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Abstract

Mediation analysis is a useful tool in biomedical research to investigate how molec-
ular phenotypes, such as gene expression, mediate the effect of an exposure on health
outcomes. However, commonly used mean-based total mediation effect measures may
suffer from cancellation of component-wise mediation effects of opposite directions in
the presence of high-dimensional omics mediators. To overcome this limitation, a
variance-based R-squared total mediation effect measure has been recently proposed,
which, nevertheless, relies on the computationally intensive nonparametric bootstrap
for confidence interval estimation. In this work, we formulate a more efficient two-
stage cross-fitted estimation procedure for the R-squared measure. To avoid potential
bias, we perform iterative Sure Independence Screening (iSIS) in two subsamples to
exclude the non-mediators, followed by ordinary least squares (OLS) regressions for
the variance estimation. We then construct confidence intervals based on the newly-
derived closed-form asymptotic distribution of the R-squared measure. Extensive sim-
ulation studies demonstrate that the proposed procedure is hundreds of times more
computationally efficient than the resampling-based method with comparable coverage
probability. Furthermore, when applied to the Framingham Heart Study, the proposed
method replicated the established finding of gene expression mediating age-related vari-
ation in systolic blood pressure and discovered the role of gene expression profiles in
the relationship between sex and high-density lipoprotein cholesterol. The proposed
cross-fitted interval estimation procedure is implemented in R package RsqMed.
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1 Introduction

Recent advances in high-throughput technologies have enabled researchers to measure thou-

sands or even millions of molecular variables, such as DNA methylation or gene expression,

in a variety of tissues and cells, and to provide unprecedented opportunities to study biolog-

ical mechanisms. High-dimensional mediation analysis is a critical research topic exploring

the role of molecular phenotypes, such as gene expression, in mediating the effect of an

exposure on health outcomes. Most existing high-dimensional mediation analysis methods

rely on mean-based total mediation effect size measures and may suffer from cancellation of

component-wise mediation effects of opposite directions, which are ubiquitous in the pres-

ence of high-dimensional genomics mediators (Zhao and Luo, 2022; Huang and Pan, 2016;

Dai et al., 2022; Song et al., 2020; Zeng et al., 2021). As a complement, Yang et al. (2021)

proposed a variance-based R-squared measure for the total mediation effect under the high-

dimensional setting. The R-squared measure, denoted as R2
Med, can be interpreted as the

variance of the outcome variable explained by the exposure through the mediators. It can

provide useful insights especially when individual molecular mediators may have mediating

effects of opposite directions.

The R-squared measure, defined as R2
Med = R2

Y,X + R2
Y,M − R2

Y,MX , is essentially an

additive function of the variance of the outcome explained by the exposure, mediators, and

exposure and mediators together. Estimating variance under the high-dimensional setting

is generally challenging and has been less explored than parameter estimation of individual

mediation effects (Zhao and Luo, 2022; Gao et al., 2019). As demonstrated in Yang et al.

(2021), the R2
Med can be seriously biased when spurious mediators are included. In real data

analysis with high-dimensional mediators, the identity of the true mediators is rarely known

a priori and hard to distinguish from the spurious ones with a finite sample. The earlier

work by Yang et al. (2021) used a variable selection method with the oracle property to

filter out spurious variables based on half of the sample and estimated R2
Med through mixed-

effect models based on the remaining half. Furthermore, nonparametric bootstrap was used

to compute confidence intervals, which showed satisfactory coverage probability, but was
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computationally intensive as each iteration of the bootstrap involved a variable selection

step and an estimation step.

We herein propose a new two-stage cross-fitted interval estimation procedure for R2
Med

which is hundreds of times faster than the nonparametric bootstrap and can improve me-

diator selection against spurious correlations (Yang et al., 2021). We derive the asymptotic

distribution of the R2
Med estimator and demonstrate that the resulting asymptotic confi-

dence intervals have satisfactory coverage probabilities comparable to the bootstrap-based

confidence intervals in extensive simulation settings. Using this newly proposed estimation

procedure, we replicated a previously established mediating relationship among age, gene

expression, and systolic blood pressure (BP) (Yang et al., 2021) and investigated how gene

expression could mediate the well-known relationship between sex and high-density lipopro-

tein cholesterol (HDL-C) (Lawlor et al., 2001; Weidner et al., 1991; Wilson et al., 1983) in

the Framingham Heart Study (FHS). Lastly, we implement our new estimation procedure in

the updated RsqMed R package on CRAN.

