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Abstract 

Background: Interrupted time series (ITS) analysis has become a popular design to evaluate the effects of health 
interventions. However, the most common formulation for ITS, the linear segmented regression, is not always ade-
quate, especially when the timing of the intervention is unclear. In this study, we propose a new model to overcome 
this limitation.

Methods: We propose a new ITS model, ARIMAITS-DL, that combines (1) the Autoregressive Integrated Moving Aver-
age (ARIMA) model and (2) distributed lag functional terms. The ARIMA technique allows us to model autocorrelation, 
which is frequently observed in time series data, and the decaying cumulative effect of the intervention. By contrast, 
the distributed lag functional terms represent the idea that the intervention effect does not start at a fixed time point 
but is distributed over a certain interval (thus, the intervention timing seems unclear). We discuss how to select the 
distribution of the effect, the model construction process, diagnosing the model fitting, and interpreting the results. 
Further, our model is implemented as an example of a statement of emergency (SoE) during the coronavirus disease 
2019 pandemic in Japan.

Results: We illustrate the ARIMAITS-DL model with some practical distributed lag terms to examine the effect of 
the SoE on human mobility in Japan. We confirm that the SoE was successful in reducing the movement of people 
(15.0–16.0% reduction in Tokyo), at least between February 20 and May 19, 2020. We also provide the R code for other 
researchers to easily replicate our method.

Conclusions: Our model, ARIMAITS-DL, is a useful tool as it can account for the unclear intervention timing and 
distributed lag effect with autocorrelation and allows for flexible modeling of different types of impacts such as uni-
formly or normally distributed impact over time.

Keywords: Interrupted time series, Distributed lag, Unclear intervention timing, Autoregressive integrated moving 
average model, COVID-19, Human mobility index
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Introduction
Interrupted time series (ITS) has become a popular 
study design to evaluate the effects of health interven-
tions in the field of public health and epidemiology [1, 
2]. The effect of the intervention is estimated by compar-
ing it with the “counterfactual" that is estimated by the 
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expected trend assuming the absence of the intervention. 
ITS has been regarded as one of the best designs to esti-
mate the causality of the intervention, especially when no 
control population is available, or randomized controlled 
trials (RCTs) are not feasible [3, 4]. Fretheim et al. (2015) 
demonstrated that ITS could generate effect estimates 
similar to those of RCTs [5]. Previous studies extensively 
examined the strengths and limitations of ITS and pro-
vided a practical guideline for its application [3, 6–8].

More formally, let Yt be an outcome of interest at time t, 
and T0 be the time of the intervention of interest. For sta-
tistical inference, we assume that the sampled time series 
data {Yt}Tt=1 is available. Standard ITS can be expressed as 
a simple segmented linear regression formulation, which 
is given by: 

where εt is Gaussian white noise with constant vari-
ance σ 2

ε  (i.e., independent of t) and Dt is a dummy vari-
able indicating the post-intervention interval, coded 
as 0 in the pre-interruption period and 1 in the post-
interruption period. β0 represents the baseline level at 
t=0, β1 denotes the change in outcome associated with a 
one-time increase and is regarded as the underlying pre-
intervention trend, and β2 and β3 represent the changes 
in the intercept and slope of the trend after the interven-
tion, respectively. Note that although we tentatively use 
the linear regression formulation expressed in Eq. (1), it 
can be easily extended to the generalized linear regres-
sion formulation.

One issue that has not yet been covered in detail 
in the prior literature is how the unclear timing of the 
intervention should be modeled. For example, as we dis-
cuss in “Application data analysis” section, consider the 
case where the statement of emergency (SoE) during 
the coronavirus disease 2019 (COVID-19) pandemic is 
the intervention for controlling the spread of infection. 
Although the date of the SoE declaration is fixed (i.e., 
nominal timing of the intervention is fixed and clear), 
the actual effect of the SoE begins long before the date 
of declaration because the media broadcast the declara-
tion in advance, leading to a change in people’s behav-
ior accordingly. In such a case, determining Dt in Eq. (1) 
becomes difficult as the actual timing of the intervention 
is unclear. In other words, the current ITS approach can 
only be employed when the timing of the intervention is 
clear and the nominal timing is the same as the actual 
timing of the intervention. To overcome this limitation, 
in this study, we aim to develop a new model that com-
bines the ITS model in Eq. (1) with the 1) autoregressive 
integrated moving average (ARIMA) model and 2) dis-
tributed lag functional terms. The motivation to include 
the ARIMA technique is 1-A) to model autocorrelation, 

