
The Crosstalk Between Malignant
Cells and Tumor-Promoting Immune
Cells Relevant to Immunotherapy in
Pancreatic Ductal Adenocarcinoma
Xuefei Liu1†, Ziwei Luo1†, Xuechen Ren2†, Zhihang Chen1, Xiaoqiong Bao1,
Jianghua Zheng3* and Zhixiang Zuo1*

1State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen
University Cancer Center, Guangzhou, China, 2The Second Clinical Medical School, Lanzhou University, Lanzhou, China,
3Department of Laboratory Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai,
China

Background: Pancreatic ductal adenocarcinoma (PDAC) is dominated by an
immunosuppressive microenvironment, which makes immune checkpoint blockade
(ICB) often non-responsive. Understanding the mechanisms by which PDAC forms an
immunosuppressive microenvironment is important for the development of new effective
immunotherapy strategies.

Methods: This study comprehensively evaluated the cell-cell communications between
malignant cells and immune cells by integrative analyses of single-cell RNA sequencing
data and bulk RNA sequencing data of PDAC. A Malignant-Immune cell crosstalk (MIT)
score was constructed to predict survival and therapy response in PDAC patients.
Immunological characteristics, enriched pathways, and mutations were evaluated in
high- and low MIT groups.

Results: We found that PDAC had high level of immune cell infiltrations, mainly were
tumor-promoting immune cells. Frequent communication between malignant cells and
tumor-promoting immune cells were observed. 15 ligand-receptor pairs between
malignant cells and tumor-promoting immune cells were identified. We selected genes
highly expressed on malignant cells to construct a Malignant-Immune Crosstalk (MIT)
score. MIT score was positively correlated with tumor-promoting immune infiltrations.
PDAC patients with high MIT score usually had a worse response to immune checkpoint
blockade (ICB) immunotherapy.

Conclusion: The ligand-receptor pairs identified in this study may provide potential
targets for the development of new immunotherapy strategy. MIT score was
established to measure tumor-promoting immunocyte infiltration. It can serve as a
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prognostic indicator for long-term survival of PDAC, and a predictor to ICB immunotherapy
response.

Keywords: pancreatic ductal adenocarcinoma, cell-cell communication, immunocyte infiltration, single cell RNA-
seq, immunotherapy

HIGHLIGHTS

• We used single-cell RNA-seq to explore the immune
microenvironment of PDAC and the crosstalk between
malignant cells and immune cells.

• 15 ligand-receptor pairs between malignant cells and
tumor-promoting immune cells were identified, which
may become new effective immunotherapy target in the
treatment of PDAC.

• We constructed a new predictive signature–Malignant-
Immune Talk (MIT) that could be used to measure tumor-
promoting immune cell infiltration. And high MIT score and
MIT-associated mutations usually had a worse response to
immune checkpoint blockade (ICB) immunotherapy.

BACKGROUND

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest
human malignancies, which is often diagnosed at advanced stage.
The traditional treatment methods such as chemotherapy have
limited effects on the patients with advanced PDAC. Developing a
new therapy strategy for the treatment of advanced PDAC is urgent.

Cell-cell communications between malignant cells and immune
cells frequently occur during cancer progression (Xiong et al., 2019;
Deng et al., 2020). Malignant cells will develop abilities to escape
the immune surveillance and even educate the immune cells to
promote cancer progression. Targeting the ligand-receptor pairs in
the malignant-immune cell crosstalk is proved to be effective in
many cancers, for example, PD1/PD-L1 is such a pair of ligand-
receptor. However, the effect of PD1/PD-L1 immune checkpoint
blockade (ICB) in PDAC is still limited (Royal et al., 2010; Zamarin
et al., 2020). Therefore, a comprehensive investigation ofmalignant
and immune cell crosstalk in PDAC is needed for finding effective
immunotherapy targets.

Recent advances in single cell RNA sequencing (scRNA-seq)
allow simultaneous transcriptome-wide quantifications of
transcripts in thousands of cells from a biopsy sample,
providing opportunities for comprehensively exploring the
tumor microenvironment and the crosstalk between malignant
cells and immune cells. The previous scRNA-seq studies in PDAC
mainly focus on the characteristics and evolution of immune cells
and malignant cells. The crosstalk between malignant cells and
immune cells is largely neglected.

In the present study, to explore the immune microenvironment
of PDAC and the crosstalk between malignant cells and immune
cells, we collected public single-cell RNA-seq profiles of 94,910 cells
from 24 PDAC samples without any treatment and 11 normal
pancreases samples. We revealed a new predictive
signature–Malignant-Immune Talk (MIT) that could be used to

measure tumor-promoting immune cell infiltration and predict the
PD1/PD-L1 ICB immunotherapy response.

METHODS

Data Acquisition
Single-cell RNA-sequencing data (accession number: CRA001160)
of PDAC samples from the initial publication were download and
reanalyzed for this manuscript (Peng et al., 2019).

