to be seen if any of the
above trends has a causal mechanistic role in aging delay
and longevity extension.

3. A Chemical Genetic Screen for Molecules
That Delay Yeast Chronological Aging by
Targeting Lipid Metabolism

Caloric restriction and dietary restriction (CR and DR, resp.)
are two dietary interventions that slow aging and extend
healthy lifespan in eukaryotes across phyla [112–117]. Aging
and the onset of age-related disorders can also be delayed by
some chemical compounds of plant and microbial origin.
Among these geroprotective compounds are resveratrol,
rapamycin, curcumin, fisetin, quercetin, caffeine, and sper-
midine [112, 114, 118–124]. All these geroprotectors delay
aging and age-related disorders only under non-CR or non-
DR conditions, that is, when the intake of calories or nutri-
ents is not restricted [47, 112, 114, 120, 122, 125–129]. More-
over, all these geroprotective compounds of plant and
microbial origin have been shown to modulate a signaling
network integrating pathways and protein kinases that are
under the stringent control of calorie or nutrient availability
[47, 112, 114, 117, 120, 122, 128]. The term “adaptable” was
therefore coined for these networks, pathways, and protein
kinases [47]. We sought to find chemical geroprotectors that
delay aging and age-related disorders under CR conditions
by modulating a different kind of pathways, the ones that
define longevity irrespective of calorie and nutrient supply.
We call these longevity pathways “constitutive” or “house-
keeping” [47]. Moreover, because of our interest in mecha-
nisms through which lipids influence yeast chronological
aging, we were looking for geroprotective small molecules
that modulate “constitutive” or “housekeeping” longevity
pathways by targeting lipid metabolism and transport [47].
We therefore conducted a high-throughput chemical genetic
screen for small molecules that can extend the chronological
lifespan of the single-gene-deletion mutant strain pex5Δ.
The pex5Δ strain is impaired in peroxisomal oxidation of
fatty acids and, hence, is unable to generate peroxisomal
acetyl-CoA for ATP synthesis in mitochondria [47]. Our
screen of numerous chemical compounds from several
commercial libraries has identified 24 geroprotective small
molecules that can slow chronological aging by remodeling
lipid metabolism not only in pex5Δ but also in wild-type
yeast cells [47]. One of these molecules, a bile acid called
LCA, exhibited the highest delaying effect on the chrono-
logical aging of yeast cultured under CR conditions [47].
We showed that several other bile acids (including deoxy-
cholic acid, chenodeoxycholic acid, dehydrocholic acid, and
hyodeoxycholic acid) delay yeast chronological aging to a
significantly lesser degree than LCA, which is the most
hydrophobic bile acid [47].
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4. The Distribution of Exogenously Added LCA
within a Yeast Cell

Unlike animals and humans, yeast cells do not synthesize
bile acids [130–133]. Thus, a mechanism through which
exogenously added LCA delays yeast chronological aging
may or may not involve its entry into the yeast cell and, per-
haps, a delivery of this highly hydrophobic bile acid to some
specific location(s) within the cell. To investigate this impor-
tant aspect of aging delay by LCA, we assessed the spatial dis-
tribution of exogenously added LCA in the yeast cell using a
combination of subcellular fractionation by differential cen-
trifugation, equilibrium density gradient centrifugation, and
quantitative mass spectrometry [50]. We found that exoge-
nously added LCA crosses both the cell wall and the plasma
membrane to enter the yeast cell [50]. Our studies also
revealed that intracellular LCA is sorted exclusively to mito-
chondria [50]. To investigate the spatial distribution of LCA
within the mitochondrion, we subjected purified mitochon-
dria to fractionation using a swell-shrink procedure and sub-
sequent equilibrium density gradient centrifugation; we also
fractionated purified mitochondria with the help of sonica-
tion followed by differential centrifugation [50]. Our quanti-
tative mass spectrometric analysis of LCA recovered in
different mitochondrial subcompartments showed that the
majority (up to 80%) of the mitochondria-confined pool of
LCA associates with the inner mitochondrial membrane
(IMM), whereas a minor portion (not more than 20%) of this
bile acid resides in the outer mitochondrial membrane
(OMM) [50].

