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Abstract: The relative entropy and the chi-squared divergence are fundamental divergence measures
in information theory and statistics. This paper is focused on a study of integral relations between
the two divergences, the implications of these relations, their information-theoretic applications, and
some generalizations pertaining to the rich class of f -divergences. Applications that are studied in this
paper refer to lossless compression, the method of types and large deviations, strong data–processing
inequalities, bounds on contraction coefficients and maximal correlation, and the convergence rate to
stationarity of a type of discrete-time Markov chains.

Keywords: relative entropy; chi-squared divergence; f -divergences; method of types; large deviations;
strong data–processing inequalities; information contraction; maximal correlation; Markov chains

1. Introduction

The relative entropy (also known as the Kullback–Leibler divergence [1]) and the chi-squared
divergence [2] are divergence measures which play a key role in information theory, statistics, learning,
signal processing, and other theoretical and applied branches of mathematics. These divergence
measures are fundamental in problems pertaining to source and channel coding, combinatorics and
large deviations theory, goodness-of-fit and independence tests in statistics, expectation–maximization
iterative algorithms for estimating a distribution from an incomplete data, and other sorts of problems
(the reader is referred to the tutorial paper by Csiszár and Shields [3]). They both belong to an
important class of divergence measures, defined by means of convex functions f , and named
f -divergences [4–8]. In addition to the relative entropy and the chi-squared divergence, this class
unifies other useful divergence measures such as the total variation distance in functional analysis,
and it is also closely related to the Rényi divergence which generalizes the relative entropy [9,10].
In general, f -divergences (defined in Section 2) are attractive since they satisfy pleasing features
such as the data–processing inequality, convexity, (semi)continuity, and duality properties, and they
therefore find nice applications in information theory and statistics (see, e.g., [6,8,11,12]).

In this work, we study integral relations between the relative entropy and the chi-squared
divergence, implications of these relations, and some of their information-theoretic applications.
Some generalizations which apply to the class of f -divergences are also explored in detail. In this
context, it should be noted that integral representations of general f -divergences, expressed as a
function of either the DeGroot statistical information [13], the Eγ-divergence (a parametric sub-class of
f -divergences, which generalizes the total variation distance [14] [p. 2314]) and the relative information
spectrum, have been derived in [12] [Section 5], [15] [Section 7.B], and [16] [Section 3], respectively.
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Applications in this paper are related to lossless source compression, large deviations by the
method of types, and strong data–processing inequalities. The relevant background for each of these
applications is provided to make the presentation self contained.

We next outline the paper contributions and the structure of our manuscript.

1.1. Paper Contributions

This work starts by introducing integral relations between the relative entropy and the chi-squared
divergence, and some inequalities which relate these two divergences (see Theorem 1, its corollaries,
and Proposition 1). It continues with a study of the implications and generalizations of these relations,
pertaining to the rich class of f -divergences. One implication leads to a tight lower bound on the relative
entropy between a pair of probability measures, expressed as a function of the means and variances
under these measures (see Theorem 2). A second implication of Theorem 1 leads to an upper bound
on a skew divergence (see Theorem 3 and Corollary 3). Due to the concavity of the Shannon entropy,
let the concavity deficit of the entropy function be defined as the non-negative difference between the
entropy of a convex combination of distributions and the convex combination of the entropies of these
distributions. Then, Corollary 4 provides an upper bound on this deficit, expressed as a function of the
pairwise relative entropies between all pairs of distributions. Theorem 4 provides a generalization
of Theorem 1 to the class of f -divergences. It recursively constructs non-increasing sequences of
f -divergences and as a consequence of Theorem 4 followed by the usage of polylogairthms, Corollary 5
provides a generalization of the useful integral relation in Theorem 1 between the relative entropy and
the chi-squared divergence. Theorem 5 relates probabilities of sets to f -divergences, generalizing a
known and useful result by Csiszár for the relative entropy. With respect to Theorem 1, the integral
relation between the relative entropy and the chi-squared divergence has been independently derived
in [17], which also derived an alternative upper bound on the concavity deficit of the entropy as a
function of total variational distances (differing from the bound in Corollary 4, which depends on
pairwise relative entropies). The interested reader is referred to [17], with a preprint of the extended
version in [18], and to [19] where the connections in Theorem 1 were originally discovered in the
quantum setting.

The second part of this work studies information-theoretic applications of the above results.
These are ordered by starting from the relatively simple applications, and ending at the more
complicated ones. The first one includes a bound on the redundancy of the Shannon code for universal
lossless compression with discrete memoryless sources, used in conjunction with Theorem 3 (see
Section 4.1). An application of Theorem 2 in the context of the method of types and large deviations
analysis is then studied in Section 4.2, providing non-asymptotic bounds which lead to a closed-form
expression as a function of the Lambert W function (see Proposition 2). Strong data–processing
inequalities with bounds on contraction coefficients of skew divergences are provided in Theorem 6,
Corollary 7 and Proposition 3. Consequently, non-asymptotic bounds on the convergence to stationarity
of time-homogeneous, irreducible, and reversible discrete-time Markov chains with finite state spaces
are obtained by relying on our bounds on the contraction coefficients of skew divergences (see
Theorem 7). The exact asymptotic convergence rate is also obtained in Corollary 8. Finally, a property
of maximal correlations is obtained in Proposition 4 as an application of our starting point on the
integral relation between the relative entropy and the chi-squared divergence.

1.2. Paper Organization

This paper is structured as follows. Section 2 presents notation and preliminary material which is
necessary for, or otherwise related to, the exposition of this work. Section 3 refers to the developed
relations between divergences, and Section 4 studies information-theoretic applications. Proofs of the
results in Sections 3 and 4 (except for short proofs) are deferred to Section 5.
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2. Preliminaries and Notation

This section provides definitions of divergence measures which are used in this paper, and it also
provides relevant notation.

Definition 1. [12] [p. 4398] Let P and Q be probability measures, let µ be a dominating measure of P and Q
(i.e., P, Q� µ), and let p := dP

dµ and q := dQ
dµ be the densities of P and Q with respect to µ. The f -divergence

from P to Q is given by

D f (P‖Q) :=
∫

q f
( p

q

)
dµ, (1)

where

f (0) := lim
t→0+

f (t), 0 f
(

0
0

)
:= 0, (2)

0 f
(

a
0

)
:= lim

t→0+
t f
(

a
t

)
= a lim

u→∞

f (u)
u

, a > 0. (3)

It should be noted that the right side of (1) does not depend on the dominating measure µ.

Throughout the paper, we denote by 1{relation} the indicator function; it is equal to 1 if the
relation is true, and it is equal to 0 otherwise. Throughout the paper, unless indicated explicitly,
logarithms have an arbitrary common base (that is larger than 1), and exp(·) indicates the inverse
function of the logarithm with that base.

Definition 2. [1] The relative entropy is the f -divergence with f (t) := t log t for t > 0,

D(P‖Q) := D f (P‖Q) (4)

=
∫

p log
p
q

dµ. (5)

Definition 3. The total variation distance between probability measures P and Q is the f -divergence from P
to Q with f (t) := |t− 1| for all t ≥ 0. It is a symmetric f -divergence, denoted by |P−Q|, which is given by

|P−Q| := D f (P‖Q) (6)

=
∫
|p− q|dµ. (7)

Definition 4. [2] The chi-squared divergence from P to Q is defined to be the f -divergence in (1) with
f (t) := (t− 1)2 or f (t) := t2 − 1 for all t > 0,

χ2(P‖Q) := D f (P‖Q) (8)

=
∫

(p− q)2

q
dµ =

∫ p2

q
dµ− 1. (9)

The Rényi divergence, a generalization of the relative entropy, was introduced by Rényi [10] in
the special case of finite alphabets. Its general definition is given as follows (see, e.g., [9]).