(1)Yt = β0 + β1t + β2Dt + β3tDt + εt ,

which is frequently observed in time series data but 
cannot be treated well in Eq. (1), and 1-B) to model the 
decaying cumulative effect of the intervention. By con-
trast, the motivation to include the distributed lag func-
tional terms is 2-A) to represent the idea that the effect 
of the intervention does not start at a fixed time point 
but that the intervention timing is distributed over a cer-
tain interval (thus, the intervention timing is unclear), 
and 2-B) to model the distributed effect of the interven-
tion over a certain period that includes the timing of the 
intervention.

The remainder of this study is structured as follows. In 
“Methods” section, we introduce the idea of the ARIMA 
ITS model with distributed lag functional terms to model 
the unclear intervention timing and its distributed effect 
and then describe the inference procedure. In “Applica-
tion data analysis” section, we outline practical data anal-
ysis procedures of our method for the users by applying 
several human mobility datasets during the COVID-19 
pandemic in Japan. In “Discussion” section, we discuss 
and propose possible further developments.

Methods
ARIMAX iTS with distributed lag functional terms
In this section, we first explain an ARIMA model with 
exogenous variables (ARIMAX) [9]. Then, by extend-
ing the exogenous variables to our new functional vari-
ables (distributed lag functional terms), we propose our 
model, ARIMAITS-DL, to simultaneously model both 
the unclear intervention timing and the distributed effect 
of the intervention.

Define the sampled time series data as {Yt ,X t}
T
t=1 . The 

general class of the ARIMAX (p,d,q) model without a 
constant takes the form of; [9, 10]

or equivalently, 

where B is a lag operator such that BY
t
= Y

t−1, �(B) =

1 − 𝛿1B −⋯ − 𝛿
p
Bp = 1 −

∑p

i=1
𝛿
i
Bi , 𝛿

i
< 1, Δ = (1 − B), 𝜃(B) = 1−

�1B −⋯ − �
q
Bq = 1 −

∑q

i=1
�
i
Bi , �

i
 is the parameter for the 

autoregressive (AR) part, θi is the parameter for the 
moving average part (MA), and p and q are the orders 
of the AR and MA parts, respectively. For simplicity, we 
set d=0, and thus, ARIMAX(p,d,q) reduces to ARMAX 
(p,q). Even when the model where d>0 is needed, the fol-
lowing procedure is still valid after differencing Yt before 
fitting the model. The example of an analytical procedure 
in this case is explained in “Application data analysis” 

(2)δ(B)�dYt = X tβ + θ(B)εt ,

(3)�dYt = δ(B)−1
X tβ +

θ(B)

δ(B)
εt ,
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section. When the covariate vector X includes a dummy 
variable indicating the post-intervention intervals, which 
corresponds to Dt in Eq. (1), we can extend the simple 
ITS model to the ARIMA model [11].

To model both the unclear intervention timing and the 
distributed effect of the intervention over time, we pro-
pose the following ARIMAX ITS model with distributed 
lag functional terms with the covariates Xt, denoted by 
ARIMAITS-DL (p,q,l1,l2). We define T0 as the nominal 
timing of the intervention. 

where {δi}
p
i=1, {wk}

l1+l2
k=0 ,βT , and {θi}

q
i=1 are unknown 

parameters, 

l1 controls the duration before the effect of the intervention 
appears (i.e., the start timing of the effect), and l2 controls 
the duration of the effect (i.e., the end timing of the effect). 
Thus, the effect of the intervention is assumed to last from 
T0−l1 to T0+l2. Given this formalization, we can model the 
unclear intervention timing during t∈[T0−l1,T0+l2]. The 
distributed lag functional term Ft−k represents how the 

(4)

(1−

p

i=1

δiB
i)Yt =

l1+l2

k=0

wkFt−k + Xtβ + (1−

q

i=1

θiB
i)εt ,

(5)

Ft−k =

{
f (t − k − T0 + l1) if t ∈ [T0 − l1 + k ,T0 + l2]
0 Otherwise,

effect of the intervention is distributed over the time during 
t∈[T0−l1+k,T0+l2]. The function f() is a probability density 
function (pdf) of time t that represents the proportion of 
the distributed effect of the intervention. Note that Eq. (4) 
can be considered one special case of the transfer function 
model popularized by Box and Jenkins [10].