The Cancer Genome Atlas (TCGA) data: Pancreatic cancer RNA
Sequencing data (TPM), somatic mutation data and survival
information were downloaded from UCSC Xena data portal
(https://xenabrowser.net/datapages/). The copy number variation
data were calculated by GISTIC2 (Mermel et al., 2011). Data
(GSE62452, GSE28735, GSE57495 and GSE85916) with detailed
survival data were downloaded from Gene Expression Omnibus
(GEO). RNA sequencing of immunotherapy cohort of clear cell renal
cell carcinoma (PMID29301960); melanoma (GSE78220, GSE91061
and phs000452) and high-grade glioma (PRJNA482620) was
downloaded from the Supplementary Material of the article,
GEO and dbgap. RNA sequencing of immunotherapy cohort of
bladder cancer was downloaded from R package
Mvigor210CoreBiologies (Mariathasan et al., 2018). MSK-
IMPACT assay of immunotherapy cohort was downloaded from
cbioportal (http://www.cbioportal.org/). Immunohistochemistry
(IHC) were downloaded from the Human Protein Atlas database
(http://www.proteinatlas.org/). Drug-target genes screened from the
Drugbank database (https://www.drugbank.ca/).

Single Cell Transcriptome Sequencing and
Data Preprocessing
The CellRanger software (version 5.0.0) was used for
preprocessing of the PE150 Illumina sequencing reads. Briefly,
the reads in FASTQ format were aligned to human genome
reference (hg38, GRCh38) using STAR (Dobin et al., 2013), and
then “cellranger count”was used to derive gene expression matrix
for each sample.

Seurat (v3.1.3) R toolkit was used to analyze the single cell
transcriptome sequencing data (Butler et al., 2018). Firstly, cells
with low quality were filtered out (Wu and Smyth, 2012). Briefly,
the dead or dying cells with more than 20% mitochondrial RNA
content were removed, and the cells with too low number (less
than 200) were also removed. Cell doublets were predicted using
DoubletFinder with default parameters. Then, the filtered gene
expression matrix for each sample was normalized using
“NormalizeData” function in Seurat, and only highly variable
genes were remained using “FindVariableFeatures” function in
Seurat. Next, “Runharmony” functions in harmony were used to
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integrate the gene expression matrices of all samples, where batch
effects between different samples have been adjusted (Korsunsky
et al., 2019). Next, “RunPCA” function was used to perform the
principal component analysis (PCA) and “FindNeighbors”
function was used to construct a K-nearest-neighbor graph.
Next, the most representative principal components (PCs)
selected based on PCA were used for clustering analysis with
“FindCluster” function to determine different cell types. Lastly,
UMAP was used to visualize the different cell types.

We annotated the cell types using the following rules: Based on
the most 10 differentially expressed genes that were derived using
“wilcoxauc” function in presto, genes such as CD3D, CD3G were
used as T cell markers, SDC1, TNFRSF17 were used as plasma cell
markers, CD68, CD14 were used as myeloid cell markers, MS4A2,
CPA3were used as mast cell markers, ACTA2, COL6A1 were used
as fibroblast/smc cell markers, KRT18, EPCAM were used as
epithelial cell markers, VWF, PECAM1 were used as endothelial
cell markers, CHGA, CHGB were used as endocrine cell markers,
CD19, MS4A1 were used as Bcell markers. CD4, CD8A and CD8B
expression were used to differentiate CD4+ and CD8+ T cells.

Sub-cluster of CD4+ Tcell, CD8+ Tell, myeloid cell and
epithelial cell were named by the first marker gene.

Pathway/Gene Set Analysis of Single Cell
The pathway/gene set enrichment analysis was performed using
the CorrelationAdjustedMEanRAnk gene set test (CAMERA)that
has been implemented in the SingleSeqGset (version 0.1.2) R
package. In brief, the log2 fold change of the mean expression
level of a specific gene between the specific cell cluster and the other
cells was used as the test statistic. The 50 hallmark gene sets in the
MSigDB databases (https://www.gsea-msigdb.org/gsea/msigdb)
were used for the CAMERA analysis (Wu and Smyth, 2012).

Trajectory Analysis
Monocle2 was used to reconstruct single-cell trajectories. Briefly,
the “negbinomial.size” function was used to create a
“CellDataSet” object from the UMI count matrices with the
default setting. The variable genes were defined using the
following cutoff: dispersion_empirical > dispersion_fit and
mean expression >0.001. Dimensional reduction was
performed using the “DDRTree” method, and cell ordering
was performed using the “orderCells” function (Qiu et al., 2017).

Inferring Cell State Transition by RNA
Velocity
Spliced and unspliced reads were annotated by velocyto.py used
bam and gft files with Default parameters. The loom files were
loaded to R using the function “read.loom.matrices.” The
calculation od RNA velocity values for each gene in each cell
and embedding RNA velocity vector to low-dimension space were
done by velocyto.R pipeline. Getting velocyto picture with function
“show.velocity.on.embedding.cor” (La Manno et al., 2018).

DNA Copy Number of scRNA-Seq
DNA copy number variations were detected using inferCNV with
default parameters. Cells with more than half of the chromosomes

had amplification or loss was defined as malignant cells, others
were defined as normal cells (Patel et al., 2014).

Copykat is a powful tools that can delineate copy number and
clonal substructure in human tumors from single-cell
transcriptome. It can divide cells into aneuploid and diploid
automatically with default parameters (Gao et al., 2021).