Definition 5. [10] Let P and Q be probability measures on X dominated by µ, and let their densities be
respectively denoted by p = dP

dµ and q = dQ
dµ . The Rényi divergence of order α ∈ [0, ∞] is defined as follows:
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• If α ∈ (0, 1) ∪ (1, ∞), then

Dα(P‖Q) =
1

α− 1
logE

[
pα(Z) q1−α(Z)

]
(10)

=
1

α− 1
log ∑

x∈X
Pα(x) Q1−α(x), (11)

where Z ∼ µ in (10), and (11) holds if X is a discrete set.
• By the continuous extension of Dα(P‖Q),

D0(P‖Q) = max
A:P(A)=1

log
1

Q(A) , (12)

D1(P‖Q) = D(P‖Q), (13)

D∞(P‖Q) = log ess sup
p(Z)
q(Z)

. (14)

The second-order Rényi divergence and the chi-squared divergence are related as follows:

D2(P‖Q) = log
(
1 + χ2(P‖Q)

)
, (15)

and the relative entropy and the chi-squared divergence satisfy (see, e.g., [20] [Theorem 5])

D(P‖Q) ≤ log
(
1 + χ2(P‖Q)

)
. (16)

Inequality (16) readily follows from (13), (15), and since Dα(P‖Q) is monotonically increasing in
α ∈ (0, ∞) (see [9] [Theorem 3]). A tightened version of (16), introducing an improved and locally-tight
upper bound on D(P‖Q) as a function of χ2(P‖Q) and χ2(Q‖P), is introduced in [15] [Theorem 20].
Another sharpened version of (16) is derived in [15] [Theorem 11] under the assumption of a bounded
relative information. Furthermore, under the latter assumption, tight upper and lower bounds on the
ratio D(P‖Q)

χ2(P‖Q)
are obtained in [15] [(169)].

Definition 6. [21] The Györfi–Vajda divergence of order s ∈ [0, 1] is an f -divergence with

f (t) = φs(t) :=
(t− 1)2

s + (1− s)t
, t ≥ 0. (17)

Vincze–Le Cam distance (also known as the triangular discrimination) ([22,23]) is a special case with
s = 1

2 .

In view of (1), (9) and (17), it can be verified that the Györfi–Vajda divergence is related to the
chi-squared divergence as follows:

Dφs(P‖Q) =


1
s2 · χ

2(P ‖ (1− s)P + sQ
)
, s ∈ (0, 1],

χ2(Q‖P), s = 0.
(18)

Hence,

Dφ1(P‖Q) = χ2(P‖Q), (19)

Dφ0(P‖Q) = χ2(Q‖P). (20)
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3. Relations between Divergences

We introduce in this section results on the relations between the relative entropy and the
chi-squared divergence, their implications, and generalizations. Information–theoretic applications are
studied in the next section.

3.1. Relations between the Relative Entropy and the Chi-Squared Divergence

The following result relates the relative entropy and the chi-squared divergence, which are
two fundamental divergence measures in information theory and statistics. This result was recently
obtained in an equivalent form in [17] [(12)] (it is noted that this identity was also independently
derived by the coauthors in two separate un-published works in [24] [(16)] and [25]). It should be noted
that these connections between divergences in the quantum setting were originally discovered in [19]
[Theorem 6]. Beyond serving as an interesting relation between these two fundamental divergence
measures, it is introduced here for the following reasons:

(a) New consequences and applications of it are obtained, including new shorter proofs of some
known results;

(b) An interesting extension provides new relations between f -divergences (see Section 3.3).

Theorem 1. Let P and Q be probability measures defined on a measurable space (X , F ), and let

Rλ := (1− λ)P + λQ, λ ∈ [0, 1] (21)

be the convex combination of P and Q. Then, for all λ ∈ [0, 1],

1
log e D(P‖Rλ) =

∫ λ

0
χ2(P‖Rs)

ds
s

, (22)

1
2 λ2 χ2(R1−λ‖Q) =

∫ λ

0
χ2(R1−s‖Q)

ds
s

. (23)

Proof. See Section 5.1.

A specialization of Theorem 1 by letting λ = 1 gives the following identities.

Corollary 1.

1
log e D(P‖Q) =

∫ 1

0
χ2(P ‖ (1− s)P + sQ)

ds
s

, (24)

1
2 χ2(P‖Q) =

∫ 1

0
χ2(sP + (1− s)Q ‖Q)

ds
s

. (25)

Remark 1. The substitution s := 1
1+t transforms (24) to [26] [Equation (31)], i.e.,

1
log e D(P‖Q) =

∫ ∞

0
χ2
(

P ‖ tP + Q
1 + t

)
dt

1 + t
. (26)

In view of (18) and (21), an equivalent form of (22) and (24) is given as follows:

Corollary 2. For s ∈ [0, 1], let φs : [0, ∞)→ R be given in (17). Then,

1
log e D(P‖Rλ) =

∫ λ

0
sDφs(P‖Q)ds, λ ∈ [0, 1], (27)

1
log e D(P‖Q) =

∫ 1

0
sDφs(P‖Q)ds. (28)
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By Corollary 1, we obtain original and simple proofs of new and old f -divergence inequalities.

Proposition 1. ( f -divergence inequalities).

(a) Pinsker’s inequality:

D(P‖Q) ≥ 1
2 |P−Q|2 log e. (29)

(b)

1
log e D(P‖Q) ≤ 1

3 χ2(P‖Q) + 1
6 χ2(Q‖P). (30)

Furthermore, let {Pn} be a sequence of probability measures that is defined on a measurable space (X , F ),
and which converges to a probability measure P in the sense that

lim
n→∞

ess sup
dPn

dP
(X) = 1, (31)

with X ∼ P. Then, (30) is locally tight in the sense that its both sides converge to 0, and

lim
n→∞

1
3 χ2(Pn‖P) + 1

6 χ2(P‖Pn)
1

log e D(Pn‖P)
= 1. (32)

(c) For all θ ∈ (0, 1),

D(P‖Q) ≥ (1− θ) log
(

1
1− θ

)
Dφθ

(P‖Q). (33)

Moreover, under the assumption in (31), for all θ ∈ [0, 1]

lim
n→∞

D(P‖Pn)

Dφθ
(P‖Pn)

= 1
2 log e. (34)

(d) [15] [Theorem 2]:

1
log e D(P‖Q) ≤ 1

2 χ2(P‖Q) + 1
4 |P−Q|. (35)

Proof. See Section 5.2.

Remark 2. Inequality (30) is locally tight in the sense that (31) yields (32). This property, however, is not
satisfied by (16) since the assumption in (31) implies that

lim
n→∞

log
(
1 + χ2(Pn‖P)

)
D(Pn‖P)

= 2. (36)

Remark 3. Inequality (30) readily yields

D(P‖Q) + D(Q‖P) ≤ 1
2

(
χ2(P‖Q) + χ2(Q‖P)

)
log e, (37)

which is proved by a different approach in [27] [Proposition 4]. It is further shown in [15] [Theorem 2 b)] that

sup
D(P‖Q) + D(Q‖P)
χ2(P‖Q) + χ2(Q‖P) = 1

2 log e, (38)

where the supremum is over P�� Q and P 6= Q.
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3.2. Implications of Theorem 1

We next provide two implications of Theorem 1. The first implication, which relies on the
Hammersley–Chapman–Robbins (HCR) bound for the chi-squared divergence [28,29], gives the
following tight lower bound on the relative entropy D(P‖Q) as a function of the means and variances
under P and Q.

Theorem 2. Let P and Q be probability measures defined on the measurable space (R, B), where R is the real
line and B is the Borel σ–algebra of subsets of R. Let mP, mQ, σ2

P, and σ2
Q denote the expected values and

variances of X ∼ P and Y ∼ Q, i.e.,

E[X] =: mP, E[Y] =: mQ, Var(X) =: σ2
P, Var(Y) =: σ2

Q. (39)

(a) If mP 6= mQ, then

D(P‖Q) ≥ d(r‖s), (40)

where d(r‖s) := r log r
s + (1− r) log 1−r

1−s , for r, s ∈ [0, 1], denotes the binary relative entropy (with the
convention that 0 log 0

0 = 0), and

r :=
1
2
+

b
4av
∈ [0, 1], (41)

s := r− a
2v
∈ [0, 1], (42)

a := mP −mQ, (43)

b := a2 + σ2
Q − σ2

P, (44)

v :=

√
σ2

P +
b2

4a2 . (45)

(b) The lower bound on the right side of (40) is attained for P and Q which are defined on the two-element set
U := {u1, u2}, and

P(u1) = r, Q(u1) = s, (46)

with r and s in (41) and (42), respectively, and for mP 6= mQ

u1 := mP +

√
(1− r)σ2

P
r

, u2 := mP −

√
rσ2

P
1− r

. (47)

(c) If mP = mQ, then

inf
P,Q

D(P‖Q) = 0, (48)

where the infimum on the left side of (48) is taken over all P and Q which satisfy (39).