5. LCA in Mitochondria Alters the Abundance
and Relative Concentrations of Membrane
Phospholipids

The relative concentrations of different membrane phospho-
lipids in yeast mitochondria depend on a spatiotemporal

dynamics of several processes that are facilitated by pro-
teins residing in both mitochondria and the ER. These
processes include the following: (1) the synthesis of phospha-
tidic acid (PA), cytidine diphosphate-diacylglycerol (CDP-
DAG), diacylglycerol (DAG), phosphatidylserine (PS), phos-
phatidylcholine (PC), and phosphatidylinositol (PI) in the
ER; (2) the conversion of ER-derived PA into CDP-DAG,
phosphatidylglycerol-phosphate (PGP), phosphatidylgly-
cerol (PG), cardiolipin (CL), and monolysocardiolipin
(MLCL) in the IMM; (3) the transfer of PA from the ER
to the OMM via mitochondria-ER contact sites, which are
located at zones of close apposition between the OMM
and the mitochondria-associated membrane (MAM)
domain of the ER; (4) the movement of PA from the
OMM via the intermembrane space (IMS) to the IMM,
which is facilitated by the Ups1/Mdm35 protein complex;
(5) the Ups2/Mdm35-dependent transfer of PS from the
OMM across the IMS to the IMM, where PS serves as a sub-
strate for PE synthesis catalyzed by Psd1; (6) the Psd1-
dependent conversion of PS into PE in the OMM, which
requires a juxtaposition of the two mitochondrial mem-
branes and is facilitated by the mitochondrial contact site
(MICOS) protein complex; (7) the movement of PC and
PI from the ER to the OMM through mitochondria-ER
contact sites, which is followed by PC and PI transfer from
the OMM to the IMM via currently unknown mechanisms;
(8) the transfer of DAG and CDP-DAG from the ER to the
OMM through mitochondria-ER contact sites and the sub-
sequent movement of these two phospholipids to the IMM
by mechanisms that remain to be established; and (9) the
CL-dependent inhibition of the Ups1/Mdm35-dependent
transfer of PA from the OMM across the IMS to the IMM
(Figure 1) [50, 134–137].

Because LCA associates with the IMM and also resides in
the OMM, we thought that this bile acid may modulate the
spatiotemporal dynamics of phospholipid synthesis and
transfer in yeast mitochondria and/or phospholipid move-
ment from the ER to mitochondria [50]. We hypothesized
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that such LCA-driven modulation of phospholipid synthe-
sis and transfer may, in turn, alter the abundance and/or
relative concentrations of some classes of phospholipids
in mitochondrial membranes [50]. To verify our hypothesis,
we used quantitative mass spectrometry to compare mito-
chondrial lipidomes of yeast cultured under CR conditions
with or without LCA. We found that LCA causes the follow-
ing major changes in the abundance and composition of
mitochondrial membrane phospholipids: (1) it elicits an
age-related increase in the phospholipid/protein ratio of
mitochondrial membranes and, thus, substantially elevates
the abundance of membrane phospholipids in mitochondria;
(2) it increases the relative concentrations of PA, PG, PS, and
PC in mitochondrial membranes; and (3) it decreases the
relative concentrations of CL, MLCL, and PE in mitochon-
drial membranes (Figure 2) [50].

Based on these data (which included data on the num-
ber of saturated and unsaturated acyl chains for each class
of phospholipids), we calculated the relative concentrations
of phospholipid classes exhibiting the nonbilayer forming
shape of a cone or an inverted cone. We found that LCA
decreases the relative concentrations of the nonbilayer form-
ing classes of phospholipids, which include the following: (1)
PC, PI, PS, and PG phospholipids carrying only saturated
acyl chains; (2) PE phospholipids with one or two unsatu-
rated acyl chains; and (3) PA, CL, and MLCL phospholipids
carrying either only saturated acyl chains or from one to four
unsaturated acyl chains [50]. These nonbilayer forming
phospholipid classes are known to increase the extent of
membrane curving for the IMM, thus raising the abundance
of mitochondrial cristae (formed by the IMM) and mito-
chondrial contact cites (formed between the IMM and
OMM) [50, 137–144].