Cell-Cell Communication Analysis
To investigate the potential cell-cell communications between
immune cells, ductal cells from normal tissue, ductal cells from
tumor tissue and malignant cells, we performed ligand-receptor
analyses using CellPhoneDB (Efremova et al., 2020) (version
2.0.6). CellPhoneDB applies an algorithm that considers only
receptors and ligands with broad expression among the tested cell
types, followed by calculating the likelihood of cell-type specificity
of a given receptor-ligand complex with enough permutations.
We only considered ligands and receptors with expression in
more than 20% of the cells in the corresponding sub-clusters to
identify the most relevant cell-type specific ligand-receptor
interactions. Moreover, we permuted the change of cell type
label for each cell at 1,000 times to calculated p-value. Finally,
we selected the interactions with a p-value less than 0.05 and with
biologically relevance for further analysis.

Functional Gene Expression Signatures
(Fges) Score Establishment
All knowledge-based functional gene expression signatures (Fges)
which were from published literature (Bagaev et al., 2021). Fges
scores using MCP_Counter were calculated for all patients in 33
cancer types from TCGA database. Fges score of each cancer is
the average of Fges scores of all patients with this cancer type.

Construction of Malignant-Immune Cell
Crosstalk (MIT) Score
We calculated the MIT score according to the following
procedure. Firstly, we chose genes highly expressed in
malignant cells including ANXA1, C3, CD47, CD55, CD74,
CD99, CXADR, FAM3C, LAMP1, LGALS9, LTBR, MDK, MIF
and SPP1, which were involved in the crosstalk between
malignant cells and tumor-promoting immune cells. These
genes were fitted into LASSO Cox regression analysis to select
representative makers. This is a logistic regression model that
penalizes the absolute size of the coefficients of a regressionmodel
based on the value of λ. The most predictive covariates were
selected by the minimum (λmin). According to the λ value, each
remaining gene would be assigned with a LASSO coefficient, and
MIT score was generated using the following formula:

MIT Score � ∑
n

i�1
(Expressionip LCi)

where n represents the number of genes, Expressioni is the
expression level of genei and LCi is the LASSO coefficient of
genei. The R package “glmnet” statistical software (R Foundation)
was used to perform the LASSO regression analysis.
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Functional and Pathway Enrichment
Analysis of Bulk RNA-Seq
Limma R package was used to identify the genes that were
differentially expressed between the low MIT score and high
MIT score groups (Ritchie et al., 2015). Signal pathways
specificbetween the high and low MIT score groups was
explored by GSEA, Gene Set Enrichment Analysis (GSEA) was
uesd with adjusted p-value < 0.05 using the clusterfiler R package
(Yu et al., 2012).

Immunological Characteristics of the TME
in Pancreatic Cancer
To evaluate of immune cell infiltration, the proportions of
immune cell types (i.e., TICs) in each samples (with immune
infiltration scores) were calculated using the EPIC (Racle et al.,
2017) and xcell algorithm (Aran et al., 2017).

Estimate Drug Sensitivity
The R package “pRRophetic” was applied to estimate the
chemotherapeutic and EGFR inhibors responses in the
training cohort (Geeleher et al., 2014).

Statistical Analysis
The Kaplan-Meier method was used to estimate OSthe log-rank
test was used to compare the Kaplan-Meier curves. A two-sided
p-value of less than 0.05 was considered significant. All sample
sizes were large enough to ensure proper statistical analysis.
Statistical analyses were performed using GraphPad Prism
(GraphPad Software, Inc.). p-values < 0.05 were considered as
statistically significant. All t-test analyses were one-tailed t-tests
(paired or unpaired depending on the experiments).

RESULTS

Bulk and Single-Cell Gene Expression
Analyses Revealed a Tumor-Promoting
Immune Microenvironment in PDAC
To investigate the immune microenvironment of PDAC, we
firstly applied the knowledge-based functional gene expression
signatures (Bagaev et al., 2021) (Supplementary Table S1) to the
bulk gene expression data of 33 cancer types from TCGA. We
identified three groups with different levels of immune
infiltration, where PDAC was clustered in the group with high
immune infiltrations; however, tumor-promoting immune
signatures such as checkpoint inhibition, Treg and immune
suppression by myeloid cells were highly enriched in PDAC
microenvironment (Figure 1A). Next, we used public single-
cell RNA-seq profiles of 111,981 cells from 24 PDAC samples
without any treatment and 11 normal pancreases samples to
further explore the immune microenvironment of PDAC. After
data filtering, doublets removal and batch-effect removal, 94,910
cells were remained, based on which, we obtained nine main
clusters including epithelial cells, endocrine cells, endothelial

cells, fibroblast cells, mast cells, myeloid cells, plasma cells,
T cells and B cells, which is annotated according to the
expression of canonical gene markers (Supplementary Figures
S1A–C; Supplementary Tables S2, S3). Compared with normal
pancreases tissues, the immune cells were greatly expanded in
tumor tissues, especially for T cells (3–17%) and myeloid cells
(1–11%) (Figure 1B).