Figure  1 illustrates examples of f(): ex. if the effect is 
assumed to be distributed uniformly and symmetrically 
with a peak at T0 or asymmetrically around T0, f() might 
be formulated as a uniform distribution (green line in 
Fig. 1), (truncated) normal distribution (blue or red lines 
in Fig. 1), or (truncated) log-normal distribution (purple 
in Fig. 1), respectively. The choice of f() is discussed in the 
following section with practical examples.

Detailed explanation on distributed lag functional terms
For simplicity, we set p=1 and q=0 and drop Xt from 
Eq. (4). Thus, our model reduces to the ARX(1,0) model 
with distributed lag functional terms. Then, Eq. (4) is the 
reduced simple form that can be expressed as:

where |δ|<1 is assumed to make Yt a stationary process. 
Now, t is assumed to indicate a day. Ft−k indicates the pro-
portion of the distributed effect of the intervention and 

(6)Yt = δYt−1 +

l1+l2∑

k=0

wkFt−k + εt ,
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Fig. 1 Examples of f() corresponding to the proportion of the effect of intervention at time of T0 between t∈[T0−l1,T0+l2]
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wk estimates the (lagged) effect. Thus, the term wkFt−k 
indicates the distributed lag effect on Yt. Another advan-
tage of the formulation of Eq. (6) is that because of the AR 
parameter, δ, we can model the cumulative effect of the 
intervention from the previous time point. For a clearer 
understanding, we explain Eq. (6) with examples as follows.

From the definition of Ft−k, when t<T0−l1, Eq. (6) 
becomes

Consider the case where t∈[T0−l1,T0+l2] (i.e., dur-
ing the intervention period). When t=T0−l1+m 
(m∈[0,l1+l2]), the iterative use of Eq. (6) results in the 
general form as

This formulation represents the cumulative effect 
of the intervention since a day before the interven-
tion becomes effective (i.e., the day of T0−l1−1). The 
first term is the cumulative effect of the outcome 
YT0−l1−1 with decay δk−1, the second term is the delayed 
and cumulative effect of the intervention, which is 
explained below, and the third term is an error term.

Finally, we consider the post-intervention period 
(i.e., t>T0+l2). When t>T0+l2+n (n∈[0,l1+l2]), Eq. (6) 
becomes

and when t>T0+l1+2l2, Eq. (6) becomes the following 
simple form again as:

Now by using Eq. (6) iteratively, we obtain the general 
form Eq. (8). For a clearer understanding, we introduce 
the following example calculations, (T0-T2), which cor-
respond to the first three days after the actual interven-
tion becomes effective (i.e., the actual timing of the 
intervention while the nominal intervention timing 
is still T0). T0. When t=T0−l1, the outcome YT0−l1 is 
affected by the white noise εT0−l1 , the decayed outcome 
at one day ago δYT0−l1−1 , where |δ|<1 represents the 
decay rate and the proportion of the effect of interven-
tion at the first date FT0−l1 = f (0) , and w0, which repre-
sents the effect size as follows:

(7)Yt = δYt−1 + εt .

(8)
Yt = �

m−1YT0−l1−1
+

m
∑

j=0

m−j
∑

i=0

�
m−j−iwiFT0−l1+j

+

m
∑

i=0

�
m−i

�T0−l1+i
.

(9)Yt = δYt−1 +

l1+l2∑

k=n

wkFt−k + εt ,

(10)Yt = δYt−1 + εt .

YT0−l1 = δYT0−l1−1 + w0FT0−l1
︸ ︷︷ ︸

effect of 0 day
w0: 0-day-delayed effect
FT0−l1

:% of effect at 0 day

+εT0−l1 .