2 Methods

2.1 Mediation model and R2 measure

A mediation model consists of the following equations,

M = αX + ξ,

Y = γX + β⊤M + ε,
(1)

where X is an exposure variable, Y is a response variable, and M is a vector of p potential

mediators, ξ, ε are errors, and α,β, γ are regression coefficients. Moreover, the potential

mediators M = (MT ,MI1 ,MI2 ,MI3) can be partitioned into true mediators and three

types of non-mediators, respectively. As illustrated in Figure 1, true mediators MT are

associated with both exposure and outcome (αj ̸= 0 and βj ̸= 0 for j ∈ T ), non-mediators

MI1 are only associated with the outcome (αj = 0 and βj ̸= 0 for j ∈ I1), non-mediators

MI2 are only associated with the exposure (αj ̸= 0 and βj = 0 for j ∈ I2) and noise variables
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MI3 are not associated with neither exposure nor outcome (αj = 0 and βj = 0 for j ∈ I3).

In high-dimensional mediation analysis, ignoring non-mediators can potentially introduce

bias which distorts the mediation effect, leading to untrustworthy discoveries.

Mediators

Non-mediators

Exposure Response

Figure 1: Graph representation of a mediation model.

In model (1), the exposure variable X influences the outcome Y directly (i.e., direct effect

γ) and through the true mediators MT (i.e., mediation effect). The R2
Med measure is defined

as

R2
Med = R2

Y,X +R2
Y,M −R2

Y,MX

= 1− Var(Y | X) + Var(Y | MT )− Var(Y | X,MT )

Var(Y )
,

(2)

where R2
Y,X = 1 − Var(Y | X)/Var(Y ), R2

Y,M = 1 − Var(Y | MT )/Var(Y ), and R2
Y,MX =

1−Var(Y | X,MT )/Var(Y ) are the coefficients of determination of Y regressing over MT ,

X, and (X,MT ), respectively.

Lemma 1. In model (1), suppose (X, ξ1, . . . , ξp, ε) are independent and normally distributed.

Then

R2
Med = 1− Var(Y | X) + Var(Y | MS)− Var(Y | X,MS)

Var(Y )
, (3)

where S = T ∪ I1 is the union of the true mediators and the non-mediators only associated

with the outcome.
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By Lemma 1 (Proof in Web Appendix A), the estimation of R2
Med can be naturally

decomposed to the estimation of Var(Y | X), Var(Y | MS), Var(Y | X,MS) and Var(Y ),

where the set S can be estimated by variable selection in the regression of Y over (X,M). To

infer R2
Med, Yang et al. (2021) used nonparametric bootstrap to perform interval estimation,

which leads to great computational challenges, especially when p is large.

In what follows, we develop a method that is faster and valid for statistical inference of

the R2
Med measure. Of note, we treat the effects α,β, γ in model (1) as fixed, whereas α and

β were treated as random effects in Yang et al. (2021).

2.2 Cross-fitted estimation of the R2 measure

In equation (2), R2
Med is constituted by variance VY = Var(Y ) and conditional variances

VY |X = Var(Y | X), VY |M = Var(Y | M ), and VY |MX = Var(Y | X,M ). This observation

suggests that the R2
Med estimation can be reduced to variance estimation in regressions.

To this end, we propose an estimation procedure for R2
Med based on sample-splitting and

cross-fitting. To proceed, suppose an independent and identically distributed sample D =

{(Xi, Yi,Mi) : i = 1, . . . , n} is given. The procedure is summarized in Figure 2 and detailed

as follows.

• For VY |X , the estimate V̂Y |X is computed with the full sample D based on ordinary

least squares (OLS) regression of Y on X.

• For VY |M and VY |MX , the estimation requires high-dimensional regression involving

mediator selection/screening. Motivated by Fan et al. (2012), we use cross-refitted

estimates for VY |M and VY |MX to eliminate the potential selection bias. Specifically,

the original sample D is randomly split into two equal subsamples D(1) and D(2).

Then we apply a mediator selection method based on regression of Y over (X,M )

with two subsamples D(1) and D(2), respectively. Letting MŜ(1) and MŜ(2) be the

selected mediators based on D(1) and D(2), we estimate V̂
(1)
Y |MX and V̂

(1)
Y |M by refitting

OLS regressions of Y over (X,MŜ(2)) and MŜ(2) using subsample D(1). Similarly,
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V̂
(2)
Y |MX and V̂

(2)
Y |M are estimated using D(2). The final estimates of VY |M and VY |MX are

V̂Y |M = (V̂
(1)
Y |M + V̂

(2)
Y |M)/2 and V̂Y |MX = (V̂

(1)
Y |MX + V̂

(2)
Y |MX)/2.

• The final estimate of R2
Med measure is R̂2

Med = 1− V̂Y |X − V̂Y |M + V̂Y |MX .

Sample 

OLS : 

Mediator selection : 

Sample splitting: 

OLS : 

Mediator selection : 

OLS : 

Sample splitting: 

OLS : OLS : 

Figure 2: Cross-fitted estimation of R2
Med. The sample D is used for estimation of V̂Y |X and

for sample splitting, which yields D(1),D(2). Then D(k) is used for mediator selection MŜ(k) ;

k = 1, 2. Next, V̂
(1)
Y |MX , V̂

(1)
Y |M are estimated based on the subsample D(1) and the selected

mediators MŜ(2) , and similarly for V̂
(2)
Y |MX , V̂

(2)
Y |M . Finally, V̂Y |MX , V̂Y |M are estimated from

V̂
(k)
Y |MX , V̂

(k)
Y |M ; k = 1, 2, and R̂2

Med = 1− V̂Y |X − V̂Y |M + V̂Y |MX .

