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Purpose: To develop a software package for automated classification of anterior
chamber angle of the eye by using ultrasound biomicroscopy.

Methods: Ultrasound biomicroscopy images were collected, and the trabecular-iris
angle was manually measured and classified into three categories: open angle, narrow
angle, and angle closure. Inception v3 was used as the classifying convolutional neural
network and the algorithm was trained.

Results: With a recall rate of 97% in the test set, the neural network’s classification
accuracy can reach 97.2% and the overall area under the curve was 0.988. The
sensitivity and specificity were 98.04% and 99.09% for the open angle, 96.30% and
98.13% for the narrow angle, and 98.21% and 99.05% for the angle closure categories,
respectively.

Conclusions: Preliminary results show that an automated classification of the anterior
chamber angle achieved satisfying sensitivity and specificity and could be helpful in
clinical practice.

Translational Relevance: The present work suggests that the algorithm described
here could be useful in the categorizing of anterior chamber angle and screening for
subjects who are at high risk of angle closure.

Introduction

Primary angle closure glaucoma (PACG) is one of
the leading cause of blindness in Asians.1 Although
early prophylactic treatment can control the develop-
ment of the disease well,2 this disease can be quite
asymptomatic in its early stages and is frequently
recognized only when already advanced. PACG eyes

tend to have special ocular biometric findings, such as
a smaller central and peripheral anterior chamber
depth, narrow or close anterior chamber angle
(ACA), and a thicker and anterior positioned lens,
which could be accessed and measured objectively in
clinical practice.3 On the other hand, narrow or close
angles are also common features across the angle
closure disease spectrum and anterior chamber
characteristics (especially ACA assessments) are
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crucial for early detection. However, this requires
trained graders and is also labor intensive.4 Auto-
mated assessment, which could be cost-effective, is
another choice, and it could be helpful to screen out
those with narrow or close angle and then refer them
to experienced specialists for further examination.
Recently, many studies have reported encouraging
results in the development of automated image
assessment software.5–8 In this study, we propose a
deep learning method for automated classification of
ACA by using ultrasound biomicroscopy (UBM), a
noninvasive imaging technique, which allows high-
resolution assessment of the anatomical features of
the anterior segment.9

Methods

Datasets

Images taken by UBM (MD-300L, 50-MHz
probe transducer; Meda Co., Ltd, Tianjin, China)
during January 2017 to December 2017 at the Eye
and Ear Nose and Throat Hospital of Fudan
University (Shanghai, China) were used in this
study. During image analysis, first the scleral spur,
which was defined as the innermost point of a line
separating the ciliary muscle and the scleral fibers,
was located. Then, the angle was defined as close
angle if there was contact between the peripheral iris
and the scleral spur; otherwise, it was subjected to
trabecular-iris angle (TIA) measurement. TIA was
defined as in Pavlin et al.10 and Marchini et al.11 as
the angle with the apex in the iris recess and the arms
of the angle passing through a point on the
trabecular meshwork 500 lm from the scleral spur
and the point on the iris perpendicularly opposite.
The angle was defined as open angle if the TIA was
15 degrees or above and as a narrow angle if the TIA
was less than 15 degrees.12 During the grading, if the
results of the two graders (Zhenying Jiang and Yuan
Zong) were the same, then it was used as the final
result, and if otherwise, the senior specialist Qian
Chen made the final call.

Then, the images were randomly divided into the
training set and test set by generating random
numbers ranging from 0 to 1, whereby a random
number greater than one-third put the image in the
training set, and a random number less than or equal
to one-third in the test set. In the classification
model, the algorithm was trained to classify the
images into three categories, namely, open angle,
narrow angle, and angle closure, by using the

training set. Subsequently, the test set was used to
test the algorithm. Because of the rotational invari-
ance and size insensitivity of UBM images, we
augmented the training images with image rotation
and scaling.

Network Architecture

Inception v3 was used as the classifying convo-
lutional neural network (CNN), which is illustrated
in Figure 1. Inception v3 is a deep CNN architec-
ture based on GoogLeNet and developed by
Google.13 As is shown in Figure 1, Inception v3 is
an extended work of Inception v2 that achieves high
efficiency in performing image recognition tasks by
factorizing 5 3 5 convolution into two smaller 3 3 3
convolutions to speed up computation. By expand-
ing the filter banks in width, Inception v3 can
prevent overfitting to a large extent. Moreover,
Inception v3 further factorizes 7 3 7 convolution
and concatenates multiple different layers with
batch normalization technique, rendering even
higher efficiency and less computational complex-
ity.