 T1. When t=T0−l1+1, the outcome YT0−l1+1 is affected 
by the white noise εT0−l1+1 , the decayed outcome at 
δYT0−l1 , the proportion of the effect of intervention on 
the first and second dates FT0−l1+1 = f (1), FT0−l1 = f (0) , 
and w0 and w1, which represent the 0- or 1-day delayed 
effect), respectively, as follows:

By plugging YT0−l1 in T0, we can obtain the following 
equation:

T2. When t=T0−l1+2, we obtain F
T0−l1+2

= f (2),

F
T0−l1+1

= f (1), F
T0−l1

= f (0) . Using Eq. (6) iteratively, the 
model is reduced to:

For example, Eq. (11) provides an intuitive explana-
tion of the cumulative and delayed effect of the interven-
tion. The first term is the decayed outcome at T0−l1−1; 
the second term is the effect on the same day (i.e., 
T0−l1+2), which is decomposed into the 0-day-delayed 
effect w0 and the proportion of effect on the same day 
FT0−l1+2 = f (2) ; the third term is the cumulative and 
delayed effect from the previous day, which is decom-
posed into the 1-day-delayed effect w1, the decayed 
0-day-delayed effect δw0, and the proportion of effect of 
the previous day FT0−l1+1 = f (1) ; and the fourth term is 
the cumulative and delayed effect from 2-day ago, which 
is decomposed into the 2-day-delayed effect w2, the 

YT0−l1+1
= �YT0−l1

+ w0FT0−l1+1

⏟⏞⏞⏞⏟⏞⏞⏞⏟

effect of +1day
w0∶ 0-day-delayed effect

FT0−l1+1
∶% of effect at +1 day

+ w1FT0−l1
⏟⏞⏟⏞⏟

effect of 0 day
w1∶ 1-day-delayed effect
FT0−l1

∶% of effect at 0 day

+�T0−l1+1
.

YT0−l1+1
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+ w0FT0−l1
+ �T0−l1
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+w1FT0−l1
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effect of +1day
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⏟⏞⏞⏞⏟⏞⏞⏞⏟

�w0∶ 0-day-delayed effect with decay �

w1∶ 1-day-delayed effect
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YT0−l1+2
= �YT0−l1+1

+ w0FT0−l1+2

⏟⏞⏞⏞⏟⏞⏞⏞⏟

effect of +2 day
w0∶ 0-day-delayed effect

FT0−l1+2
∶ % of effect at +2 day

+ w1FT0−l1+1

⏟⏞⏞⏞⏟⏞⏞⏞⏟

effect of +1day
w1∶ 1-day-delayed effect

FT0−l1+1
∶ % of effect at +1day

+ w2FT0−l1
⏟⏞⏟⏞⏟

effect of 0 day
w2∶ 2-day-delayed effect
FT0−l1

∶ % of effect at 0 day

+�T0−l1+1

= �
3YT0−l1−1

+ w0FT0−l1+2

⏟⏞⏞⏞⏟⏞⏞⏞⏟

effect of +2day

+ (�w0 + w1)
⏟⏞⏞⏞⏟⏞⏞⏞⏟

�w0∶ 0-day-delayed effect with decay �

w1∶ 1-day-delayed effect

FT0−l1+1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

effect of +1day

+ (�2w0 + �w1 + w2)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

�
2w0∶ 0-day-delayed effect with decay �

2

�w1∶ 1-day-delayed effect with decay �

w2∶ 2-day-delayed effect

FT0−l1+1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

effect of 0 day

+�T0−l1+2
+ ��T0−l1+1

+ �
2
�T0−l1

.



Page 5 of 14Yoneoka et al. BMC Medical Research Methodology          (2022) 22:202  

decayed 0- and 1-day-delayed effects δ2w0,δw1, and the 
proportion of effect from 2-day ago FT0−l1 = f (0) . This 
example explains that we can model the proportion of 
the intervention on a given day and the cumulative and 
delayed effects of the intervention from the previous 
days.