We also calculated the relative concentrations of
phospholipid classes having the bilayer forming shape of a
cylinder. We found that LCA increases the relative concen-
trations of these bilayer forming phospholipid classes, which
include PE phospholipids with only saturated acyl chains,
as well as PC, PI, PS, and PG phospholipids with one or
two unsaturated acyl chains [50]. These bilayer forming
phospholipid classes are known to decrease the extent of
membrane curving for the IMM, thereby (1) increasing the

abundance of the IMM domains having “flat” bilayer confor-
mation; (2) decreasing the abundance of the IMM domains
exhibiting negative curvature typical of mitochondrial con-
tact sites; and (3) decreasing the abundance of the IMM
domains displaying positive curvature characteristic of mito-
chondrial cristae [50, 137–144].

6. LCA Causes Major Changes in Mitochondrial
Abundance and Morphology

Because LCA markedly increases the abundance of mito-
chondrial membrane phospholipids (i.e., the ratio of phos-
pholipid/protein in mitochondrial membranes; see above),
we expected that this bile acid may elicit an expansion of both
mitochondrial membranes to cause an enlargement of mito-
chondria. Our transmission electron microscopy (TEM)
analysis has confirmed this expectation by revealing a signif-
icantly increased mitochondrial size in yeast cultured with
LCA (Figure 3) [50, 51].

Because LCA increases the relative concentrations of
PA, which is known for the ability to decrease mitochon-
drial number by promoting fusion of small mitochondria
[145–150], we anticipated that this bile acid may decrease
the number of mitochondria. As anticipated, TEM revealed
a substantial decrease in mitochondrial number in yeast
cultured with LCA (Figure 3) [50, 51].

LCA lessens the relative concentrations of the nonbilayer
forming classes of phospholipids known to increase the
extent of membrane curving for the IMM (see above); LCA
also rises the relative concentrations of the bilayer forming
classes of phospholipids shown to decrease the extent of
membrane curving for the IMM (as described above). We
therefore expected that LCA may increase the proportion of
mitochondrial cristae detached from the IMM and having
flat bilayer conformation and may also increase the abun-
dance of these detached from the IMM cristae within the
mitochondrial matrix. In support of these expectations, yeast
cultured in the presence of LCA exhibited the following
major morphological changes in the IMM andmitochondrial
cristae: (1) many cristae were disconnected from the IMM
and accumulated within the mitochondrial matrix in flat
bilayer conformation and (2) the ratio of “total length of
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Figure 2: LCA exhibits differential effects on the relative concentrations of various phospholipid classes in mitochondrial membranes of yeast
exposed to this bile acid. Arrows next to the names of individual phospholipids indicate phospholipid classes whose concentrations are
increased (red arrows) or decreased (blue arrows) in cells cultured with exogenous LCA and therefore accumulating this bile acid in the
IMM and OMM. See text for more details. Abbreviations are as provided in the legend for Figure 1.
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cristae/total length of the OMM” was significantly increased
(Figure 3) [50, 51].