2.3 Theoretical properties

In this subsection, we establish the large-sample properties of the proposed cross-fitted esti-

mator. In particular, we derive the asymptotic normality of conditional variance estimators,

which enables us to construct confidence intervals for the R2 measure.
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Theorem 1. In model (1), suppose (X, ξ1, . . . , ξp, ε) are independent and normally dis-

tributed. Let ζ = Y − E(Y | MS), η = Y − E(Y | X) and let A be the covariance matrix

of (ε2, η2, ζ2, Y 2). Assume A is constant, |S| = |T ∪ I1| = o(n), and the mediator selection

procedure satisfies P (Ŝ(k) = S) → 1 as n → ∞ for k = 1, 2. Then

√
n


V̂Y |MX − VY |MX

V̂Y |X − VY |X

V̂Y |M − VY |M

V̂Y − VY


d−→ N (0,A) . (4)

Consequently,
√
n
(R̂2

Med −R2
Med)√

u⊤Au

d−→ N(0, 1),

where u = (1/VY ,−1/VY ,−1/VY , (VY |X + VY |M − VY |MX)/V
2
Y ).

As suggested by Theorem 1, the estimator R̂2
Med is consistent and achieves the asymptotic

variance of the hypothetical oracle estimator, therefore it is optimal. For statistical inference,

we estimate the asymptotic covariance matrix A by the residuals of the corresponding least

squares regressions, and use the plugin estimator

û = (1/V̂Y ,−1/V̂Y ,−1/V̂Y , (V̂Y |X + V̂Y |M − V̂Y |MX)/V̂
2
Y )

for u. Detailed technical proofs of Lemma 1 and Theorem 1 are provided in Web Appendix

A.

3 Simulation Studies

3.1 Simulation Settings

The existence of non-mediator MI1 and noise variables does not affect the estimation,

whereas non-mediator MI2 can result in a biased and inconsistent estimation in high-

dimensional settings (Yang et al., 2021). Therefore, we used the iterative Sure Indepen-

dence Screening (iSIS) (Fan and Lv, 2008) along with the Minimax Concave Penalty (MCP)

(Zhang, 2010) screening procedure (iSIS-MCP) for variable selection.
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We first compared the proposed cross-fitted OLS estimation method (CF-OLS) with

the previously established method (B-Mixed) (Yang et al., 2021) which estimates the R2
Med

measure in the mixed model framework along with bootstrap-based confidence interval. We

computed the coverage probability, width of the confidence interval, bias, mean squared error

(MSE), empirical standard deviation of estimator (i.e., standard deviation of the sampling

distribution of the estimator based on simulation replications), variable selection accuracy,

and computational efficiency in various high-dimensional settings.

For the B-Mixed method, we performed iSIS variable selection in the first half subsample

and obtained point estimation and confidence intervals in the second half subsample. For

each replication, the confidence interval for R2
Med was computed from 500 nonparametric

bootstrap resamplings. Then we obtained the coverage probability and empirical standard

deviation of the estimation from 200 replications. For the CF-OLS method, within each

replication iSIS was applied independently to two subsamples as illustrated in Figure 2. The

asymptotic standard error, bias, MSE, true positive rate, and false positive rate were the

mean of their respective estimates in the subsamples. Then the Wald confidence interval for

R2
Med was constructed based on the asymptotic standard error. The coverage probability and

empirical standard deviation of the estimation from 200 replications were directly reported.

For both methods, the width of the confidence interval, bias, MSE, true positive rate, and

false positive rate were averaged across 200 replications.

The performance of the two methods was evaluated in various scenarios (A1)–(A6), where

different types or numbers of non-mediators were included. In scenarios (A1)–(A2), a sub-

stantial number of noise variables MI3 were added, and in scenarios (A3)–(A4), numerous

non-mediators MI1 and MI2 were simulated respectively. Scenarios (A5)–(A6) examined a

combination of different types of non-mediators.

In each scenario, the same parameters were simulated across 200 replications so that

the true R2
Med remained the same. Data were simulated under model (1) at varied sample

size n = 750, 1500, and 3000. The errors in model (1) independently follow the standard

normal distribution, ξ ∼ N(0, Ip) and ε ∼ N(0, 1). Exposure variable X was simulated from
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the standard normal distribution N(0, 1) and coefficient γ in model (1) was set to 3. Let

(p0, p1, p2, p3) denote the number of true mediators, two types of non-mediators, and noise

variables (MT ,MI1 ,MI2 ,MI3), respectively. The total number of variables in M was set to

p = 1500. The maximum number of iterations for iSIS was set equal to 3. We used Bayesian

information criterion (BIC) (Schwarz, 1978) to select the tuning regularization parameters

in the penalized likelihood functions.