We next divided the T cells and myeloid cells into subclusters
to further explore the characteristics of these tumor enriched
immune cells. The subclusters were named according to known
functional markers. The CD4+ T cells were divided into six
subclusters, including CD4_CCR7, CD4_CXCL13,
CD4_FOXP3, CD4_GZMA, CD4_HSPA1A and
CD4_STMN1 (Figure 1C, Supplementary Figures S1C–I).
The CD8+ T cells were divided into nine subclusters,
inculding CD8_CXCL13, CD8_FGFBP2, CD8_GZMK,
CD8_HSPA1A, CD8_IL7R, CD8_ISG15, CD8_S100A,
CD8_STMN1 and CD8_TYROBP (Figure 1C,
Supplementary Figures S1D–J). The myeloid cells were
divided into eight subclusters, including three dendritic cell
clusters (cDC2_CD1C, cDC3_LAMP3, Langer_CD1A) and five
macrophage/monocyte cell culsters (Mac_C1Q1,
Mac_HSPA1A, Mac_ISG15, Mac_SPP1, and Mono_FCN1)
(Figure 1C, Supplementary Figures S1C–I). Consistent with
the findings from the analysis of bulk gene expression data,
many immune cell subpopulations with tumor promoting
immune signatures were presented in PDAC
microenvironment (Figure 1D). Specifically, CD4_FOXP3
cells highly expressed “Treg” signature; CD4_FOXP3 cells,
CD4_CXCL13 cells, CD8_CXCL13 cells and CD8_ISG15 cells
highly expressed “checkpoint inhibition” signature that
represents exhausted status (Auslander et al., 2018);
Mac_C1QA, Mac_SPP1 and Mac_ISG15 cells highly
expressed “immune suppression by myeloid cells” signature
(Figure 1D). We further examined the expression of known
tumor-promoting markers in these immune subpopulations,
confirming that CD4_CXCL13, CD4_FOXP3, CD8_CXCL13,
CD8_ISG15, Mac_C1QA,Mac_ISG15 andMac_SPP1 cells were
tumor-promoting immune cells (Figure 1E). Besides, the
cDC3_LAMP3 cells that highly expressed LAMP3, IDO1, and
CCL21 associated with high maturation and migration ability
were also considered as tumor-promoting immune cells (Zhang
et al., 2019; Liu et al., 2021) (Figure 1E). Taken together, the
above results suggested that immune infiltrations in PDAC
tumors might play an important role in promoting PDAC
tumor progression.

Crosstalk Between Malignant Cells and
Immune Cells is Associated With
Tumor-Promoting Immune
Microenvironment
Firstly, we clustered the epithelial cells into seven clusters with
distinct gene expression pattern (Figures 2A,B, Supplementary
Figure S2A). Three epithelial cell clusters (Epi_KRT19,
Epi_STMN1, Epi_FABP1) were almost only presented in
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tumor tissues (Supplementary Figure S2B). By calculating large-
scale chromosomal copy number variation (CNV) in each cell
type using infercnv, we found that Epi_KRT19, Epi_FABP1, and
Epi_STMN1 exhibited remarkably higher CNV compared to
other four epithelial clusters (Epi_HSPA1A, EpiGSTA1,
Epi_SPP1, Epi_PRSS1) (Supplementary Figure S2C;
Supplementary Table S4). Moreover, CopyKAT analysis
showed that the cells in Epi_KRT19, Epi_FABP1, and

Epi_STMN1 were aneuploidy cells (Supplementary Figure
S2D; Supplementary Table S4). Taken together, the cells in
Epi_KRT19, Epi_FABP1, and Epi_STMN1 were considered as
malignant cells. According to the canonical biomarkers,
Epi_PRSS1 was identified as a cluster of acinar cells, and the
Epi_HSPA1A, EpiGSTA1, and Epi_SPP1 were identified as
clusters of ducal cells. Some cells in cluster Epi_PRSS1 from
tumor also exhibited CNV event, which may be related with

FIGURE 1 | ScRNA-seq and bulk RNA-seq reveals the immunemicroenvironment in PDAC. (A), heatmap showing the expression of 22 functional gene expression
signatures in 33 cancer types from TCGA. (B), pie chart showing the proportion of each cluster for the normal samples (top panel) and tumor samples (bottom panel). (C),
Uniform Manifold Approximation and Projection (UMAP) plot of CD4+ T cells (top panel), CD8+ T cells (middle panel) and myeloid cells (bottom panel), color-coded for
subclusters (left panel) and tissue type (right panel), respectively. (D), UMAP plot of CD4+ T cells (top panel), CD8+ T cells (lower left panel), myeloid cells (lower right
panel), color-coded for the average expression of functional gene expression signature. (E), violin plots showing the normalized expression of immune related genes in
CD4+ T cell (left panel), CD8+ T cell (middle panel) and myeloid (right panel) subclusters.
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acinar-ductal metaplasia (ADM). Surprisingly, Epi_HSPA1A,
Epi_GSTA1, Epi_SPP1 showed two distinctive CNV states
between normal and tumor tissue (Figure 2C, Supplementary
Figure S2C), according to which we divided these cells into two
clusters, ductal-normal cells from normal tissues and ductal-
tumor cells from tumor tissues. Overall, we found four major
epithelial clusters in PDAC and normal pancreases tissues,
including acinar, malignant, ductal-normal and ductal-tumor
(Figure 2D, Supplementary Figure S2E), which have distinct

pathway activities, where the ductal-normal cluster exhibits a
secretory state, the ductal-tumor cluster exhibits a variety of
immune-related functions, and the malignant cluster had a
significant enrichment in the cell adhesion pathway
(Figure 2E). We found that there is limited composition inter-
tumor heterogeneity in four epithelial clusters. As a whole,
malignant and ductal-tumor cells predominates in tumor
patients, while ductal-normal predominates in normal patients
(Supplementary Figure S2G). Interestingly, the distributions of