7. LCA Alters Mitochondrial Proteome

As described above, LCA causes major changes in the mem-
brane lipidome, abundance, and morphology of mitochon-
dria. We thought that these LCA-driven changes may affect
mitochondrial protein import, folding, assembly, and other
aspects of mitochondrial proteostasis, thereby altering mito-
chondrial proteome. In support of this notion, our quantita-
tive mass spectrometric analysis revealed that LCA alters the
age-related chronology of changes in the concentrations of
many mitochondrial proteins known for their essential roles
in some key mitochondrial functions [53, 54]. Among these
mitochondrial functions are the tricarboxylic acid (TCA)
cycle, glyoxylate cycle, electron transport chain (ETC), amino
acid synthesis, heme synthesis and attachment, iron-sulfur
cluster synthesis and assembly, NADPH synthesis, ROS
detoxification, protein import and folding, stress response
and protection, mitochondrial division, mitochondrial
DNA replication and maintenance, and synthesis and trans-
lation of mitochondrial RNA [53]. Our bioinformatic analy-
ses of how LCA alters the age-related chronology of changes
in the concentrations of these various mitochondrial proteins
demonstrated that they belong to two regulons called a par-
tial mitochondrial dysfunction (PMD) regulon and an oxida-
tive stress (OS) regulon, each regulated in response to a
different aspect of limited mitochondrial function (Table 1)
[53, 54]. Mitochondrial proteins that belong to PMD and
OS regulons exhibit three different patterns of how their
concentrations change with the chronological age of yeast
cultured with LCA. We call these patterns “regulon type 1,”
“regulon type 2,” and “regulon type 3”; each of the three pat-
terns represents a distinct way of increasing or decreasing
concentrations of certain mitochondrial proteins in yeast
cells that progress through diauxic (D), postdiauxic (PD),
and stationary (ST) growth phases (Table 1) [53, 54]. These
three patterns are displayed in Table 1 and discussed else-
where [53]. We found that the PMD and OS regulons can

be divided into six or four clusters, respectively, each modu-
lated by a different kind of partial mitochondrial dysfunc-
tionality that triggers a distinct cellular response mediated
by a discrete set of transcription factors; these transcription
factors include Rtg1/Rtg2/Rtg3, Sfp1, Aft1, Yap1, Msn2/
Msn4, Skn7, and Hog1 (Table 1) [53, 54]. As discussed by
Beach [53], the PMD regulons include the following clusters:
(1) rho0 (a cluster of genes whose transcription is induced in
response to complete loss of mitochondrial DNA); (2) S1
(a cluster of genes whose transcription is activated in
response to inhibition of mitochondrial translation); (3)
general TCA cycle dysfunction; (4) kgd1Δ, kgd2Δ, or lpd1Δ
(a mutation eliminating the subunit Kgd1, Kgd2, or Lpd1 of
the mitochondrial alpha-ketoglutarate dehydrogenase com-
plex); (5) yme1Δ mdl1Δ (mutations that simultaneously
eliminate the mitochondrial i-AAA (ATPases associated with
diverse cellular activities) protease Yme1 and the mitochon-
drial ABC (ATP-binding cassette) transporter Mdl1, both
involved in peptide export from mitochondria); and (6)
afo1Δ (a mutation eliminating the mitochondrial ribosomal
protein Afo1 of the large subunit) (Table 1). The OS regulons
include clusters governed by transcription factors Yap1,
Msn2/Msn4, Skn7, and Hog1 (Table 1) (as discussed else-
where [53]). It needs to be emphasized that each of the tran-
scription factors orchestrating various PMD and OS regulons
in yeast cultured with LCA plays an essential role in the LCA-
driven delay of yeast chronological aging [53, 54].

8. LCA Modifies Key Aspects of Mitochondrial
Functionality

Because LCA alters mitochondrial lipidome and proteome
and also elicits major changes in mitochondrial abundance
and morphology, we thought that this bile acid may affect
mitochondrial functionality. In support of this notion, we
found that LCA markedly modifies the age-related chronol-
ogy of four mitochondrial processes known to define the rate
of aging in eukaryotes across phyla [50, 51]. These processes
include mitochondrial respiration, membrane potential
maintenance, ROS homeostasis preservation, and ATP