The details of simulation scenarios (A1)-(A6) can be found as follows.

• (A1) (p0, p1, p2, p3) = (15, 0, 0, 1485): αi ∼ N(0, 1.52), βi ∼ N(0, 1.52) for i = 1, ..., 15;

αi = βi = 0 for i = 16, ..., 1500.

• (A2) (p0, p1, p2, p3) = (150, 0, 0, 1350): αi ∼ N(0, 1.52), βi ∼ N(0, 1.52) for i =

1, ..., 150; αi = βi = 0 for i = 151, ..., 1500.

• (A3) (p0, p1, p2, p3) = (150, 1350, 0, 0): αi ∼ N(0, 1.52), βi ∼ N(0, 1.52) for i =

1, ..., 150; αi = 0, βi ∼ N(0, 1.52) for i = 151, ..., 1500.

• (A4) (p0, p1, p2, p3) = (150, 0, 1350, 0): αi ∼ N(0, 1.52), βi ∼ N(0, 1.52) for i =

1, ..., 150; αi ∼ N(0, 1.52), βi = 0 for i = 151, ..., 1500.

• (A5) (p0, p1, p2, p3) = (150, 150, 0, 1200): αi ∼ N(0, 1.52), βi ∼ N(0, 1.52) for i =

1, ..., 150; αi = 0, βi ∼ N(0, 1.52) for i = 151, ..., 300; αi = βi = 0 for i = 301, ..., 1500.

• (A6) (p0, p1, p2, p3) = (150, 150, 150, 1050): αi ∼ N(0, 1.52), βi ∼ N(0, 1.52) for i =

1, ..., 150; αi = 0, βi ∼ N(0, 1.52) for i = 151, ..., 300; αi ∼ N(0, 1.52), βi = 0 for

i = 301, ..., 450; αi = βi = 0 for i = 451, ..., 1500.

3.2 Simulation Results

Table 1 presents the comparison of the statistical inference under the high-dimensional set-

ting between the CF-OLS method and the B-Mixed method. In general, CF-OLS performed

reasonably well in all scenarios.
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For mediator selection, two methods shared a comparable performance when iSIS-MCP

was used. Generally, a high average true positive rate was achieved when the sample size was

3000. In particular, a substantial proportion of true mediatorsMT were identified in scenario

(A1). Besides, iSIS-MCP controlled the average false positive rate at a low level across all

scenarios. The average false positive rate increased as the sample size increased in scenarios

(A3), (A5), and (A6) for both methods because MI1 was associated with outcome Y given

X, and thus were not filtered out by iSIS. In Web Appendix B, we highlight the trade-off

between true positives (i.e., selecting true mediators) and false positives (i.e., falsely selecting

non-mediators). Of note, including non-mediator MI1 will not bias the point estimation of

R2
Med, as suggested by Lemma 1.

The empirical coverage probability using CF-OLS was satisfactory across all scenarios,

and it yielded narrower confidence intervals compared with B-Mixed. Meanwhile, we found

that the empirical standard deviation of replicated estimations of CF-OLS (i.e., from its

sampling distribution) was lower than that of B-Mixed. This is because CF-OLS makes

full use of the two subsamples as illustrated in Figure 2, in contrast to B-Mixed which

conducts inference using only half of the data. In scenarios (A2), (A4), (A5), and (A6),

relatively sizeable MSE was observed for both methods when the sample size was 750, due

to overselection of MI2 and underselection of MT by iSIS. The bias and MSE improved in

all scenarios with increasing sample size.

Figure 3 displays asymptotic standard errors and the empirical standard deviation of

replicated estimations using the CF-OLS method in the scenarios (A1)–(A6). The asymp-

totic standard error is the mean value of 200 replications, and error bars represent one

standard error for the mean. Generally, the asymptotic standard errors and empirical stan-

dard deviation tracked each other closely as the sample size increased from 500 to 3000. As

expected, we observed a decreasing trend of the asymptotic standard errors and empirical

standard deviation with increasing sample sizes.