FIGURE 2 | Characteristics and evolution of epithelial cells during cancer progression and their ligand-receptor communications with immune cells in PDAC. (A),
UMAP plot of epithelial cells, color-coded for the subclusters of epithelial cells. (B), Dot plot showing the expression of marker genes in each subcluster. (C), UMAP plot of
epithelial cells, color-coded for the CNV score calculated by infercnv. (D), UMAP of epithelial cells, color-coded for the four major subclusters: acinar cells, malignant cells,
ductal-normal cells and ductal-tumor cells. (E), dot plot showing the enriched pathways in the four major subclusters. The color of each dot represents the
normalized enrichment score (NES), while the size of the dot represents p-value. (F), trajectory analysis showing the pseudotime of the four major subclusters. (G), line
plot showing the expression of cell adhesion molecules (ITGA3, CD47, MDK, ITGB1, CD55, and CDH1) along the pseudotime. Each line with different color represents a
gene. (H), circos plot showing the ligand-receptor interactions between immune cells and ductal-normal cells (left panel), ductal-tumor cells (middle panel), andmalignant
cells (right panel). (I), UMAP of epithelial cells showing the expression of known checkpoint genes (CD274, PVR, CD276 and ADORA2A). (J), the significantly enriched
ligand-receptor pairs between in CD4+ T cells (left panel)/CD8+ T cells (middle panel)/myeloid cells (right panel) and ductal-normal cells/ductal-tumor cells/
malignant cells.
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three clusters are different among different stages
(Supplementary Figure S2H).

The trajectory analysis suggested acinar cells had the potential
to transit to malignant cells, and ductal-normal cells transited to
ductal-tumor cells eventually evolved into malignant cells
(Figure 2F, Supplementary Figure S3A), consistent with
previous report (Ferreira et al., 2017). Cell adhesion molecules
such as ITGA3, CD47, MDK, ITGB1, CD55, and CDH1 show a
trend of upregulation with pseudotime (Figure 2G), indicating
that cell-cell communications play an important role during the
evolutionary process of tumor growth and progression. The RNA
velocity analysis also supported these evolution paths
(Supplementary Figure S3B). We found that the number of
receptor-ligand interactions between immune cells and epithelial
cells increases during the evolution from normal cells to
malignant cells (Figure 2H, Supplementary Table S5),
suggesting malignant cells might educate the immune cells
into tumor-promoting cells through cell-cell communications.

The most common cell-cell communication molecules such as
PD-L1 (CD274) were not expressed in epithelial cells (Figure 2I),
consistent with the finding that PD1/PD-L1 ICB has limited effect
in the therapy of PDAC. To find new potential checkpoints, we
investigated the cell-cell communications between tumor-
promoting immune cells (CD4_CXCL13, CD4_FOXP3,
CD8_CXCL13, CD8_ISG15, Mac_C1QA, Mac_ISG15,
Mac_SPP1 and cDC3_LAMP3) and the ductal epithelial cells
(Figure 2J). We found that LGALS9_CD44, MIF_TNFRSF14,
CD47_SIRPG, MDK_LRP1 and LGALS9_HAVCR2,
CD74_COPA, C3_C3AR1, ANXA1_FPR3 interactions were
upregulated in both ductal-tumor and malignant cells versus
ductal-normal. FAM3C-related ligand-receptor pairs, like
LAMP1_FAM3C, FAM3C_CLEC2D, CXADR_FAM3C, were
slightly upregulated in ductal-tumor and malignant cells.
Moreover, compared with ductal-normal and ductal-tumor
cells, CD55_ADGRE5, CD99_PILRA, ANXA1_FPR3
interactions were drastically upregulated in the malignant cells.
SPP1_CD44 interaction was upregulated during the transition
from ductal-normal cells to ductal-tumor cells but was
downregulated during the malignant transition. Notably,
LGALS9_HAVCR2 interaction has been implicated in Treg
expansion and cytotoxic T cell apoptosis (Song et al., 2021).
These 15 receptor-ligand pairs instead of common checkpoints
may lead to high level of tumor-promoting immune cell
infiltrations and immune escape. Targeting these receptor-
ligand pairs may become new effective immunotherapy
strategies in the treatment of PDAC.

Construction of Malignant-Immune-Talk
(MIT) Score to Measure the
Tumor-Promoting Immune
Microenvironment
We next dedicated to construct a signature to measure the
crosstalk between malignant cells and tumor-promoting
immune cells. Firstly, the 14 genes (ANXA1, C3, CD47, CD55,
CD74, CD99, CXADR, FAM3C, LAMP1, LGALS9, LTBR, MDK,