Proof. See Section 5.3.

Remark 4. Consider the case of the non-equal means in Items (a) and (b) of Theorem 2. If these means are
fixed, then the infimum of D(P‖Q) is zero by choosing arbitrarily large equal variances. Suppose now
that the non-equal means mP and mQ are fixed, as well as one of the variances (either σ2

P or σ2
Q).

Numerical experimentation shows that, in this case, the achievable lower bound in (40) is monotonically
decreasing as a function of the other variance, and it tends to zero as we let the free variance tend to infinity.
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This asymptotic convergence to zero can be justified by assuming, for example, that mP, mQ, and σ2
Q are fixed,

and mP > mQ (the other cases can be justified in a similar way). Then, it can be verified from (41)–(45) that

r =
(mP −mQ)

2

σ2
P

+ O
(

1
σ4

P

)
, s = O

(
1

σ4
P

)
, (49)

which implies that d(r‖s) → 0 as we let σP → ∞. The infimum of the relative entropy D(P‖Q) is therefore
equal to zero since the probability measures P and Q in (46) and (47), which are defined on a two-element set and
attain the lower bound on the relative entropy under the constraints in (39), have a vanishing relative entropy in
this asymptotic case.

Remark 5. The proof of Item (c) in Theorem 2 suggests explicit constructions of sequences of pairs probability
measures {(Pn, Qn)} such that

(a) The means under Pn and Qn are both equal to m (independently of n);
(b) The variance under Pn is equal to σ2

P, and the variance under Qn is equal to σ2
Q (independently of n);

(c) The relative entropy D(Pn‖Qn) vanishes as we let n→ ∞.

This yields in particular (48).

A second consequence of Theorem 1 gives the following result. Its first part holds due to the
concavity of exp

(
−D(P‖·)

)
(see [30] [Problem 4.2]). The second part is new, and its proof relies on

Theorem 1. As an educational note, we provide an alternative proof of the first part by relying on
Theorem 1.

Theorem 3. Let P� Q, and F : [0, 1]→ [0, ∞) be given by

F(λ) := D
(

P ‖ (1− λ)P + λQ
)
, ∀ λ ∈ [0, 1]. (50)

Then, for all λ ∈ [0, 1],

F(λ) ≤ log

(
1

1− λ + λ exp
(
−D(P‖Q)

)), (51)

with an equality if λ = 0 or λ = 1. Moreover, F is monotonically increasing, differentiable, and it satisfies

F′(λ) ≥ 1
λ

[
exp

(
F(λ)

)
− 1
]

log e, ∀ λ ∈ (0, 1], (52)

lim
λ→0+

F′(λ)
λ

= χ2(Q‖P) log e, (53)

so the limit in (53) is twice as large as the value of the lower bound on this limit as it follows from the right side
of (52).

Proof. See Section 5.4.

Remark 6. By the convexity of the relative entropy, it follows that F(λ) ≤ λ D(P‖Q) for all λ ∈ [0, 1]. It can
be verified, however, that the inequality 1− λ + λ exp(−x) ≥ exp(−λx) holds for all x ≥ 0 and λ ∈ [0, 1].
Letting x := D(P‖Q) implies that the upper bound on F(λ) on the right side of (51) is tighter than or equal to
the upper bound λ D(P‖Q) (with an equality if and only if either λ ∈ {0, 1} or P ≡ Q).

Corollary 3. Let {Pj}m
j=1, with m ∈ N, be probability measures defined on a measurable space (X , F ), and let

{αj}m
j=1 be a sequence of non-negative numbers that sum to 1. Then, for all i ∈ {1, . . . , m},
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D

(
Pi ‖

m

∑
j=1

αjPj

)
≤ − log

(
αi + (1− αi) exp

(
− 1

1−αi ∑
j 6=i

αj D(Pi‖Pj)

))
. (54)

Proof. For an arbitrary i ∈ {1, . . . , m}, apply the upper bound on the right side of (51) with λ := 1− αi,
P := Pi and Q := 1

1−αi
∑
j 6=i

αjPj. The right side of (54) is obtained from (51) by invoking the convexity of

the relative entropy, which gives D(Pi‖Q) ≤ 1
1−αi

∑
j 6=i

αjD(Pi‖Pj).

The next result provides an upper bound on the non-negative difference between the entropy of a
convex combination of distributions and the respective convex combination of the individual entropies
(it is also termed as the concavity deficit of the entropy function in [17] [Section 3]).

Corollary 4. Let {Pj}m
j=1, with m ∈ N, be probability measures defined on a measurable space (X , F ), and let

{αj}m
j=1 be a sequence of non-negative numbers that sum to 1. Then,

0 ≤ H

(
m

∑
j=1

αjPj

)
−

m

∑
j=1

αj H(Pj) ≤ −
m

∑
i=1

αi log

(
αi + (1− αi) exp

(
− 1

1−αi ∑
j 6=i

αj D(Pi‖Pj)

))
. (55)

Proof. The lower bound holds due to the concavity of the entropy function. The upper bound readily
follows from Corollary 3, and the identity

H

(
m

∑
j=1

αjPj

)
−

m

∑
j=1

αj H(Pj) =
m

∑
i=1

αiD

(
Pi ‖

m

∑
j=1

αjPj

)
. (56)

Remark 7. The upper bound in (55) refines the known bound (see, e.g., [31] [Lemma 2.2])

H

(
m

∑
j=1

αjPj

)
−

m

∑
j=1

αj H(Pj) ≤
m

∑
j=1

αj log
1
αj

= H(α), (57)

by relying on all the 1
2 m(m − 1) pairwise relative entropies between the individual distributions {Pj}m

j=1.
Another refinement of (57), expressed in terms of total variation distances, has been recently provided in [17]
[Theorem 3.1].

3.3. Monotonic Sequences of f -Divergences and an Extension of Theorem 1

The present subsection generalizes Theorem 1, and it also provides relations between f -divergences
which are defined in a recursive way.

Theorem 4. Let P and Q be probability measures defined on a measurable space (X , F ). Let Rλ, for λ ∈ [0, 1],
be the convex combination of P and Q as in (21). Let f0 : (0, ∞) → R be a convex function with f0(1) = 0,
and let { fk(·)}∞

k=0 be a sequence of functions that are defined on (0, ∞) by the recursive equation

fk+1(x) :=
∫ 1−x

0
fk(1− s)

ds
s

, x > 0, k ∈ {0, 1, . . .}. (58)

Then,

(a)
{

D fk
(P‖Q)

}∞
k=0 is a non-increasing (and non-negative) sequence of f -divergences.
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(b) For all λ ∈ [0, 1] and k ∈ {0, 1, . . .},

D fk+1
(Rλ‖P) =

∫ λ

0
D fk

(Rs‖P)
ds
s

. (59)

Proof. See Section 5.5.

We next use the polylogarithm functions, which satisfy the recursive equation [32] [Equation (7.2)]:

Lik(x) :=


x

1− x
, if k = 0,

∫ x

0

Lik−1(s)
s

ds, if k ≥ 1.
(60)

This gives Li1(x) = − loge(1 − x), Li2(x) = −
∫ x

0
1
s loge(1 − s)ds and so on, which are

real–valued and finite for x < 1.

Corollary 5. Let

fk(x) := Lik(1− x), x > 0, k ∈ {0, 1, . . .}. (61)

Then, (59) holds for all λ ∈ [0, 1] and k ∈ {0, 1, . . .}. Furthermore, setting k = 0 in (59) yields (22) as a
special case.

Proof. See Section 5.6.

3.4. On Probabilities and f -Divergences

The following result relates probabilities of sets to f -divergences.