Furthermore, as expected, CF-OLS significantly outperformed bootstrap-based B-Mixed

in terms of computation. Table 1 provided the mean and standard error of the computational

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 7, 2023. ; https://doi.org/10.1101/2023.02.06.527391doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.06.527391
http://creativecommons.org/licenses/by-nc-nd/4.0/


A4 (RMed
2

= 0.39) A5 (RMed
2

= 0.271) A6 (RMed
2

= 0.377)

A1 (RMed
2

= 0.065) A2 (RMed
2

= 0.418) A3 (RMed
2

= 0.064)

500 750 1000 1500 2000 3000 500 750 1000 1500 2000 3000 500 750 1000 1500 2000 3000

0.01

0.02

0.03

0.01

0.02

0.03

Sample Size

O
b

s
e
rv

e
d

Type Asymptotic SE Standard Deviation

Figure 3: Plots of asymptotic standard error and empirical standard deviation of replicated

estimations across 200 simulation replications using the CF-OLS method for scenarios (A1)–

(A6). SE refers to standard errors. The sample size increased from 500 to 3,000. The true

value of R2
Med is listed within the parentheses. Error bars represent one standard error of

the mean of asymptotic standard error across 200 replications in each scenario.
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time measured in minutes based on 200 replications using the CF-OLS and the B-Mixed

methods. For example, in scenario (A6) with a sample size of 750, CF-OLS spent about 2.42

minutes constructing one confidence interval using a single CPU core. By comparison, the B-

Mixed took about 36.6 minutes to achieve the same goal using 20 cores in parallel. For all the

scenarios with a sample size of 3000, the proposed method shortened the time to compute the

coverage probability based on 200 replications from over 380 hours to less than 30 hours with

R version 4.1.0. In practice, we found that the computational time of B-Mixed fluctuated

highly, while that of CF-OLS was quite stable. The difference in computational time is very

important in real data applications, advocating the use of CF-OLS. For both methods, the

most time-consuming part was the variable selection step instead of the estimation step.

In Web Appendix B, we further evaluated the proposed method in additional scenar-

ios (B1)–(B6) and (C1)–(C6). In scenarios (B1)–(B6), the regression coefficients α and β

followed the uniform distribution U(−2, 2), and in scenarios (C1)–(C6), α and β followed

the standard normal distribution N(0, 12) when they were not set to 0. Overall, the cover-

age probability was satisfactory. When the sample size was at 3000, the variable selection

procedure captured an extensive number of true mediators MT , which gave a reasonable

average true positive rate. Furthermore, the average false positive rate was controlled at a

low level by eliminating most of the non-mediators MI2 . We also found that the increased

average false positive rate was due to the presence of the selected non-mediators MI1 in

scenarios (B3), (B5), (C3), and (C5). However, it is promising that the number of selected

non-mediators MI2 was still reasonably low, and the number of selected noise variables was

nearly 0. As expected, a smaller MSE was observed with a larger sample size. Asymptotic

standard errors approximated the empirical standard deviation of replicated estimations

well for scenarios (B1)–(B6) and (C1)–(C6) (See Web Appendix B). To summarize, the per-

formance of CF-OLS under various settings is satisfactory in terms of mediator selection,

coverage probability, and computational efficiency.

Moreover, in Web Appendix C, we explored some alternative options for the iSIS pro-

cedure along with CF-OLS that may reduce the computational time and/or increase the
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Table 1: Simulation results using the CF-OLS method and B-Mixed method for scenarios

(A1)–(A6). N refers to the sample size. CP refers to coverage probability based on 200

replications. Width refers to half the width of the 95% confidence interval. SE refers to

the average asymptotic standard error. SD refers to the empirical standard deviation of

replicated estimations. MSE refers to mean squared error. TP refers to the average true

positive rate. FP refers to the average false positive rate. True value of R2
Med is listed within

the parentheses. Time refers to the mean computational time in minutes for each replication

and its standard error is listed within the parentheses. The computational time for CF-OLS

was observed using a single CPU core. The computational time for B-Mixed was observed

using 20 cores in parallel.

CF-OLS B-Mixed

Scenario N CP Width SE Bias SD MSE TP FP Time CP Width Bias SD MSE TP FP Time

(R2
Med) % (×10−2) (10−2) (10−2) (10−2) (10−4) % (×10−2) (10−2) (10−2) (10−4)

A1 750 92.0 3.664 1.870 0.739 1.940 4.292 0.945 0.021 0.12 (0.00) 98.5 5.159 0.149 2.646 6.990 0.940 0.020 44.96 (2.27)

(0.065) 1500 93.5 2.601 1.327 0.658 1.316 2.155 0.929 0.018 3.44 (0.04) 95.0 3.615 0.236 2.084 4.377 0.923 0.015 85.09 (4.44)

3000 93.5 1.844 0.941 0.133 0.994 1.001 0.967 0.008 4.80 (0.07) 93.0 2.591 0.138 1.491 2.230 0.968 0.008 153.49 (8.12)

A2 750 94.5 5.383 2.747 -0.032 2.736 7.450 0.403 0.001 1.98 (0.04) 95.0 7.702 -0.263 3.908 15.266 0.402 0.001 51.23 (2.83)

(0.418) 1500 92.0 3.787 1.932 0.334 1.956 3.920 0.694 0.003 5.30 (0.11) 94.0 5.353 0.355 2.647 7.097 0.696 0.003 88.22 (4.54)