LCA

OMM
IMM

Cristae connected to the IM

OMM
IMM

Cristae disconnected from the IMM

Figure 3: LCA increases mitochondrial size, reduces mitochondrial number, and elevates the abundance of mitochondrial cristae. Many
mitochondrial cristae accumulate in the mitochondrial matrix because they are detached from the IMM. See text for more details.
Abbreviations are as provided in the legend for Figure 1.
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synthesis [50, 51]. We demonstrated that in chronologically
“young,” nonquiescent yeast, LCA allows to sustain the
capacities of mitochondrial respiration, membrane potential
maintenance, and ROS homeostasis preservation at a critical
threshold [12, 50, 51]. At such threshold chronologically
“young” cells exposed to LCA develop an antiaging cellular
pattern that increases yeast chronological lifespan. This is
because the capacities of mitochondrial respiration, mem-
brane potential maintenance, and ROS homeostasis in chro-
nologically “young” cells have specific impacts on many
longevity-defining cellular processes and features, including
(1) the concentrations of trehalose and glycogen;( 2) the con-
centrations of neutral lipids and the abundance of LDs; (3)
peroxisomal fatty acid oxidation; (4) the concentrations of
free fatty acids and DAGs; (5) glycolysis and gluconeogene-
sis; (6) ethanol metabolism; (7) mitochondrial translation;
(8) mitochondrial size and number; (9) mitochondrial net-
work formation and fragmentation; and (10) oxidative stress
resistance (as discussed elsewhere [12]). We also demon-
strated that in chronologically “old,” quiescent yeast, LCA
(1) allows to maintain cellular ROS at a sublethal, “hormetic”
concentration (known to delay aging by activating a signaling
network that makes yeast resistant to various stresses [5, 12,
13, 68, 151–159]) and (2) increases the efficiencies of mito-
chondrial respiration, membrane potential maintenance,
and ATP synthesis [50, 51].

9. LCA Elicits Age-Related Changes in the
Concentrations of Many Proteins Located
outside of Mitochondria

The Rtg1/Rtg2/Rtg3, Sfp1, Aft1, Yap1, Msn2/Msn4, Skn7,
and Hog1 proteins and protein complexes regulate transcrip-
tion of nuclear genes that encode not only mitochondrial
proteins (see above) but also numerous proteins in different
cellular locations outside of mitochondria [160]. Therefore,
we expected that LCA may cause major changes not only to
mitochondrial proteome but also to the entire cellular prote-
ome. As expected, our quantitative mass spectrometric anal-
ysis revealed that LCA alters the age-related chronology of
changes in the concentrations of various proteins located
outside of mitochondria [53, 54]. These proteins play essen-
tial roles in the glycolytic and pentose phosphate pathways,
gluconeogenesis, glycogen degradation, ethanol formation,
pyruvate conversion to acetyl-CoA, carnitine and glycerol-
3-phosphate shuttling for maintaining NAD/NADH redox
balance, neutral lipid synthesis and lipolysis, amino acid
and nucleotide synthesis, glutathione synthesis, ROS decom-
position, ribosome assembly, oxidative stress response, and
proteasomal and vacuolar protein degradation (Figure 4)
[53, 54]. Akin to mitochondrial proteins whose age-related
expression pattern is driven by LCA and orchestrated by
the above transcription factors, these nonmitochondrial pro-
teins (1) belong to the multiclustered PMD and OS regulons;
(2) exhibit three different patterns of increasing or decreasing
concentrations of certain proteins in yeast progressing
through D, PD, and ST growth phases; (3) are modulated
in response to different kinds of partial mitochondrial

dysfunctionality; and (4) are expressed under the control of
a discrete set of transcription factors, including Rtg1/Rtg2/
Rtg3, Sfp1, Aft1, Yap1, Msn2/Msn4, Skn7, and Hog1 [53, 54].