Theorem 5. Let (X , F , µ) be a probability space, and let C ∈ F be a measurable set with µ(C) > 0. Define the
conditional probability measure

µC(E) :=
µ(C ∩ E)

µ(C) , ∀ E ∈ F . (62)

Let f : (0, ∞)→ R be an arbitrary convex function with f (1) = 0, and assume (by continuous extension
of f at zero) that f (0) := lim

t→0+
f (t) < ∞. Furthermore, let f̃ : (0, ∞) → R be the convex function which is

given by

f̃ (t) := t f
(

1
t

)
, ∀ t > 0. (63)

Then,

D f (µC‖µ) = f̃
(
µ(C)

)
+
(
1− µ(C)

)
f (0). (64)

Proof. See Section 5.7.

Connections of probabilities to the relative entropy, and to the chi-squared divergence, are next
exemplified as special cases of Theorem 5.

Corollary 6. In the setting of Theorem 5,
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D
(
µC‖µ

)
= log

1
µ
(
C
) , (65)

χ2(µC‖µ) = 1
µ
(
C
) − 1, (66)

so (16) is satisfied in this case with equality. More generally, for all α ∈ (0, ∞),

Dα

(
µC‖µ

)
= log

1
µ
(
C
) . (67)

Proof. See Section 5.7.

Remark 8. In spite of its simplicity, (65) proved very useful in the seminal work by Marton on
transportation–cost inequalities, proving concentration of measures by information-theoretic tools [33,34]
(see also [35] [Chapter 8] and [36] [Chapter 3]). As a side note, the simple identity (65) was apparently first
explicitly used by Csiszár (see [37] [Equation (4.13)]).

4. Applications

This section provides applications of our results in Section 3. These include universal lossless
compression, method of types and large deviations, and strong data–processing inequalities (SDPIs).

4.1. Application of Corollary 3: Shannon Code for Universal Lossless Compression

Consider m > 1 discrete, memoryless, and stationary sources with probability mass functions
{Pi}m

i=1, and assume that the symbols are emitted by one of these sources with an a priori probability αi
for source no. i, where {αi}m

i=1 are positive and sum to 1.
For lossless data compression by a universal source code, suppose that a single source code is

designed with respect to the average probability mass function P :=
m
∑

j=1
αjPj.

Assume that the designer uses a Shannon code, where the code assignment for a symbol x ∈ X
is of length `(x) =

⌈
log 1

P(x)

⌉
bits (logarithms are on base 2). Due to the mismatch in the source

distribution, the average codeword length `avg satisfies (see [38] [Proposition 3.B])

m

∑
i=1

αi H(Pi) +
m

∑
i=1

αiD(Pi‖P) ≤ `avg ≤
m

∑
i=1

αi H(Pi) +
m

∑
i=1

αiD(Pi‖P) + 1. (68)

The fractional penalty in the average codeword length, denoted by ν, is defined to be equal to the
ratio of the penalty in the average codeword length as a result of the source mismatch, and the average
codeword length in case of a perfect matching. From (68), it follows that

m
∑

i=1
αi D(Pi‖P)

1 +
m
∑

i=1
αi H(Pi)

≤ ν ≤
1 +

m
∑

i=1
αi D(Pi‖P)

m
∑

i=1
αi H(Pi)

. (69)

We next rely on Corollary 3 to obtain an upper bound on ν which is expressed as a function of
the m(m− 1) relative entropies D(Pi‖Pj) for all i 6= j in {1, . . . , m}. This is useful if, e.g., the m relative
entropies on the left and right sides of (69) do not admit closed-form expressions, in contrast to the
m(m− 1) relative entropies D(Pi‖Pj) for i 6= j. We next exemplify this case.

For i ∈ {1, . . . , m}, let Pi be a Poisson distribution with parameter λi > 0. For all i, j ∈ {1, . . . , m},
the relative entropy from Pi to Pj admits the closed-form expression
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D(Pi‖Pj) = λi log
(

λi
λj

)
+ (λj − λi) log e. (70)

From (54) and (70), it follows that

D(Pi‖P) ≤ − log
(

αi + (1− αi) exp
(
− fi(α, λ)

1− αi

))
, (71)

where

fi(α, λ) := ∑
j 6=i

αj D(Pi‖Pj) (72)

= ∑
j 6=i

{
αj

[
λi log

(
λi
λj

)
+ (λj − λi) log e

]}
. (73)

The entropy of a Poisson distribution, with parameter λi, is given by the integral representation [39–41]

H(Pi) = λi log
(

e
λi

)
+
∫ ∞

0

(
λi −

1− e−λi(1−e−u)

1− e−u

)
e−u

u
du log e. (74)

Combining (69), (71) and (74) finally gives an upper bound on ν in the considered setup.

Example 1. Consider five discrete memoryless sources where the probability mass function of source no. i is
given by Pi = Poisson(λi) with λ = [16, 20, 24, 28, 32]. Suppose that the symbols are emitted from one of the
sources with equal probability, so α =

[ 1
5 , 1

5 , 1
5 , 1

5 , 1
5
]
. Let P := 1

5 (P1 + . . . + P5) be the average probability
mass function of the five sources. The term ∑i αi D(Pi‖P), which appears in the numerators of the upper and
lower bounds on ν (see (69)), does not lend itself to a closed-form expression, and it is not even an easy task to
calculate it numerically due to the need to compute an infinite series which involves factorials. We therefore
apply the closed-form upper bound in (71) to get that ∑i αi D(Pi‖P) ≤ 1.46 bits, whereas the upper bound
which follows from the convexity of the relative entropy (i.e., ∑i αi fi(α, λ)) is equal to 1.99 bits (both upper
bounds are smaller than the trivial bound log2 5 ≈ 2.32 bits). From (69), (74), and the stronger upper bound
on ∑i αi D(Pi‖P), the improved upper bound on ν is equal to 57.0% (as compared to a looser upper bound of
69.3%, which follows from (69), (74), and the looser upper bound on ∑i αi D(Pi‖P) that is equal to 1.99 bits).

4.2. Application of Theorem 2 in the Context of the Method of Types and Large Deviations Theory

Let Xn = (X1, . . . , Xn) be a sequence of i.i.d. random variables with X1 ∼ Q, where Q is a
probability measure defined on a finite set X , and Q(x) > 0 for all x ∈ X . Let P be a set of probability
measures on X such that Q /∈ P , and suppose that the closure of P coincides with the closure
of its interior. Then, by Sanov’s theorem (see, e.g., [42] [Theorem 11.4.1] and [43] [Theorem 3.3]),
the probability that the empirical distribution P̂Xn belongs to P vanishes exponentially at the rate

lim
n→∞

1
n

log
1

P[P̂Xn ∈P ]
= inf

P∈P
D(P‖Q). (75)

Furthermore, for finite n, the method of types yields the following upper bound on this rare event:

P[P̂Xn ∈P ] ≤
(

n + |X | − 1
|X | − 1

)
exp

(
−n inf

P∈P
D(P‖Q)

)
(76)

≤ (n + 1)|X |−1 exp
(
−n inf

P∈P
D(P‖Q)

)
, (77)

whose exponential decay rate coincides with the exact asymptotic result in (75).
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Suppose that Q is not fully known, but its mean mQ and variance σ2
Q are available. Let m1 ∈ R

and δ1, ε1, σ1 > 0 be fixed, and let P be the set of all probability measures P, defined on the finite set
X , with mean mP ∈ [m1 − δ1, m1 + δ1] and variance σ2

P ∈ [σ2
1 − ε1, σ2

1 + ε1], where |m1 − mQ| > δ1.
Hence, P coincides with the closure of its interior, and Q /∈P .

The lower bound on the relative entropy in Theorem 2, used in conjunction with the upper
bound in (77), can serve to obtain an upper bound on the probability of the event that the empirical
distribution of Xn belongs to the set P , regardless of the uncertainty in Q. This gives

P[P̂Xn ∈P ] ≤ (n + 1)|X |−1 exp
(
−nd∗

)
, (78)

where

d∗ := inf
mP ,σ2

P

d(r‖s), (79)

and, for fixed (mP, mQ, σ2
P, σ2

Q), the parameters r and s are given in (41) and (42), respectively.
Standard algebraic manipulations that rely on (78) lead to the following result, which is expressed

as a function of the Lambert W function [44]. This function, which finds applications in various
engineering and scientific fields, is a standard built–in function in mathematical software tools such as
Mathematica, Matlab, and Maple. Applications of the Lambert W function in information theory and
coding are briefly surveyed in [45].