MIF, and SPP1) from the above-mentioned 15 receptor-ligand
pairs, which are highly expressed in malignant cells, were
considered as potential predictors. We observed all these 14
genes were significantly elevated in tumor tissues than normal
tissues in TCGA (Figure 3A), which was confirmed in another
cohort (Supplementary Figure S4A). The higher expression of
FAM3C, LGALS9, ANXA1, SPP1, CD99 and LAMP1 in tumor
tissues compared with normal tissues were confirmed by
immunohistochemistry in tumors (Figure 3B, Supplementary
Figure S4B). These genes were enriched in immune-related
pathways involved in immune cell adhesion, migration and
proliferation (Figure 3C). LASSO cox algorithm was used to
identify the most robust prognostic genes among the 14 candidate
genes and 10-fold cross-validation was applied to overcome the
over-fitting effect (Supplementary Figure S4C). As a result, 7
genes (FAM3C, LGALS9, ANXA1, SPP1, LTBR, CD99, and
LAMP1) were remained to build an Malignant-Immune-Talk
(MIT) score of PDAC using cox regression model (Figure 3D). In
the TCGA training set, the 182 patients were divided into two
groups according to the MIT score. The patients with higher MIT
score had a worse overall prognosis compared to the patients with
lower MIT score (Figure 3E, Supplementary Table S6), which
was validated in four independent cohorts (Figure 3F), the same
trend has been observed in individual genes out of seven genes in
MIT score (Supplementary Figure S4D). Multivariate Cox
regression analysis revealed that MIT score was the only
significant variable for overall survival among various cancer-
related hallmarks (p < 0.0001; Supplementary Figure S4E). MIT
score increased with the progression of the clinical stages andmay
be used as an indication of early clinical diagnosis (Figure 3G).
We found the chemotherapy biomarkers such as TUBB1 and
MAPT were highly expressed in MIT-low group and targets of
EGFR inhibors such as NR1I2, ERBB2 and EGFR were
significantly upregulated in MIT-high group (Figure 3H),
suggesting MIT-low group may have a better chemotherapy
response, while MIT-high group may respond better to EGFR
targeted therapy. Indeed, by analysis of the TCGA PAAD samples
with chemotherapy clinical information, we found patients with
better chemotherapy response have higherMIT score (Figure 3I).
We used pRRophetic package to estimate the drug sensitivity of
four common EGFR inhibitors (Gefitinib, Cetuximab, Erlotinib
and Lapatinib) in TCGA cohort, and found the estimated IC50
values of these drugs were significantly dropped in MIT-high
samples (Figure 3J), confirming that MIT-high group may
respond better to EGFR targeted therapy.

MIT Score is Associated With the
Tumor-Promoting Immune
Microenvironment
We next examined whether MIT score represented the tumor-
promoting immune microenvironment. We found the 403 genes
significantly upregulated in MIT-high samples of the TCGA
cohort were enriched in the pathways related to immune-
associated tumor promoting such as neutrophil activation and
negative regulation of T cell activation (Supplementary Figure
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S4F, Figure 4A, Supplementary Table S7). GSEA analysis of
hallmark pathway revealed that inflammatory response and IFN-
a response were enriched in MIT-high group (Figure 4B). A
variety of immune-related genes such as chemokines,
immunomodulators, inhibitory, MHC molecules, and
macrophage-related molecules were also found to be

upregulated in MIT-high group (Figure 4C). Notebly, IDO1,
the markers of tumor-promoting immune cells cDC3-LAMP3,
was upregulated in the MIT-high group. Meanwhile, The TNF
superfamily was upregulated in the MIT high group, which may
be produced by macrophages, T cells, mast cells, granulocytes,
natural killer (NK) cells, and non-hematopoietic cells, all have

FIGURE 3 | Construction of Malignant-Immune-Talk (MIT) score to measure tumor-promoting immune microenvironment. (A), boxplot showing the differential
expression of the 14 ligands from the above 15 ligand-receptor pairs between TCGA tumor and normal samples. *, p -value<0.05; **, p -value<0.01; ***, p-value< 0.001
from two-sided paired Student’s t-test. (B), immunohistochemical (IHC) staining of FAM3C, LGASL9, ANXA1, SPP1, CD99 and LAMP1 in normal tissue (top panel) or
PDAC tumor tissue (bottom panel). Scale bar, 50 μm. (C), barplot showing the pathways enriched for the 14 ligands from the above 15 ligand-receptor pairs. (D),
barplot showing the coefficients of the 7 genes selected from the lasso cox model. (E), Kaplan-Meier curve showing the overall survival difference between patients with
high MIT socre and patients with low MIT score in the TCGA PAAD cohort. p-value was calculated by the log-rank test. (F), Kaplan-Meier curve showing the overall
survival difference between patients with high MIT socre and patients with low MIT score in four independent cohorts of PDAC (GSE62452, GSE28735, GSE57495 and
GSE85916). p-value was calculated by the log-rank test. (G), box plot showing the MIT scores among different clinical grades. (H), Heat map showing the differential
expression of therapy-related genes between high and low MIT groups. (I), box plot showing the different MIT scores between chemotherapy responder group (pD/SD)
and chemotherapy non-responder group (pR/CR). (J), box plot showing the difference in estimated of IC50 for four EGFR inhibitors between high and low MIT group.
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pro-inflammatory activity and play a key role in various immune
and inflammatory processes. MMP8 also was found enrichment
in the MIT-high group, which was known to play a role in M2-
Macrophage polarization (Wen et al., 2015).

Next, EPIC and xCell algorithms were used to estimate the
abundance of various types of cells. In line with the previous
results, MIT-high group had higher inflammatory infiltration but
tumor-promoting immune environment (e.g., CD8+ T, CD4+

T cells, Tregs, Th2 and M2 macrophages), while MIT-low group
exhibited higher stroma infiltrations (e.g., CAFs, Endothelial and
Pericytes) (Figures 4D,E). Meanwhile, the MIT score was
positively correlated with most inflammatory and tumor
promoting gene expression signature (Figure 4F). By analysis
of single-cell RNA sequencing data, MIT score was positively
correlated with the proportion of tumor-promoting immune cell
clusters, especially the Mac_C1QA, Mac_SPP1 and Mac_ISG15
population (Figure 4G). Taken together, MIT score can indeed be

used as an indicator to measure the inflammatory but tumor-
promoting immune environment.