An Inception v3 CNN architecture that was
pretrained on the 1000 object categories (1.28 million
images) from the 2014 ImageNet Large Visual
Recognition Challenge was used, after the final
classification layer from the network was removed.
We retrained this layer with our dataset (Supplemen-
tary Table S1). To make the images compatible with
the original dimensions of the Inception v3 network,
each image was resized to 299 3 299.

Training for Angle Classification

In the angle classification model, the algorithm
was trained to classify the images into three catego-
ries: open angle, narrow angle, and angle closure. All
layers of the network were fine-tuned using the same
initial learning rate of 0.01. The classification model
was trained with the softmax cross entropy loss for 50
epochs by using an ADAM optimizer and a batch size
of 32. To prevent the model from over-fitting, an L2
loss was used as a regularizer whose regularization
coefficient was set to 0.01.

Statistics

Using the manual classifications as the reference
standard, we used receiver operating characteristic
(ROC) curves, with calculations of area under the
curve (AUC), as an index of the performance of our
automated algorithm. Sensitivity and specificity were
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also used to evaluate the angle classification perfor-
mances of our proposed model. We defined ‘‘true
positive’’ (TP) as the number of cases correctly
identified as open angle (narrow angle or angle
closure), ‘‘true negative’’ (TN) as the number of cases
correctly identified as other angle, ‘‘false positive’’
(FP) as the number of cases incorrectly identified as
open angle (narrow angle or angle closure), and ‘‘false
negative’’ (FN) as the number of cases incorrectly
identified as other angle. The sensitivity and specific-
ity can be expressed as follows:

sensitivity ¼ TP

TPþ FN
: ð1Þ

specificity ¼ TN

TNþ FP
: ð2Þ

Results

A total of 540 UBM images from 540 eyes (290
subjects) were collected from January 2017 to
December 2017 and were included in the final study.
The dataset contained 180 images of each angle type:
open-angle, narrow-angle, and angle-closure images.

During manual grading, the intraobserver and the
interobserver repeatability were all above 0.97 (Table
1).

During the study, 379 images were assigned to the
training set and 161 to the test set (Table 2). Using the
manual classification as a standard, with a recall rate
of 97% in the test set, we found that the classification
accuracy can reach 97.2%. The overall AUC was
0.988, which demonstrates a good performance of the
proposed mode (Fig. 2).

Our automated ACA classification model reached
a sensitivity and specificity of 98.04% and 99.09% for
open angle, 96.30% and 98.13% for narrow angle, as
well as 98.21% and 99.05% for angle closure (Table 2).
The normalized confusion matrix of angle classifica-
tion model (Fig. 3) shows that no close angle case was
classified as open angle, or vice versa. The saliency
map shows that the region of most concern of the
proposed model was centered at ACA.

Discussion

UBM, which was first designed by Pavlin et al.,10

combines high-frequency ultrasound and computer
image processing technology and is able to acquire
high-resolution images of the anterior segment that
provide valuable information about the cornea,
anterior chamber, chamber angle, iris, ciliary body,
zonules, and lens. Since its inception, it has become an
important method that greatly assists the clinician in
the diagnosis and management of angle closure and
other subtypes of glaucoma.14 Currently, UBM is the
most widely used method for the study of ACA
regardless of optical media transparency.15

In the manual part of the analysis, we defined a

Figure 1. Architecture of Inception v3. Inception network stacks three convolution layers whose filter size are 1 3 1, 3 3 3, and 5 3 5
with one 3 3 3 pooling layer together, which is able to increase the width of network and improve the adaptability of the network to
scale.