Proposition 2. For ε ∈ (0, 1), let n∗ := n∗(ε) denote the minimal value of n ∈ N such that the upper bound
on the right side of (78) does not exceed ε ∈ (0, 1). Then, n∗ admits the following closed-form expression:

n∗ = max

{⌈
−
(
|X | − 1

)
W−1(η) log e
d∗

⌉
− 1, 1

}
, (80)

with

η := −
d∗
(
ε exp(−d∗)

)1/(|X |−1)(
|X | − 1

)
log e

∈
[
− 1

e , 0), (81)

and W−1(·) on the right side of (80) denotes the secondary real–valued branch of the Lambert W function (i.e.,
x := W−1(y) where W−1 :

[
− 1

e , 0)→ (−∞,−1] is the inverse function of y := xex).

Example 2. Let Q be an arbitrary probability measure, defined on a finite set X , with mean mQ = 40 and
variance σ2

Q = 20. Let P be the set of all probability measures P, defined on X , whose mean mP and variance
σ2

P lie in the intervals [43, 47] and [18, 22], respectively. Suppose that it is required that, for all probability
measures Q as above, the probability that the empirical distribution of the i.i.d. sequence Xn ∼ Qn be included
in the set P is at most ε = 10−10. We rely here on the upper bound in (78), and impose the stronger condition
where it should not exceed ε. By this approach, it is obtained numerically from (79) that d∗ = 0.203 nats. We
next examine two cases:

(i) If |X | = 2, then it follows from (80) that n∗ = 138.
(ii) Consider a richer alphabet size of the i.i.d. samples where, e.g., |X | = 100. By relying on the same universal

lower bound d∗, which holds independently of the value of |X | (X can possibly be an infinite set), it follows
from (80) that n∗ = 4170 is the minimal value such that the upper bound in (78) does not exceed 10−10.

We close this discussion by providing numerical experimentation of the lower bound on the
relative entropy in Theorem 2, and comparing this attainable lower bound (see Item (b) of Theorem 2)
with the following closed-form expressions for relative entropies:
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(a) The relative entropy between real-valued Gaussian distributions is given by

D
(
N (mP, σ2

P) ‖N (mQ, σ2
Q)
)
= log

σQ

σP
+

1
2

[
(mP −mQ)

2 + σ2
P

σ2
Q

− 1
]

log e. (82)

(b) Let Eµ denote a random variable which is exponentially distributed with mean µ > 0;
its probability density function is given by

eµ(x) =
1
µ

e−x/µ 1{x ≥ 0}. (83)

Then, for a1, a2 > 0 and d1, d2 ∈ R,

D(Ea1 + d1‖Ea2 + d2) =

log
a2

a1
+

d1 + a1 − d2 − a2

a2
log e, d1 ≥ d2,

∞, d1 < d2.
(84)

In this case, the means under P and Q are mP = d1 + a1 and mQ = d2 + a2, respectively, and the
variances are σ2

P = a2
1 and σ2

Q = a2
2. Hence, for obtaining the required means and variances, set

a1 = σP, a2 = σQ, d1 = mP − σP, d2 = mQ − σQ. (85)

Example 3. We compare numerically the attainable lower bound on the relative entropy, as it is given in (40),
with the two relative entropies in (82) and (84):

(i) If (mP, mQ, σ2
P, σ2

Q) = (45, 40, 20, 20), then the lower bound in (40) is equal to 0.521 nats, and the two
relative entropies in (82) and (84) are equal to 0.625 and 1.118 nats, respectively.

(ii) If (mP, mQ, σ2
P, σ2

Q) = (50, 35, 10, 20), then the lower bound in (40) is equal to 2.332 nats, and the two
relative entropies in (82) and (84) are equal to 5.722 and 3.701 nats, respectively.

4.3. Strong Data–Processing Inequalities and Maximal Correlation

The information contraction is a fundamental concept in information theory. The contraction of
f -divergences through channels is captured by data–processing inequalities, which can be further
tightened by the derivation of SDPIs with channel-dependent or source-channel dependent contraction
coefficients (see, e.g., [26,46–52]).

We next provide necessary definitions which are relevant for the presentation in this subsection.

Definition 7. Let QX be a probability distribution which is defined on a set X , and that is not a point mass,
and let WY|X : X → Y be a stochastic transformation. The contraction coefficient for f -divergences is
defined as

µ f (QX , WY|X) := sup
PX : D f (PX‖QX)∈(0,∞)

D f (PY‖QY)

D f (PX‖QX)
, (86)

where, for all y ∈ Y ,

PY(y) = (PXWY|X) (y) :=
∫
X

dPX(x)WY|X(y|x), (87)

QY(y) = (QXWY|X) (y) :=
∫
X

dQX(x)WY|X(y|x). (88)

The notation in (87) and (88) is consistent with the standard notation used in information theory (see, e.g.,
the first displayed equation after (3.2) in [53]).
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The derivation of good upper bounds on contraction coefficients for f -divergences, which are
strictly smaller than 1, lead to SDPIs. These inequalities find their applications, e.g., in studying
the exponential convergence rate of an irreducible, time-homogeneous and reversible discrete-time
Markov chain to its unique invariant distribution over its state space (see, e.g., [49] [Section 2.4.3]
and [50] [Section 2]). It is in sharp contrast to DPIs which do not yield convergence to stationarity at
any rate. We return to this point later in this subsection, and determine the exact convergence rate to
stationarity under two parametric families of f -divergences.

We next rely on Theorem 1 to obtain upper bounds on the contraction coefficients for the following
f -divergences.

Definition 8. For α ∈ (0, 1], the α-skew K-divergence is given by

Kα(P‖Q) := D
(

P ‖ (1− α)P + αQ
)
, (89)

and, for α ∈ [0, 1], let

Sα(P‖Q) := α D
(

P ‖ (1− α)P + αQ
)
+ (1− α) D

(
Q ‖ (1− α)P + αQ

)
(90)

= α Kα(P‖Q) + (1− α)K1−α(Q‖P), (91)

with the convention that K0(P‖Q) ≡ 0 (by a continuous extension at α = 0 in (89)). These divergence measures
are specialized to the relative entropies:

K1(P‖Q) = D(P‖Q) = S1(P‖Q), S0(P‖Q) = D(Q‖P), (92)

and S 1
2
(P‖Q) is the Jensen–Shannon divergence [54–56] (also known as the capacitory discrimination [57]):

S 1
2
(P‖Q) = 1

2 D
(

P ‖ 1
2 (P + Q)

)
+ 1

2 D
(
Q ‖ 1

2 (P + Q)
)

(93)

= H
( 1

2 (P + Q)
)
− 1

2 H(P)− 1
2 H(Q) := JS(P‖Q). (94)

It can be verified that the divergence measures in (89) and (90) are f -divergences:

Kα(P‖Q) = Dkα
(P‖Q), α ∈ (0, 1], (95)

Sα(P‖Q) = Dsα(P‖Q), α ∈ [0, 1], (96)

with

kα(t) := t log t− t log
(
α + (1− α)t

)
, t > 0, α ∈ (0, 1], (97)

sα(t) := αt log t−
(
αt + 1− α

)
log
(
α + (1− α)t

)
(98)

= αkα(t) + (1− α)t k1−α

(
1
t

)
, t > 0, α ∈ [0, 1], (99)

where kα(·) and sα(·) are strictly convex functions on (0, ∞), and vanish at 1.