Oncogenic Events Associated With the
Crosstalk Between Malignant Cells and
Tumor-Promoting Immune Cells
We next investigated the oncogenic events associated with the
crosstalk (Xiang et al., 2021). For the copy number events, we
found 18q11.2 and 19q13.2 were significantly altered inMIT-high
group and 12p13.33 and 17q12 were significantly altered in MIT-
low group. (Figure 5A). For the somatic mutation events, we
found MIT-high group had higher frequency of mutations in
KRAS, TP53, CDK2NA, ADAMTSL4, and PDZRN3 than MIT-
low group (Figure 5B). This finding is consistent with previous
report showing that KRAS mediates crosstalk with the tumor
microenvironment, particularly by promoting inflammation and

FIGURE 4 | MIT score is associated with tumor-promoting immune microenvironment. (A), enriched pathways for the upregulated genes in MIT high group
compared to MIT low group. (B), the two enriched immune hallmark pathways in MIT high group compared to MIT low group derived from GSEA analysis. (C), heatmap
showing the differential expression of immune-associated genes between MIT high and low group. The color bar represents the level of expression (Standardized by
TPM). (D), boxplot showing the difference in proportions of immune cell types (derived from EPIC algorithm) between MIT high and low groups. *, p-value< 0.05; **,
p-value<0.01; ***, p-value<0.001 from two-sided paired Student’s t-test. (E), boxplot showing the difference in proportions of immune cell types (derived from xCell
algorithm) between MIT high and low groups. *, p-value< 0.05; **, p-value<0.01; ***, p-value<0.001 from two-sided paired Student’s t-test. (F), barplot showing the
correlation between the MIT score and functional gene expression signatures in PDAC. (G), The correlation between the proportion of tumor-promoting immune clusters
(CD4_CXCL13, CD4_FOXP3, CD8_ISG15, CD8_CXCL13, Mac_C1QA, Mac_SPP1, Mac_ISG15 and cDC3_LAMP3) and MIT score.
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evading the immune response (Liao et al., 2019). CDKN2A has
been shown to stimulate cancer immunity (Knudsen et al., 2021).
TP53 has been demonstrated to play a role in controlling the
crosstalk between malignant cells and other cells (Stein et al.,
2019). Interestingly, PDZRN3 and ADAMTSL4 mutations
exclusively occurred in MIT-high group, although their
occurrences are rare. The potential roles of PDZRN3 and
ADAMTSL4 in regulating tumor immune microenvironment
are worth exploring. Together, these MIT-associated oncogenic
events may drive the crosstalk between malignant cells and
tumor-promoting immune cells.

MIT Score as a Biomarker to Predict the
Response to Immune Checkpoint
Blockade (ICB)
The MIT-associated mutations (KRAS, TP53, PDZRN3,
ADAMTSL4 and CDKN2A) were commonly observed in the
samples from a pan-cancer dataset with ICB clinical
information and mutation data, and various cancer types
including NSCLC, BLCA, SKCM, and EC with the
frequencies greater than 10% (Figure 5C). We classified these
samples into two groups according to the presence of MIT-

associated mutations. We found that the group having mutation
had significantly worse survival outcome compared with the
group with no mutation (p � 0.00087, Figure 5D). The tumor
mutational burden (TMB) was known to be associated with high
immunogenicity and better ICB response (Schrock et al., 2019).
However, we found TMB was significantly elevated in the MIT-
high group with poor response to ICB (p-value<0.05;
Figure 5E). This contradiction is consistent with the immune
microenvironment caused by MIT, which is inflammatory but
suppressive. Indeed, we found patients with high TMB but
having MIT-associated mutations had worse survival than
patients with high TMB and no MIT-associated mutations,
and patients with low TMB and MIT-associated mutation
had the worst survival (Figure 5F).

We next evaluated the association betweenMIT score and ICB
response using the datasets with ICB clinical information and
gene expression data. Firstly, we found that the MIT score was
significantly positively correlated with the inflammatory and
tumor-promoting immune cell gene expression signatures in
most of the cancer types in addition to PDAC (Figure 6A),
suggesting that MIT score may be used a pancancer biomarker to
measure the PD1/PD-L1 independent crosstalk between
malignant cell and immune cell. We found in the BLCA