Based on these observations, we proposed a hypothetical
model for how LCA-driven changes in different kinds of
mitochondrial functionality modulate activities of the above
transcription factors, all of which are integrated into the
PMD and OS signaling pathways. This model is schemati-
cally depicted in Figure 4 and thoroughly discussed elsewhere
[53]. In brief, we found that LCA elicits the following changes
in mitochondrial functionality: (1) in chronologically “old”
yeast, it increases cellular ROS and allows to maintain ROS
at a sublethal, “hormetic” concentration; (2) in chronologi-
cally “old” yeast, it decreases the concentrations of several
protein components of the large and small subunits of mito-
chondrial ribosome; (3) in chronologically “young” yeast, it
lowers the mitochondrial membrane potential (ΔΨ) and
allows to sustain ΔΨ at a critical threshold; (4) in chronolog-
ically “old” yeast, it increases the concentrations of mito-
chondrial proteins involved in the synthesis and assembly
of iron-sulfur clusters, inorganic cofactors of many mito-
chondrial, nuclear, and cytosolic proteins playing essential
roles in vital cellular processes; and (5) in chronologically
“young” and “old” yeast, it increases the concentrations of
mitochondrial and nonmitochondrial proteins known to be
upregulated in response to a simultaneous lack of the mito-
chondrial i-AAA protease Yme1 and the mitochondrial
ABC-transporter Mdl1 involved in peptide export from
mitochondria (Figure 4) [53, 54]. These LCA-elicited
changes in mitochondrial functionality alter activities of
transcription factors Rtg1/Rtg2/Rtg3, Sfp1, Aft1, Yap1,
Msn2/Msn4, Skn7, and Hog1 (Figure 4) [53, 54]. These tran-
scription factors then trigger an antiaging transcriptional
program for numerous nuclear genes, which encode cellular
proteins implicated in oxidative stress response, proteostasis,
lipid metabolism, and other longevity assurance processes
taking place in chronologically aging yeast (Figure 4) [53, 54].

10. Conclusions

Our findings provide evidence that LCA delays yeast chrono-
logical aging by eliciting a remodeling of mitochondrial lipi-
dome to cause specific changes in the relative concentrations
of different classes of membrane lipids (Figure 5). This LCA-
driven remodeling of mitochondrial lipidome triggers major
changes in mitochondrial abundance and morphology and
also alters mitochondrial proteome (Figure 5). These changes
in the abundance, morphology, and protein composition of
mitochondria lead to specific alterations in mitochondrial
functionality (Figure 5). Our recent unpublished data indi-
cate that the LCA-dependent alterations in mitochondrial
lipidome, proteome, and morphology can also elicit changes
in lipidomes of other organelles and in concentrations of a
specific set of water-soluble metabolites (Arlia-Ciommo
et al., in preparation) (Figure 5). By sensing different aspects
of mitochondrial functional state, a discrete set of ten tran-
scription factors orchestrates a distinct transcriptional pro-
gram for many nuclear genes (Figure 5). The denouement
of this cascade of consecutive events is the establishment of
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Figure 5: LCA causes specific changes in the relative concentrations of different classes of membrane lipids in mitochondria of
chronologically aging yeast. Such LCA-dependent remodeling of mitochondrial lipidome triggers a cascade of consecutive events that
establish an aging-delaying cellular pattern. See text for more details.
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a cellular pattern that delays the onset and slows the progres-
sion of yeast chronological aging.

Of note, the proposed mechanism here for how the LCA-
dependent remodeling of mitochondrial lipidome in the
yeast S. cerevisiae allows to establish an aging-delaying cellu-
lar pattern is reminiscent of the mechanism in which the
UPRmt-driven remodeling of mitochondrial lipidome in the
nematode C. elegans triggers a cascade of events that institute
an aging-delaying cellular pattern [98]. Moreover, the essen-
tial role of mitochondrial lipid metabolism in defining the
pace of yeast chronological aging further supports the notion
that the vital role of lipid homeostasis in healthy aging has
been conserved in eukaryotes across phyla, including the
yeast S. cerevisiae [14, 62–70], the nematode C. elegans [77–
95, 98], the fruit fly D. melanogaster [99, 100], mammals
[81, 101–109], and possibly humans [81, 105, 106, 110, 111].
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