3000 94.5 2.691 1.373 -0.131 1.390 1.940 0.943 0.003 6.78 (0.04) 94.0 3.777 -0.103 1.953 3.807 0.943 0.002 149.68 (6.28)

A3 750 93.5 3.494 1.782 0.269 1.790 3.259 0.310 0.011 2.13 (0.04) 92.5 5.054 0.365 2.762 7.725 0.311 0.011 38.51 (1.56)

(0.064) 1500 95.0 2.431 1.240 0.198 1.259 1.617 0.505 0.026 5.10 (0.05) 94.0 3.390 -0.008 1.820 3.297 0.506 0.026 74.06 (2.69)

3000 95.0 1.707 0.871 0.168 0.817 0.692 0.762 0.065 8.62 (0.10) 96.0 2.391 0.015 1.118 1.245 0.763 0.065 147.08 (4.46)

A4 750 96.0 5.445 2.778 0.029 2.769 7.630 0.130 0.025 1.47 (0.03) 93.5 7.781 -0.227 4.088 16.680 0.131 0.026 41.79 (1.54)

(0.390) 1500 95.0 3.845 1.962 -0.255 1.956 3.873 0.386 0.022 4.95 (0.08) 96.5 5.430 -0.456 2.479 6.321 0.382 0.022 72.28 (2.57)

3000 97.0 2.720 1.388 0.113 1.303 1.702 0.724 0.001 6.78 (0.12) 95.0 3.831 -0.011 1.839 3.367 0.723 0.002 125.16 (3.89)

A5 750 96.0 5.440 2.776 0.025 2.615 6.802 0.352 0.006 1.39 (0.02) 94.5 7.758 -0.215 4.096 16.738 0.354 0.006 40.09 (1.32)

(0.271) 1500 97.0 3.834 1.956 0.183 1.814 3.309 0.578 0.018 3.10 (0.08) 95.0 5.376 0.148 2.617 6.834 0.579 0.017 73.34 (2.43)

3000 97.0 2.714 1.385 0.046 1.292 1.664 0.879 0.051 8.88 (0.12) 95.0 3.812 -0.016 1.899 3.587 0.878 0.051 139.04 (4.40)

A6 750 96.5 5.447 2.779 0.041 2.740 7.471 0.238 0.019 2.42 (0.04) 93.5 7.765 -0.313 4.165 17.359 0.237 0.019 36.60 (1.48)

(0.377) 1500 92.5 3.863 1.971 0.052 2.113 4.447 0.400 0.034 4.14 (0.10) 95.5 5.466 -0.208 2.830 8.011 0.401 0.034 64.18 (2.49)

3000 95.5 2.735 1.396 -0.024 1.388 1.918 0.622 0.072 8.34 (0.12) 94.5 3.837 -0.013 1.959 3.817 0.624 0.072 114.23 (3.68)
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accuracy of variable selection. First, we considered increasing the maximum number of iter-

ations for iSIS from 3 to 10 to evaluate its influence on the selection accuracy. We discovered

that increasing the total number of iSIS iterations made a negligible difference in statistical

inference, despite increasing computational burden in most scenarios. Then, we considered

Lasso (Tibshirani, 1996), a popular replacement to MCP for sparse regression. Based on the

same scenarios (A1)–(A6) in Table 1, we examined how our method performs with Lasso

using the Akaike information criterion (AIC) (Akaike, 1998) for tuning the regularization

parameter. Under this setting, iSIS-Lasso kept the non-mediators MI1 and noise variables

MI3 at a similar level to iSIS-MCP but failed to exclude the non-mediators MI2 . Unlike

iSIS-MCP, the model selection with iSIS-Lasso suffered from a higher average false positive

rate as the sample size increased. A possible reason is that the Lasso regression tends to

include an extensive number of false positives (Martinez et al., 2010). Despite this, the cov-

erage probability and bias had a minor discrepancy from those of iSIS-MCP using CF-OLS,

which performed well across all scenarios.

4 Application to the Framingham Heart Study

Hypertension is a leading cause for cardiovascular disease (CVD) and mortality worldwide

(Roth et al., 2018). Of the adult population worldwide in year 2010, around 1.39 billion had

hypertension, whose symptom is persistently high blood pressure (BP), expressed as high

systolic BP and diastolic BP (Mills et al., 2016). Its prevalence increases with chronological

age, contributing to the current pandemic of cardiovascular disease (CVD) (Kearney et al.,

2005). On the other hand, a higher plasma level of high-density lipoprotein cholesterol

(HDL-C) is associated with a lower risk for coronary heart disease in several epidemiological

studies (Castelli, 1988). A previous prospective cohort study found that the incidence and

mortality of coronary heart disease among men were around 3-fold and 5-fold greater than

those among women, respectively, where the difference in HDL-C was the major determinant

(Jousilahti et al., 1999). Our motivation is to investigate the effect of chronological age on

systolic BP and the effect of sex on HDL-C mediated by genome-wide gene expression.
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We applied our method to the individuals who attended the 8th and 9th examinations

of the FHS Offspring Cohort or the 2nd and 3rd examinations of the FHS Third-Generation