Restrictions for estimation
The simplest procedure for estimating the parameters in 
Eq. (4) is using the maximum likelihood method as with 
the ordinary ARIMA modeling. Unfortunately, the preci-
sion of the estimates of {wk}

l1+l2
k=0  is known to sometimes 

become poor because of the high correlation among 
{Ft−k}

l1+l2
k=0  , resulting in multicollinearity in the model 

[12, 13]. To obtain stable estimates of wks, we impose the 
following constraints: We redefine 

∑l1+l2
k=0 wkFt−k in a 

matrix form as:

where F = (F
t
,… , F

t−l1−l2
)T ∈ ℝ

l1+l2+1, C� = (w0,… ,w
l1+l2

)T

∈ ℝ
l1+l2+1, C ∈ ℝ

(l1+l2+1)×h includes the basis variables 
derived from the specific constraint on wks, and η ∈ R

h is 
a vector of unknown parameters. For example, a constant 
decline during the lag interval is modeled by:

a moving average in the previous L period is modeled 
by (in the case of L=2):

and a polynomial smoothing proposed by Schwartz 
(2000) [11] and Rondeau et al. (2004) [14] is modeled by:

where s denotes the degree of the polynomial func-
tion. Other examples with non-linear functions, such 
as splines, can be found in Gasparrini et al. (2010) [13]. 

(12)
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k=0
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These models have been popular for modeling air pollu-
tion [15] and temperatures [16].

Modeling steps, the selection of orders (p,q,l1,l2) and f(), 
and creating counterfactual
We follow the Box–Jenkins three-stage modeling strategy, 
including identification, estimation, and diagnostic check-
ing [10]. At the identification stage, a visual inspection of 
the plots for the time series data allows us to check some 
important features, such as structural changes, outli-
ers, and missing values, and ensure the stationarity of the 
time series data. Non-stationary time series invalidates the 
analyses with the ordinary ARIMA model. To check the 
stationarity, several tests, such as the Augmented Dickey–
Fuller (ADF) test, Ljung–Box test, and Kwiatkowski–
Philips–Schmidt–Shin test, can be used [9]. If the time 
series is judged as non-stationary, a common approach is 
to subtract successive observations—also known as differ-
encing—to stationarize the time series data. By iteratively 
applying this test-differencing approach, we can select 
the order d in Eq. (4). Once d is fixed, Yt in Eq. (4) can be 
replaced with the differentiated Yt.

The plots of the autocorrelation function (ACF) and 
partial autocorrelation function (PACF) should be visu-
ally examined to identify the search range of the orders of 
the AR and MA parameters: 1) to decide an AR(p) model, 
the ACF should slowly decrease and PACF should cut off 
after lag p; 2) to decide an MA(q) model, the PACF should 
slowly decline and the ACF should cut off after lag q; and 3) 
to decide an ARMA(p,q) model, both the ACF and PACF 
should tail off.

At the estimation stage, the maximum likelihood 
method is used to estimate the regression parameters. 
The Akaike information criterion (AIC) or Bayesian 
information criterion (BIC) can be used to select the 
optimal order of (p,q) among the aforementioned search 
range defined by the ACF or PACF. In addition, regarding 
the search space defined by the possible combinations 
of (l1,l2) and f(), they can be specified by the researcher 
based on the literature search or expert opinion; however, 
the sensitivity analysis for their choice or model fitting 
statistics such as AIC or BIC can be helpful. In “Applica-
tion data analysis” section, we check the sensitivity of the 
results by changing the combination of (l1,l2) and f(). The 
last step is to check the residuals of the selected model by 
visual inspection of the residual plot and by testing the 
presence of autocorrelation using methods such as the 
Ljung–Box test for white noise. If the autocorrelation is 
still judged to exist in the residuals, different AR and/or 
MA orders can be chosen.

Finally, once the regression parameters are estimated, 
the intervention effect can be estimated by calculating 
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the differences between the observed data and coun-
terfactual prediction. The counterfactual (i.e., Yt in the 
absence of the intervention) can be created by substitut-
ing 0 into all the components in Ft−ks.