Remark 9. The α-skew K-divergence in (89) is considered in [55] and [58] [(13)] (including pointers in the
latter paper to its utility). The divergence in (90) is akin to Lin’s measure in [55] [(4.1)], the asymmetric α-skew
Jensen–Shannon divergence in [58] [(11)–(12)], the symmetric α-skew Jensen–Shannon divergence in [58] [(16)],
and divergence measures in [59] which involve arithmetic and geometric means of two probability distributions.
Properties and applications of quantum skew divergences are studied in [19] and references therein.
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Theorem 6. The f -divergences in (89) and (90) satisfy the following integral identities, which are expressed in
terms of the Györfi–Vajda divergence in (17):

1
log e Kα(P‖Q) =

∫ α

0
sDφs(P‖Q)ds, α ∈ (0, 1], (100)

1
log e Sα(P‖Q) =

∫ 1

0
gα(s) Dφs(P‖Q)ds, α ∈ [0, 1], (101)

with

gα(s) := αs 1
{

s ∈ (0, α]
}
+ (1− α)(1− s) 1

{
s ∈ [α, 1)

}
, (α, s) ∈ [0, 1]× [0, 1]. (102)

Moreover, the contraction coefficients for these f -divergences are related as follows:

µχ2(QX , WY|X) ≤ µkα
(QX , WY|X) ≤ sup

s∈(0,α]
µφs(QX , WY|X), α ∈ (0, 1], (103)

µχ2(QX , WY|X) ≤ µsα(QX , WY|X) ≤ sup
s∈(0,1)

µφs(QX , WY|X), α ∈ [0, 1], (104)

where µχ2(QX , WY|X) denotes the contraction coefficient for the chi-squared divergence.

Proof. See Section 5.8.

Remark 10. The upper bounds on the contraction coefficients for the parametric f -divergences in (89) and (90)
generalize the upper bound on the contraction coefficient for the relative entropy in [51] [Theorem III.6] (recall
that K1(P‖Q) = D(P‖Q) = S1(P‖Q)), so the upper bounds in Theorem 6 are specialized to the latter bound
at α = 1.

Corollary 7. Let

µχ2(WY|X) := sup
Q

µχ2(QX , WY|X), (105)

where the supremum on the right side is over all probability measures QX defined on X . Then,

µχ2(QX , WY|X) ≤ µkα
(QX , WY|X) ≤ µχ2(WY|X), α ∈ (0, 1], (106)

µχ2(QX , WY|X) ≤ µsα(QX , WY|X) ≤ µχ2(WY|X), α ∈ [0, 1]. (107)

Proof. See Section 5.9.

Example 4. Let QX = Bernoulli
( 1

2
)
, and let WY|X correspond to a binary symmetric channel (BSC) with

crossover probability ε. Then, µχ2(QX, WY|X) = µχ2(WY|X) = (1− 2ε)2. The upper and lower bounds on
µkα

(QX, WY|X) and µsα(QX, WY|X) in (106) and (107) match for all α, and they are all equal to (1− 2ε)2.

The upper bound on the contraction coefficients in Corollary 7 is given by µχ2(WY|X), whereas the
lower bound is given by µχ2(QX, WY|X), which depends on the input distribution QX. We next
provide alternative upper bounds on the contraction coefficients for the considered (parametric)
f -divergences, which, similarly to the lower bound, scale like µχ2(QX, WY|X). Although the upper
bound in Corollary 7 may be tighter in some cases than the alternative upper bounds which are next
presented in Proposition 3 (and in fact, the former upper bound may be even achieved with equality
as in Example 4), the bounds in Proposition 3 are used shortly to determine the exponential rate of the
convergence to stationarity of a type of Markov chains.



Entropy 2020, 22, 563 17 of 36

Proposition 3. For all α ∈ (0, 1],

µχ2(QX , WY|X) ≤ µkα
(QX , WY|X) ≤

1
α Qmin

· µχ2(QX , WY|X), (108)

µχ2(QX , WY|X) ≤ µsα(QX , WY|X) ≤
(1− α) loge

(
1
α

)
+ 2α− 1

(1− 3α + 3α2) Qmin
· µχ2(QX , WY|X), (109)

where Qmin denotes the minimal positive mass of the input distribution QX .

Proof. See Section 5.10.

Remark 11. In view of (92), at α = 1, (108) and (109) specialize to an upper bound on the contraction
coefficient of the relative entropy (KL divergence) as a function of the contraction coefficient of the chi-squared
divergence. In this special case, both (108) and (109) give

µχ2(QX , WY|X) ≤ µKL(QX , WY|X) ≤
1

Qmin
· µχ2(QX , WY|X), (110)

which then coincides with [48] [Theorem 10].

We next apply Proposition 3 to consider the convergence rate to stationarity of Markov chains
by the introduced f -divergences in Definition 8. The next result follows [49] [Section 2.4.3], and it
provides a generalization of the result there.

Theorem 7. Consider a time-homogeneous, irreducible, and reversible discrete-time Markov chain with a
finite state space X , let W be its probability transition matrix, and QX be its unique stationary distribution
(reversibility means that QX(x)[W]x,y = QX(y)[W]y,x for all x, y ∈ X ). Let PX be an initial probability
distribution over X . Then, for all α ∈ (0, 1] and n ∈ N,

Kα(PXWn‖QX) ≤ µkα
(QX , Wn) Kα(PX‖QX), (111)

Sα(PXWn‖QX) ≤ µsα(QX , Wn) Sα(PX‖QX), (112)

and the contraction coefficients on the right sides of (111) and (112) scale like the n-th power of the contraction
coefficient for the chi-squared divergence as follows:

(
µχ2(QX , W)

)n ≤ µkα
(QX , Wn) ≤ 1

α Qmin
·
(
µχ2(QX , W)

)n, (113)

(
µχ2(QX , W)

)n ≤ µsα(QX , Wn) ≤
(1− α) loge

(
1
α

)
+ 2α− 1

(1− 3α + 3α2) Qmin
·
(
µχ2(QX , W)

)n. (114)

Proof. Inequalities (111) and (112) hold since QXWn = QX, for all n ∈ N, and due to Definition 7
and (95) and (96). Inequalities (113) and (114) hold by Proposition 3, and due to the reversibility of the
Markov chain which implies that (see [49] [Equation (2.92)])

µχ2(QX , Wn) =
(
µχ2(QX , W)

)n, n ∈ N. (115)

In view of (113) and (114), Theorem 7 readily gives the following result on the exponential decay
rate of the upper bounds on the divergences on the left sides of (111) and (112).
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Corollary 8. For all α ∈ (0, 1],

lim
n→∞

(
µkα

(QX , Wn)
)1/n

= µχ2(QX , W) = lim
n→∞

(
µsα(QX , Wn)

)1/n. (116)

Remark 12. Theorem 7 and Corollary 8 generalize the results in [49] [Section 2.4.3], which follow as a special
case at α = 1 (see (92)).

We end this subsection by considering maximal correlations, which are closely related to the
contraction coefficient for the chi-squared divergence.

Definition 9. The maximal correlation between two random variables X and Y is defined as

ρm(X; Y) := sup
f ,g

E[ f (X)g(Y)], (117)

where the supremum is taken over all real-valued functions f and g such that

E[ f (X)] = E[g(Y)] = 0, E[ f 2(X)] ≤ 1, E[g2(Y)] ≤ 1. (118)

It is well-known [60] that, if X ∼ QX and Y ∼ QY = QXWY|X , then the contraction coefficient for
the chi-squared divergence µχ2(QX , WY|X) is equal to the square of the maximal correlation between
the random variables X and Y, i.e.,

ρm(X; Y) =
√

µχ2(QX , WY|X). (119)

A simple application of Corollary 1 and (119) gives the following result.

Proposition 4. In the setting of Definition 7, for s ∈ [0, 1], let Xs ∼ (1− s)PX + sQX and Ys ∼ (1− s)PY +

sQY with PX 6= QX and PX �� QX . Then, the following inequality holds:

sup
s∈[0,1]

ρm(Xs; Ys) ≥ max
{√

D(PY‖QY)

D(PX‖QX)
,

√
D(QY‖PY)

D(QX‖PX)

}
. (120)

Proof. See Section 5.11.

5. Proofs

This section provides proofs of the results in Sections 3 and 4.