FIGURE 5 | MIT-associated oncogenic events and their relevance to ICB response. (A), recurrent copy number events (GISTIC2 Q < 0.1) in MIT-high group (top
panel) and MIT-low group (bottom panel). (B), comparison of mutation rates of individual genes between the MIT high and MIT low groups. *, p-value<0.05; **,
p-value<0.01; ***, p-value<0.001 (C), frequency of the mutation of KRAS, TP53, PDZRN3, ADAMTSL4 and CDKN2A in MSK-IMPACT dataset with ICB clinical
information. (D), Kaplan-Meier curves showing the survival difference between patients with no mutation and patients having mutation in MSK-IMPACT dataset
with ICB treatment. The p-value is computed via a two-sided log-rank test. Have mutation indicates patients with any of KRAS, TP53, PDZRN3, ADAMTSL4 and
CDKN2A mutations. (E), boxplot showing the TMB difference between MIT-high group and MIT-low group. *, p -value<0.05 from two-sided paired Student’s t-test. (F),
The Kaplan-Meier curve showing the survival difference among four subgroups of patients. Have mutation representing patients with any of KRAS, TP53, PDZRN3,
ADAMTSL4 and CDKN2A mutations. p-values were calculated using stratified log-rank test.
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(bladder urothelial carcinoma) cohort, patients with high MIT
score exhibited worse survival than the patients with low MIT
score (p-value<0.05); meanwhile, we found more non-responders
with ICB were in the MIT-high group (Figure 6B). Similarly, we
found that MIT score was significantly associated with a worse
response to ICB in other cancer types such as CCRCC (renal clear
cell carcinoma) and SKCM (skin cutaneous melanoma) (Figures
6C–F). Together, MIT score and its associated mutations could
be used as biomarkers to predict the response to ICB.

DISCUSSION

In the present study, we comprehensively investigated the
immune microenvironment and malignant-immune cell
communications in PDAC using both bulk and single cell
gene expression data and revealed 15 ligand-receptor pairs

that associated with the malignant-immune cell crosstalk.
Among these ligand-receptor pairs, several have been reported
to play a role in the formation of immunosuppressive
microenvironment. For example, the ligand galectin-9
(LGALS9) was reported to negatively regulate T cell
responses by promoting CD8+ T cell exhaustion and
inducing expansion of myeloid-derived suppressor cells via
the interaction with receptor CD44 (Fujita et al., 2017).
Previous studies showed that ANXA1 may have important
effects on Treg cell functions (Perretti et al., 2009; Bai et al.,
2020). Osteopontin (SPP1) may act as an immune checkpoint to
evade immune system independent of CTLA-4/PD-1/PD-L1
(Klement et al., 2018). LTBR and CD99 have also been reported
to be closely related to immune regulation (Tang et al., 2016;
Takheaw et al., 2019). The ligand-receptor pairs reported in this
study may be considered as potential immunotherapy targets for
the treatment of PDAC.

FIGURE 6 |MIT score can be a prognostic factor related to the long-term efficacy of immunotherapy. (A), Heatmap shows the correlation between the MIT score
and functional gene expression signatures in 33 cancer types from TCGA. (B–F), Kaplan Meier curves showing the survival difference between MIT-high and MIT-low
group (left panel) and bar chart showing the difference in proportion of responders and non-responders between MIT-high and MIT-low group (right panel) in BLCA,
CCRCC, SKCM patients, respectively. The p-values for survival difference are calculated via a two-sided log-rank test, and the p-values for proportion difference
are calculated from fisher’s exact test.
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Another important contribution of this study is that we
proposed a gene expression signature based on ligand-receptor
pairs participating in the malignant-immune cell crosstalk, which
was named as MIT score. The MIT score can be used to measure
the tumor-promoting microenvironment induced by pathways
other than PD1/PD-L1 checkpoint inhibition, such as immune
suppression by myeloid cells. Patients using PD1/PD-L1
independent mechanism to evade the immune system may not
respond to PD1/PD-L1 ICB immunotherapy. Indeed, we found
MIT score can be used as a poor survival biomarker in bladder
cancer, clear cell renal cell carcinoma and melanoma under ICB
immunotherapy.

We also revealed oncogenic events probably driving the
malignant-immune cell crosstalk. One of the oncogenic events
is KRAS mutations, the occurrence of which was more common
in MIT-high patients than MIT-low patients. In solid tumors
including PDAC and colorectal cancer, KRAS mutation was
reported to induce tumor-promoting TME by inducing
regulatory T-cell differentiation or recruiting MDSCs.
Meanwhile, the mutant KRAS protein can be released from
malignant cells and be further taken by TAMs, leading to an
M2-like switch of these TAMs (Zdanov et al., 2016; Liao et al.,
2019; Dai et al., 2020). A high level of KRAS activity can produce
many factors regulating the maintenance of microenvironment
mediators, such as sonic hedgehog, interleukin-6 (IL-6), IL-10,
transforming growth factor-β (TGF-β), and prostaglandin E
(Charo et al., 2013; Cheng et al., 2019). Another oncogenic
event is CDKN2A mutation, which was significantly related to
poor T-cell and B-cell infiltration but enriched FOXP3+ Tregs,
leading to remarkably shorter survival in patients with PDAC
(Wartenberg et al., 2018).

Although crosstalk between malignant cells and tumor-
promoting immune cells has been comprehensively
investigated in this study, the causality/mechanism has not
been explored. Moreover, the predictive value of MIT score
for the response to ICB immunotherapy was verified in other
cancer types but not in PDAC cohort. Finally, although the MIT
was tested in public patient cohorts, a large number of real-world
cohorts need to be used for more validation.

CONCLUSION

In conclusion, we investigated cell-cell communications between
malignant cells and tumor-promoting immune cells in PDAC,
providing potential targets for the development of new
immunotherapy strategy. Based on these unique crosstalks,

MIT score was established to measure tumor-promoting
immunocyte infiltration. MIT score can be also used as a
biomarker to predict ICB immunotherapy.
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