Application data analysis
Data description
In response to the global COVID-19 pandemic, govern-
ments implemented large-scale public health interven-
tions, such as lockdowns and SoE declarations, to control 
the spread of the virus. To quantify the effect of such 
interventions, human mobility has been frequently meas-
ured in terms of tracing human contact in several places, 
such as restaurants and workplaces. Previous studies 
have illustrated that the SoE declaration can effectively 
reduce human mobility [17–19]. In this study, we use 
the human mobility index (HMI) in Japan published by 
Google [20]. The HMI represents the relative percentage 
changes in the daily number of visitors (or time spent) 
from the baseline period (i.e., the same day of the 5-week 
period between January 3 and February 6, 2020) at six 
locations: retail and recreational places, grocery and 
pharmacy stores, public transportation (transit) stations, 
parks and outdoor spaces, workplaces, and residential 
areas. The HMI is available daily for all 47 prefectures in 
Japan. For a simple explanation of our method, we mainly 
use the HMI at workplaces in Tokyo from February 20 
to May 19, 2020. In Tokyo, the first SoE was officially 
declared on April 7, 2020, although the media broad-
cast the event even before it was declared, which may 
have impacted human mobility [21, 22]. In this sense, the 
nominal intervention timing is clear, although the actual 
intervention (i.e., the first SoE) timing is unclear. In this 
section, we demonstrate that the proposed method can 
handle such cases. Lastly, we use the following covariates 
in X: the daily COVID-19 test-positive rate, daily number 
of deaths, and daily (average) temperature.

Practical procedure of data analysis
The data are illustrated in Fig.  2A, where the observed 
HMI is plotted as a black solid line. To reduce the vari-
ation in HMI by day of the week, a seven-day rolling 
average is calculated in advance. The ADF test indicates 
that the original time series is non-stationary (p=0.571), 
and thus, the first difference of the time series data 
(Fig.  2B) is used to induce stationarity (the ADF test 
shows p=0.049). Therefore, Yt is the first difference data, 
and d=0 is fixed. The ACF and PACF of the stationary 
(i.e., first-differenced) data are plotted in Fig. 2C and D, 
respectively. In the figures, the black solid bars above 
or below the blue dashed lines represent statistically 

significant autocorrelation with p<0.05. In Fig.  2C and 
D, we can check that autocorrelation does not exist after 
lag 1. This implies that the search range of the order for 
p and q might be around lag 1 [11]. We then search over 
a series of potential models for the best model with the 
lowest AIC by using the auto.arima() function in the 
forecast package in R. Each model is optimized using the 
maximum likelihood method.

To estimate the effect of the SoE on the HMI in Tokyo, 
the intervention effect is assumed to be distributed uni-
formly or normally over time, that is, f() in Eq. (5) is set 
to the pdf of uniform distribution or (truncated) normal 
distribution (truncated by l1 and l2). In addition, for the 
constraint on the estimation of wks, both Eqs. (14) and 
(15) are used. Consequently, we have four types of ITS 
models by combining two f() and two constraints, as 
follows:

Normal1: f() is a normal distribution N(0,1) that 
is truncated by l1=6 and l2=6 (i.e., the center is the 
day of the SoE (April 7, 2020) and truncated at April 
1 and 13, 2020). In addition, the constraint for wks is 
the polynomial smoothing model Eq. (15), with s=3.

Normal2: Similar to Normal1, but f() is truncated 
by different days, that is, f() is a normal distribution 
N(0,1) that is truncated by l1=9 and l2=3 (i.e., the 
center is the day of the SoE (April 7, 2020) and trun-
cated at March 29 and April 10, 2020). Moreover, 
the constraint for wks is the polynomial smoothing 
model, Eq. (15), with s=3.

Normal3: Similar to Normal2, but f() has a dif-
ferent normal distribution, that is, f() is a normal 
distribution N(−3,3) that is truncated by l1=9 and 
l2=3 (i.e., the center is 3 days before the SoE (April 4, 
2020) and truncated at March 29 and April 10, 2020). 
Further, the constraint for wks is the MA model, Eq. 
(14).

Uniform: f() is a uniform distribution with l1=6 
and l2=6 (i.e., the center is the day of the SoE (April 
7, 2020) and truncated at April 1 and 13, 2020). In 
addition, the constraint for wks is the MA model, Eq. 
(14).