5.1. Proof of Theorem 1

Proof of (22): We rely on an integral representation of the logarithm function (on base e):

loge x =
∫ 1

0

x− 1
x + (1− x)v

dv, ∀ x > 0. (121)

Let µ be a dominating measure of P and Q (i.e., P, Q� µ), and let p := dP
dµ , q := dQ

dµ , and

rλ :=
dRλ

dµ
= (1− λ)p + λq, ∀ λ ∈ [0, 1], (122)

where the last equality is due to (21). For all λ ∈ [0, 1],
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1
log e D(P‖Rλ) =

∫
p loge

( p
rλ

)
dµ (123)

=
∫ 1

0

∫ p(p− rλ)

p + v(rλ − p)
dµ dv, (124)

where (124) holds due to (121) with x := p
rλ

, and by swapping the order of integration. The inner
integral on the right side of (124) satisfies, for all v ∈ (0, 1],

∫ p(p− rλ)

p + v(rλ − p)
dµ =

∫
(p− rλ)

(
1 +

v(p− rλ)

p + v(rλ − p)

)
dµ (125)

=
∫
(p− rλ)dµ + v

∫
(p− rλ)

2

p + v(rλ − p)
dµ (126)

= v
∫

(p− rλ)
2

(1− v)p + vrλ
dµ (127)

=
1
v

∫ (
p−

[
(1− v)p + vrλ

])2

(1− v)p + vrλ
dµ (128)

=
1
v

χ2(P ‖ (1− v)P + vRλ

)
, (129)

where (127) holds since
∫

p dµ = 1, and
∫

rλ dµ = 1. From (21), for all (λ, v) ∈ [0, 1]× [0, 1],

(1− v)P + vRλ = (1− λv)P + λv Q = Rλv. (130)

The substitution of (130) into the right side of (129) gives that, for all (λ, v) ∈ [0, 1]× (0, 1],

∫ p(p− rλ)

p + v(rλ − p)
dµ =

1
v

χ2(P‖Rλv). (131)

Finally, substituting (131) into the right side of (124) gives that, for all λ ∈ (0, 1],

1
log e D(P‖Rλ) =

∫ 1

0

1
v

χ2(P‖Rλv)dv (132)

=
∫ λ

0

1
s

χ2(P‖Rs)ds, (133)

where (133) holds by the transformation s := λv. Equality (133) also holds for λ = 0 since we have
D(P‖R0) = D(P‖P) = 0.

Proof of (23): For all s ∈ (0, 1],

χ2(P‖Q) =
∫

(p− q)2

q
dµ

=
1
s2

∫ [(
sp + (1− s)q

)
− q
]2

q
dµ (134)

=
1
s2

∫ (
r1−s − q

)2

q
dµ (135)

=
1
s2 χ2(R1−s ‖Q

)
, (136)
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where (135) holds due to (122). From (136), it follows that for all λ ∈ [0, 1],

∫ λ

0

1
s

χ2(R1−s ‖Q
)

ds =
∫ λ

0
s ds χ2(P‖Q) = 1

2 λ2 χ2(P‖Q). (137)

5.2. Proof of Proposition 1

(a) Simple Proof of Pinsker’s Inequality: By [61] or [62] [(58)],

χ2(P‖Q) ≥


|P−Q|2, if |P−Q| ∈ [0, 1],

|P−Q|
2− |P−Q| , if |P−Q| ∈ (1, 2].

(138)

We need the weaker inequality χ2(P‖Q) ≥ |P−Q|2, proved by the Cauchy–Schwarz inequality:

χ2(P‖Q) =
∫

(p− q)2

q
dµ

∫
q dµ (139)

≥
(∫ |p− q|

√
q
· √q dµ

)2

(140)

= |P−Q|2. (141)

By combining (24) and (139)–(141), it follows that

1
log e D(P‖Q) =

∫ 1

0
χ2(P ‖ (1− s)P + sQ)

ds
s

(142)

≥
∫ 1

0

∣∣P− ((1− s)P + sQ
)∣∣2 ds

s
(143)

=
∫ 1

0
s |P−Q|2 ds (144)

= 1
2 |P−Q|2. (145)

(b) Proof of (30) and its local tightness:

1
log e D(P‖Q) =

∫ 1

0
χ2(P ‖ (1− s)P + sQ)

ds
s

(146)

=
∫ 1

0

(∫ [
p− ((1− s)p + sq)

]2
(1− s)p + sq

dµ

)
ds
s

(147)

=
∫ 1

0

∫ s(p− q)2

(1− s)p + sq
dµ ds (148)

≤
∫ 1

0

∫
s(p− q)2

(
1− s

p
+

s
q

)
dµ ds (149)

=
∫ 1

0
s2 ds

∫
(p− q)2

q
dµ +

∫ 1

0
s(1− s)ds

∫
(p− q)2

p
dµ (150)

= 1
3 χ2(P‖Q) + 1

6 χ2(Q‖P), (151)

where (146) is (24), and (149) holds due to Jensen’s inequality and the convexity of the hyperbola.

We next show the local tightness of inequality (30) by proving that (31) yields (32). Let {Pn} be a
sequence of probability measures, defined on a measurable space (X , F ), and assume that {Pn}
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converges to a probability measure P in the sense that (31) holds. In view of [16] [Theorem 7] (see
also [15] [Section 4.F] and [63]), it follows that

lim
n→∞

D(Pn‖P) = lim
n→∞

χ2(Pn‖P) = 0, (152)

and

lim
n→∞

D(Pn‖P)
χ2(Pn‖P)

= 1
2 log e, (153)

lim
n→∞

χ2(Pn‖P)
χ2(P‖Pn)

= 1, (154)

which therefore yields (32).
(c) Proof of (33) and (34): The proof of (33) relies on (28) and the following lemma.

Lemma 1. For all s, θ ∈ (0, 1),

Dφs(P‖Q)

Dφθ
(P‖Q)

≥ min
{

1− θ

1− s
,

θ

s

}
. (155)

Proof.

Dφs(P‖Q) =
∫

(p− q)2

(1− s)p + sq
dµ (156)

=
∫

(p− q)2

(1− θ)p + θq
(1− θ)p + θq
(1− s)p + sq

dµ (157)

≥ min
{

1− θ

1− s
,

θ

s

} ∫
(p− q)2

(1− θ)p + θq
dµ (158)

= min
{

1− θ

1− s
,

θ

s

}
Dφθ

(P‖Q). (159)

From (28) and (155), for all θ ∈ (0, 1),

1
log e D(P‖Q) =

∫ θ

0
sDφs(P‖Q)ds +

∫ 1

θ
sDφs(P‖Q)ds (160)

≥
∫ θ

0

s (1− θ)

1− s
· Dφθ

(P‖Q)ds +
∫ 1

θ
θ Dφθ

(P‖Q)ds (161)

=

[
−θ + loge

(
1

1− θ

)]
(1− θ) Dφθ

(P‖Q) + θ(1− θ) Dφθ
(P‖Q) (162)

= (1− θ) loge

(
1

1− θ

)
Dφθ

(P‖Q). (163)

This proves (33). Furthermore, under the assumption in (31), for all θ ∈ [0, 1],

lim
n→∞

D(P‖Pn)

Dφθ
(P‖Pn)

= lim
n→∞

D(P‖Pn)

χ2(P‖Pn)
lim

n→∞

χ2(P‖Pn)

Dφθ
(P‖Pn)

(164)

= 1
2 log e · 2

φ′′θ (1)
(165)

= 1
2 log e, (166)
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where (165) holds due to (153) and the local behavior of f -divergences [63], and (166) holds due
to (17) which implies that φ′′θ (1) = 2 for all θ ∈ [0, 1]. This proves (34).