Cohort. BP was measured as the average value of two physician BP readings (to the nearest

2 mm Hg). Then BP was adjusted according to the intake of antihypertensive medication by

adding 15 mm Hg to the measurement for treated individuals (Tobin et al., 2005). HDL-C

was measured from the EDTA plasma (mg/dL) and age was measured at which the sub-

ject attended the examination. The covariates were body mass index (kg/m2); smoking

status (current smoker vs. current non-smoker); drinking status (never vs. ever), and the

cohort the subject belongs to (Offspring Cohort vs. Third-Generation Cohort). Age and

sex were adjusted in the model while the other one was considered as the exposure variable

of interest. High-throughput gene expression profiling of 17,873 genes was measured from

whole blood mRNA using Affymetrix Human Exon 1.0 ST GeneChip (Joehanes et al., 2012).

We extracted age, sex, covariates, and gene expression levels from the Offspring Cohort 8th

examination and Third-Generation Cohort 2nd examination. Phenotypes were from the Off-

spring Cohort 9th examination and Third-Generation Cohort 3rd examination, which follows

the establishment in Kraemer et al. (2002) that the exposure affects the mediators which in

turn precedes the outcome. A total of 4,542 subjects with complete data were included in

the analysis for systolic BP and 4,481 for HDL-C. For comparison, we followed Yang et al.

(2021) by regressing covariates out from exposure, phenotypes, and gene expression levels

to obtain the residuals for the following analyses to control for confounding effects. The

descriptive statistics for the FHS samples were summarized in Web Appendix D.

Table 2 compares the results of data analysis using CF-OLS and B-Mixed. We discovered

that both methods gave comparable point estimation and confidence intervals, suggesting

that the new method is able to give reliable inferences. For the CF-OLS method, 8.01%

of systolic BP variation could be explained by age, and 201 and 238 genes were selected in

each of the two subsamples. Note that 3.22% (95% CI = (2.19%, 4.26%)) of the variance

in systolic BP was attributable to the indirect effect of age through the mediation by gene

expression. Similarly, 16.57% of the variance in HDL-C was explained by sex, and 8.91%

15

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 7, 2023. ; https://doi.org/10.1101/2023.02.06.527391doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.06.527391
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 2: Mediation effect size and 95% confidence interval estimated using the CF-OLS

method and B-Mixed method in the Framingham Heart Study (FHS) data. N refers to the

sample size. p̂1 and p̂2 refer to the number of genes selected in the first and second subsample,

respectively. p̂ refers to the number of genes selected in the B-Mixed method. 95% confidence

interval listed within the parentheses for the B-Mixed method is computed over 500 bootstrap

samples. Time refers to the computational time in hours. The computational time for CF-

OLS is observed using a single core. The computational time for systolic BP using B-Mixed

was observed using 25 cores. The computational time for HDL-C using B-Mixed was observed

using 10 cores.

CF-OLS B-Mixed

Outcome Exposure R2
Mediated R2

Y,X p̂1/p̂2 Time R2
Mediated R2

Y,X p̂ Time

Systolic BP Age 0.032 0.080 201/238 6.45 0.034 0.107 265 135.54

(N=4542) (0.022, 0.043) (0.016, 0.058) (0.084, 0.132) (196, 256)

HDL-C Sex 0.089 0.166 175/198 5.19 0.078 0.169 207 232.46

(N=4481) (0.073, 0.105) (0.060, 0.136) (0.141, 0.194) (191, 245)

(95% CI = (7.33%, 10.49%)) of the HDL-C variation could be explained by sex through gene

expression, with 175 and 198 genes selected in each of the two subsamples. We performed

the canonical correlation analysis (Harold, 1936) to identify and test the association between

two selected gene lists for each trait. Over 90% of the variance in canonical variates for

systolic BP can be explained by the top 13 canonical correlations. Similarly, over 90%

of the variance in canonical variates for HDL-C can be captured by the top 12 canonical

correlations. In conclusion, the selected genes in the two subsamples largely captured similar

biological information, likely at the pathway level, even though they did not exactly overlap.

To further gain insights into the mediating biological pathways, we performed pathway

enrichment analysis of the selected mediating genes in all subsamples for systolic BP and

HDL-C. Four and one nominally significant pathways were identified for systolic BP and
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HDL-C, respectively (See Web Appendix D). For instance, proteoglycans have an effect on

the development and signalling of extracellular matrix, which plays a crucial role in regu-

lating vascular function and blood pressure (Mouw et al., 2014; Wight, 2018). The plasma

levels of proteoglycans and inflammatory proteins have recently been shown to be potential

biomarkers for pulmonary hypertension (Arvidsson et al., 2021). See Web Appendix D for

discussion on the other identified pathways.