The model with the lowest AIC selected by the algo-
rithm is ARIMA(1,0,0) for all the above models. The 
residuals for all the models have no significant autocor-
relation: all p-values of the Ljung–Box test for white 
noise are more than 0.9 at six lags. As the data comprise 
the first difference (Fig 2B), we calculate it back into the 
original time series (Fig.  2A). To compare our method 
with the other approaches, the conventional ITS model 
(denoted by cITS in Figures and Tables) and the model 
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proposed by Schaffer et  al. (2021) [11], which is an 
ARIMA-based ITS model (denoted by ARIMA in Figures 
and Tables), are included.

Lastly, we validate our method in different COVID-19 
datasets by using different prefectures (Osaka and Ehime 
prefectures: Osaka is a populous and large prefecture 
and Ehime is a local and small prefecture in Japan), dif-
ferent HMI at “grocery and pharmacy store” and “public 
transportation (transit) stations”, and different timing of 
SoE (Osaka at April 7 and Ehime at April 16, 2020). The 
same procedures described above are used. Figure 3 and 

the Additional files include the detailed results of these 
validations.

Application results
Figures 2A and B (colored and dashed lines) indicate the 
observed data and counterfactual predictions in Tokyo 
by our ARIMAITS-DL models, assuming the absence 
of the intervention. Dotted lines indicate the compari-
son groups: cITS (i.e., the conventional ITS model) and 
ARIMA (i.e., the model by Schaffer et al. (2021)). Table 1 
provides more detailed values of the observed and 

Fig. 2 Application results in Tokyo: A Original time series, B First difference of the data, C Autocorrelation function (ACF) plot for the first difference 
of the data, and D Partial autocorrelation function (PACF) plot for the first difference of the data
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Fig. 3 Application results in Osaka and Ehime: A Upper: Original time series, Lower: First difference of the data in Osaka B Upper: Original time 
series, Lower: First difference of the data in Ehime
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estimated HMIs. It illustrates that the SoE on April 7, 
2020, was successful in reducing the mobility of people: 
Normal1, Normal2, Normal3, and Uniform models show 
-392.42 (16.0%), -372.33 (15.0%), -388.61 (16.0%), and 
-392.20 (16.0%) (cumulative) reduction in HMI, respec-
tively, after the SoE became effective in Tokyo. The dif-
ference between the observed and counterfactual peaks 
around the head of May 2020 for all models, Normal1, 
Normal2, Normal3, and Uniform models, show a reduc-
tion of -18.68 (31.1%), -16.66 (27.7%), -17.12 (28.5%), and 
-18.74 (31.2%), respectively, on May 3, 2020, which cor-
responds to the middle period of Japan’s long holiday sea-
son. In the comparison groups, the similar tendency are 
observed, while the degree of reduction in HMI are likely 
to be underestimated: cITS and ARIMA models show 
-60.15 (3.0%) and -319.21 (15.0%) (cumulative) reduc-
tion in HMI, respectively, after the SoE became effective 
in Tokyo. Importantly, our findings should only be valid 
for the study period (i.e., February 20 to May 19, 2020, in 
Tokyo).

Figure 3A and B indicate the validation results by using 
different COVID-19 datasets. While only the result of 
cITS in Osaka doesn’t seem to estimate the counterfac-
tual values well, the tendency is basically the same as in 
Tokyo (i.e., Fig.  2): compared to the counterfactual pre-
dictions made by our method, the conventional methods 
tend to underestimate the degree of reduction in HMI. 
The detailed values of the observed and estimated HMIs 
in the Additional files.

Discussion
ITS analysis is frequently used to quantify the effects of 
health interventions on health outcomes at the popu-
lation level. The most popular formulation of the ITS 
analysis is the (Gauss–Markov type) linear regression 
model, Eq. (1) [1, 6, 23]. One of the key assumptions is 
that the residuals are independent and not correlated. 
However, this assumption is often violated in time series 
data. By incorporating dependencies between different 
time points, the ARIMA model is a possible solution to 
this problem. In addition, the timing of the intervention 
is assumed to be clear; however, the actual time at which 
the effect begins is not always clear in practice. For exam-
ple, as we described in “Application data analysis” sec-
tion, the SoE itself was issued on a certain date, T0, but 
the actual influence was effective long before the issue 
of the SoE and distributed over time (i.e., [T0−l1,T0+l2]), 
as the media, such as TV, announced its issuance in 
advance. Thus, the actual timing of the SoE is unclear. To 
address these issues, we proposed the ARIMA ITS model 
with the distributed lagged functional terms ARIMAITS-
DL. The lagged functional term is tailored to represent 