Table 1. Intraobserver and Interobserver Repeatability
of Manual Grading

Angle
Classification

Repeatability

Intraobserver Interobserver

Open angle 0.989 0.978
Angle closure 0.989 0.983
Narrow angle 0.994 0.989
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TIA of less than 15 degrees as a narrow angle and that

of 15 degrees or above as an open angle. Although

there were no well-accepted standards for the

classification of open and narrow angles in UBM, in

a population-based study of UBM performed by

Henzan et al.12 from Japan, the averaged TIA was

10.3 6 3.9 degrees in patients who had PACG or

suspected to have PACG based on gonioscopic

findings, whereas it was 24.2 6 9.3 degrees in the

healthy control group. Hence, in the present study, we

used 15 degrees, which was about one standard

deviation (SD) above the average of suspected PACG

or PACG cases (10.3þ3.9¼14.2 degrees) and one SD

below the average of normal subjects (24.2 � 9.3 ¼

14.9 degrees), as the boundary between narrow and
open angle cases.

Automated ACA assessment has been studied
before. An automated software for goniophoto-
graphic angle assessment was proposed for RetCam
images with encouraging results8; however, the
authors found that pigmentation of the trabecular
meshwork and a convex iris might lead to erroneous
classification as a case of closed angle. Using anterior
segment optical coherence tomography (OCT) imag-
es, we used the Zhongshan Angle Assessment
Program16 to investigate a semiautomatic algorithm
to measure the various anterior segment parameters,
but this approach still needed the clinician to input
the location of the scleral spur first. Using high-

Table 2. Automated ACA Classification Compared With Manual Classification

Manual Classification Automated ACA Classification

Angle Classification n Open Angle Angle Closure Narrow Angle

Open angle 51 50 0 1
Angle closure 56 0 55 1
Narrow angle 54 1 1 52

Total 161 51 56 54
Sensitivity, % 98.04 98.21 96.30
Specificity, % 99.09 99.05 98.13

Figure 2. ROC curve of the classification model. The overall AUC was 0.988, which demonstrates good performance of the proposed
model.
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definition OCT, Tian et al.5 reported the automatic
detection of Schwalbe’s line and a ACA assessment.
However, critics pointed out that this system could
not process images acquired by other anterior

chamber OCT systems.7 Automated analysis based
on UBM images have also been tried and was found
to be an useful approach, but it was found that in
angle closure cases, which are quite common in
PACG, the contact of the peripheral iris and the
corneal-scleral surface was falsely identified as the
apex.17 Our results show that the algorithm developed
this time was able to automatically classify the UBM
images into three categories, namely, open angle,
narrow angle, and angle closure, with a high
sensitivity and specificity (all above 96%), which was
a marked improvement in comparison to previous
report.8 Also, no close angle case was classified as
open angle, or vice versa.

The saliency map visualizations were presented to
identify the areas of greatest importance used by the
model in ACA classification. The greatest benefit of a
saliency map is that it reveals insight into the
decisions of neural networks, which are widely known
as ‘‘black boxes.’’ Gradient-weighted class activation
mapping18 was used as the neural network visualiza-
tion approach, which can generate visual explanations
from the CNN-based network without requiring
architectural changes or retraining. The UBM image
was fed into the well-trained Inception v3 network,
and the feature maps from the final convolutional
layer were output. The saliency map highlighting the

Figure 3. Normalized confusion matrix of the classification
model. Element (x,y) of each confusion matrix represents the
empirical probability of predicting class y given that the ground
truth (manual classification) is a member of class x.

Figure 4. Feature visualization for ACA images. (a) The input UBM image. (b) Saliency map of deep learning features.
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important regions in the image for ACA classification
was obtained by taking the weighted sum of all the
feature maps by using their associated weights. As
illustrated in Figure 4, the most concern region of the
proposed model is the center of ACA, which is exactly
the area ophthalmologists used to make a diagnosis.

The results this time suggested that using UBM
images and the algorithm developed in this study,
narrow and close angle cases, which are important in
the diagnosis and management of angle closure
diseases, could be detected automatically with a high
accuracy. Also, these cases could be referred to
experienced specialists for further examination and
proper prophylactic treatment if necessary. Addition-
ally, as the screening process could operate in a
remote medical treatment center or via a personal
computer, it could be helpful to subjects at rural
areas, which lack experienced ophthalmologists but
have a high incidence of PACG compared to urban
environments.1

Results in this study show that an automated
classification model can achieve a high accuracy of
classification of the ACA based on UBM images and
could be of value in future clinical practice.
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