Lastly, the computation time for CF-OLS to construct confidence intervals was substan-

tially reduced compared with B-Mixed; indeed, the CF-OLS method can be 400 times faster

with the same computational resource. Specifically, it took about 6.45 hours to finish the

analysis for systolic BP with CF-OLS using a single core, while it took around 135.54 hours

with nonparametric bootstrap using 25 cores in parallel. For the HDL-C outcome analysis,

it took about 5.19 hours for the CF-OLS method using a single core, and around 232.46

hours were required for the B-Mixed method using 10 cores in parallel.

5 Discussion

We have proposed a novel two-stage interval estimation procedure for R2
Med, based on cross-

fitting and sample-splitting, to estimate the total mediation effect for high-dimensional me-

diators. Unlike the estimation method using nonparametric bootstrap in a mixed model

framework, our proposed method relies on the asymptotic distribution of R̂2
Med to construct

confidence intervals. After splitting the data into two subsamples, we estimated R2
Med using

OLS regressions and conducted the inference based on the asymptotic standard error. We

excluded the non-mediators by iSIS-MCP in two subsamples independently and fitted OLS

regression in the other subsample. In addition, the point estimation improved over the orig-

inal point estimation method by Yang et al. (2021) in terms of the MSE because the new

method used the full data for variable selection and estimation, as shown in our extensive sim-

ulation studies in Table 1. The CF-OLS method had comparable coverage probability and

variable selection accuracy across various scenarios with the B-Mixed method. Meanwhile,

significantly reducing computational time facilitates the exploration of different settings in
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the variable selection procedure. If instead we used iSIS-Lasso for mediator selection, the

coverage probability was reasonable, but the false positive rate in some specific scenarios

increased due to failure in excluding the non-mediators MI2 . For both iSIS-MCP and iSIS-

Lasso, increasing the maximum number of iterations of iSIS made little difference while

sacrificing computational efficiency.

In the FHS data analysis, treating systolic BP and HDL-C as outcomes, we applied the

CF-OLS and B-Mixed methods to examine the mediating role of gene expression between

exposure and phenotype. As in previously established findings (Yang et al., 2021), a large

amount of systolic BP variation can be explained by age through gene expression. In ad-

dition, we discovered that the effect of sex on HDL-C was mediated by gene expression.

Similar conclusions can be drawn after comparing the R2
Med and its confidence intervals from

the two methods, which corroborates the validity of the CP-OLS method. More importantly

and as expected, the CF-OLS method is very computationally efficient, because CF-OLS

only performs the iSIS variable selection procedure twice to construct confidence intervals

instead of 500 times in the resampling-based B-Mixed method. To compute the confidence

interval for systolic BP in the FHS dataset, the B-Mixed method needed around 135.5 hours

even with multi-core parallel computing, while the CF-OLS method could achieve it effi-

ciently in about 6.5 hours using a single core. This advantage makes OF-OLS more practical

to estimate the total mediation effect with confidence intervals under the high-dimensional

setting with a relatively massive dataset.

A critical research area in public health is to study how an exposure influences phenotypic

variation. It has been well established that exposures, including environmental (Bind et al.,

2014; Timms et al., 2016), socioeconomic (Cerutti et al., 2021), and behavioral factors (Zong

et al., 2019; Hardy and Tollefsbol, 2011; Tiffon, 2018; Maas et al., 2020), are associated with

changes at the molecular level (Bind et al., 2014; Timms et al., 2016; Maas et al., 2020; Huang

et al., 2018; Tobi et al., 2018). Mediation analysis provides a useful tool to decompose the

relationship between an exposure and an outcome into direct and mediation (indirect) effects.

Over the past three decades, mediation analyses extensively studied settings where a single or
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a few mediators are present (Zeng et al., 2021). These methods are not in general applicable

to high-dimensional molecular mediators. Here we have focused on an important but less

explored quantity, the total mediation effect that captures the variance of the outcome

explained by an exposure through high-dimensional mediators. Accurate estimation of the

total mediation effect allows us to better understand the mediating roles of genomic factors

in various ways, including exploring the impact of a certain molecular phenotype in the

exposure-outcome pathway, identifying the relevant tissues or cell types, and improving the

understanding of the time-varying mediating role of a molecular phenotype. In addition to

deepening our understanding of the biological mechanism at the molecular level, estimating

the total mediation effect has the potential to guide outcome prediction and intervention.

For example, incorporating mediators has been shown to benefit the prediction of survival

outcomes (Zhou et al., 2022). Also, Tingley et al. (2014) suggests that refining interventions

targeting the mechanism that explains a large proportion of the intervention effect on the

outcome may be more desirable than the ones that do not.

The proposed method is available in the updated RsqMed package on R/CRAN, which

includes the new CF-OLS method. Lastly, we have focused on continuous outcomes and

will extend our proposed approach to accommodate time-to-event or binary outcomes in the

future.
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