how the intervention effect is distributed before and after 
the nominal timing of the intervention (i.e., the date of 
the SoE). In addition to the distributed effect, another 
practical feature of our new model is that we can natu-
rally model the cumulative effect with decaying parame-
ter δ, which is explained in detail in “Detailed explanation 
on distributed lag functional terms” section. One possi-
ble difficulty highlighted by this abundance of choice (the 
orders (p,d,q), the distribution function f() with (l1,l2), and 
the restriction form for wks) is how to choose the best 
combination. Another possible modeling techniques for 
the unclear timing of intervention would be the combi-
nation of fuzzy set theory and time series models, which 
have been extensively studied in the field of information 
science such as Chen (1996) and Singh (2021) [24, 25]. In 
addition, the fuzzy set theory has been frequently used 
for analyzing the COVID-19 data [26, 27]. These papers 
point the way to our next research directions.

In “Application data analysis” section, we used AIC to 
select the orders (p,d,q), and f(), and (l1,l2) were varied for 
the sensitivity check. However, a priori arguments and 
expert opinions may be helpful for this choice. A previous 
discussion concluded that the choice of the distributed 
lag terms should balance between sufficient complexity 
to capture detail and sufficient simplicity for interpret-
ability from epidemiological or medical perspectives [28]. 
As we have no consensus on what is an “optimal” ARIMA 
model, sensitivity analyses and regression diagnoses such 
as residual analysis are particularly important to assess 
the robustness of the key conclusions. The R code, “fuzz-
yARIMAITS”, for the proposed method are provided in 
a GitHub repository (https:// github. com/ kingq wert/R/ 
blob/ master/ ARIMA ITS_ DS/ fuzzy ARIMA ITS.R) and 
will be hosted on the CRAN repository (https:// www.r- 
proje ct. org/) shortly, allowing others to apply our method 
easily.

Real data were examined with a detailed explanation 
of the analytical procedure to provide practical insights 
into the effect of the SoE on human mobility in Japan. 
We used four models consisting of two distributed lag 
functions (truncated normal and uniform distribution) 
and two restrictions on wks (polynomial and MA) and 
confirmed that they exhibit almost the same effect for 
reducing human mobility in several COVID-19 data-
sets. Our results indicate that the SoE was successful in 
reducing the movement of people, at least during the 
study period (i.e., February 20 to May 19, 2020).

A limitation of this study is that our method was 
examined in only COVID-19 datasets while using four 
different settings, two comparison methods, and mod-
els with potentially different formulations associated 
with the distributed lag terms to check the sensitivity 

https://github.com/kingqwert/R/blob/master/ARIMAITS_DS/fuzzyARIMAITS.R
https://github.com/kingqwert/R/blob/master/ARIMAITS_DS/fuzzyARIMAITS.R
https://www.r-project.org/
https://www.r-project.org/
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of the results. We encourage the re-evaluation of our 
approach using other datasets. Another limitation is 
that we assume that a stationary time series is available, 
which is the requirement of the AR model. The station-
ary assumption may be incompatible with time series 
data used in ITS analysis, where trends may change at 
certain points in time. However, in such a case, we can 
simply use ARIMA(0,0,0), and the idea of simultane-
ously using the ITS and distributed lag terms can still 
be valid. In this case, the model reduces to a simple 
form, such as Eq. (1), in which autocorrelation can be 
still modeled by including time as a covariate.

Conclusion
The ITS model has been a powerful study design for 
evaluating health intervention impacts, and its use has 
been increasing. The most common formulation for 
ITS, Eq. (1), is not always adequate, especially when 
the timing of the intervention is unclear. Our model, 
ARIMAITS-DL, is a useful tool because it can account 
for such unclear intervention timing and distributed lag 
effect with autocorrelation and allows for flexible mod-
eling of different types of impacts.
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