(d) Proof of (35): From (24), we get

1
log e D(P‖Q) =

∫ 1

0
χ2(P ‖ (1− s)P + sQ)

ds
s

(167)

=
∫ 1

0

[
χ2(P ‖ (1− s)P + sQ)− s2 χ2(P‖Q)

] ds
s
+
∫ 1

0
s ds χ2(P‖Q) (168)

=
∫ 1

0

[
χ2(P ‖ (1− s)P + sQ)− s2 χ2(P‖Q)

] ds
s
+ 1

2 χ2(P‖Q). (169)

Referring to the integrand of the first term on the right side of (169), for all s ∈ (0, 1],

1
s
[
χ2(P ‖ (1− s)P + sQ)− s2 χ2(P‖Q)

]
= s

∫
(p− q)2

[
1

(1− s)p + sq
− 1

q

]
dµ (170)

= s(1− s)
∫

(q− p)3

q
[
(1− s)p + sq

] dµ (171)

= s(1− s)
∫
|q− p| · |q− p|

q
· q− p

p + s(q− p)︸ ︷︷ ︸
≤ 1

s 1{q≥p}

dµ (172)

≤ (1− s)
∫
(q− p) 1{q ≥ p}dµ (173)

= 1
2 (1− s) |P−Q|, (174)

where the last equality holds since the equality
∫
(q− p)dµ = 0 implies that∫

(q− p) 1{q ≥ p}dµ =
∫
(p− q) 1{p ≥ q}dµ (175)

= 1
2

∫
|p− q|dµ = 1

2 |P−Q|. (176)

From (170)–(174), an upper bound on the right side of (169) results. This gives

1
log e D(P‖Q) ≤ 1

2

∫ 1

0
(1− s)ds |P−Q|+ 1

2 χ2(P‖Q) (177)

= 1
4 |P−Q|+ 1

2 χ2(P‖Q). (178)

It should be noted that [15] [Theorem 2(a)] shows that inequality (35) is tight. To that end,
let ε ∈ (0, 1), and define probability measures Pε and Qε on the set A = {0, 1} with Pε(1) = ε2

and Qε(1) = ε. Then,

lim
ε↓0

1
log e D(Pε‖Qε)

1
4 |Pε −Qε|+ 1

2 χ2(Pε‖Qε)
= 1. (179)
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5.3. Proof of Theorem 2

We first prove Item (a) in Theorem 2. In view of the Hammersley–Chapman–Robbins lower
bound on the χ2 divergence, for all λ ∈ [0, 1]

χ2(P‖(1− λ)P + λQ
)
≥
(
E[X]−E[Zλ]

)2

Var(Zλ)
, (180)

where X ∼ P, Y ∼ Q and Zλ ∼ Rλ := (1− λ)P + λQ is defined by

Zλ :=

{
X, with probability 1− λ,

Y, with probability λ.
(181)

For λ ∈ [0, 1],

E[Zλ] = (1− λ)mP + λmQ, (182)

and it can be verified that

Var(Zλ) = (1− λ)σ2
P + λσ2

Q + λ(1− λ)(mP −mQ)
2. (183)

We now rely on (24)

1
log e D(P‖Q) =

∫ 1

0
χ2(P‖(1− λ)P + λQ)

dλ

λ
(184)

to get a lower bound on the relative entropy. Combining (180), (183) and (184) yields

1
log e D(P‖Q) ≥ (mP −mQ)

2
∫ 1

0

λ

(1− λ)σ2
P + λσ2

Q + λ(1− λ)(mP −mQ)2
dλ. (185)

From (43) and (44), we get

∫ 1

0

λ

(1− λ)σ2
P + λσ2

Q + λ(1− λ)(mP −mQ)2
dλ =

∫ 1

0

λ

(α− aλ)(β + aλ)
dλ, (186)

where

α :=

√
σ2

P +
b2

4a2 +
b

2a
, (187)

β :=

√
σ2

P +
b2

4a2 −
b

2a
. (188)

By using the partial fraction decomposition of the integrand on the right side of (186), we get
(after multiplying both sides of (185) by log e)

D(P‖Q) ≥
(mP −mQ)

2

a2

[
α

α + β
log
(

α

α− a

)
+

β

α + β
log
(

β

β + a

)]
(189)

=
α

α + β
log
(

α

α− a

)
+

β

α + β
log
(

β

β + a

)
(190)

= d
(

α

α + β

∥∥ α− a
α + β

)
, (191)
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where (189) holds by integration since α − aλ and β + aλ are both non-negative for all λ ∈ [0, 1].
To verify the latter claim, it should be noted that (43) and the assumption that mP 6= mQ imply that
a 6= 0. Since α, β > 0, it follows that, for all λ ∈ [0, 1], either α− aλ > 0 or β+ aλ > 0 (if a < 0, then the
former is positive, and, if a > 0, then the latter is positive). By comparing the denominators of both
integrands on the left and right sides of (186), it follows that (α− aλ)(β + aλ) ≥ 0 for all λ ∈ [0, 1].
Since the product of α− aλ and β + aλ is non-negative and at least one of these terms is positive, it
follows that α− aλ and β + aλ are both non-negative for all λ ∈ [0, 1]. Finally, (190) follows from (43).

If mP −mQ → 0 and σP 6= σQ, then it follows from (43) and (44) that a→ 0 and b→ σ2
P − σ2

Q 6= 0.

Hence, from (187) and (188), α ≥
∣∣∣ b

a

∣∣∣→ ∞ and β→ 0, which implies that the lower bound on D(P‖Q)

in (191) tends to zero.
Letting r := α

α+β and s := α−a
α+β , we obtain that the lower bound on D(P‖Q) in (40) holds. This bound

is consistent with the expressions of r and s in (41) and (42) since, from (45), (187) and (188),

r =
α

α + β
=

v + b
2a

2v
=

1
2
+

b
4av

, (192)

s =
α− a
α + β

= r− a
α + β

= r− a
2v

. (193)

It should be noted that r, s ∈ [0, 1]. First, from (187) and (188), α and β are positive if σP 6= 0,
which yields r = α

α+β ∈ (0, 1). We next show that s ∈ [0, 1]. Recall that α− aλ and β + aλ are both
non-negative for all λ ∈ [0, 1]. Setting λ = 1 yields α ≥ a, which (from (193)) implies that s ≥ 0.
Furthermore, from (193) and the positivity of α + β, it follows that s ≤ 1 if and only if β ≥ −a.
The latter holds since β + aλ ≥ 0 for all λ ∈ [0, 1] (in particular, for λ = 1). If σP = 0, then it follows
from (41)–(45) that v = b

2|a| , b = a2 + σ2
Q, and (recall that a 6= 0)

(i) If a > 0, then v = b
2a implies that r = 1

2 + b
4av = 1, and s = r− a

2v = 1− a2

b =
σ2

Q
σ2

Q+a2 ∈ [0, 1];

(ii) if a < 0, then v = − b
2a implies that r = 0, and s = r− a

2v = a2

b = a2

a2+σ2
Q
∈ [0, 1].

We next prove Item (b) in Theorem 2 (i.e., the achievability of the lower bound in (40)). To that
end, we provide a technical lemma, which can be verified by the reader.

Lemma 2. Let r, s be given in (41)–(45), and let u1,2 be given in (47). Then,

(s− r)(u1 − u2) = mQ −mP, (194)

u1 + u2 = mP + mQ +
σ2

Q − σ2
P

mQ −mP
. (195)

Let X ∼ P and Y ∼ Q be defined on a set U = {u1, u2} (for the moment, the values of u1 and u2

are not yet specified) with P[X = u1] = r, P[X = u2] = 1− r, Q[Y = u1] = s, and Q[Y = u2] = 1− s.
We now calculate u1 and u2 such that E[X] = mP and Var(X) = σ2

P. This is equivalent to

ru1 + (1− r)u2 = mP, (196)

ru2
1 + (1− r)u2

2 = m2
P + σ2

P. (197)

Substituting (196) into the right side of (197) gives

ru2
1 + (1− r)u2

2 =
[
ru1 + (1− r)u2

]2
+ σ2

P, (198)
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which, by rearranging terms, also gives

u1 − u2 = ±

√
σ2

P
r(1− r)

. (199)

Solving simultaneously (196) and (199) gives

u1 = mP ±

√
(1− r)σ2

P
r

, (200)

u2 = mP ∓

√
rσ2

P
1− r

. (201)

We next verify that, by setting u1,2 as in (47), one also gets (as desired) that E[Y] = mQ and
Var(Y) = σ2

Q. From Lemma 2, and, from (196) and (197), we have

E[Y] = su1 + (1− s)u2 (202)

=
(
ru1 + (1− r)u2

)
+ (s− r)(u1 − u2) (203)

= mP + (s− r)(u1 − u2) = mQ, (204)

E[Y2] = su2
1 + (1− s)u2

2 (205)

= ru2
1 + (1− r)u2

2 + (s− r)(u2
1 − u2

2) (206)

= E[X2] + (s− r)(u1 − u2)(u1 + u2) (207)

= m2
P + σ2

P + (mQ −mP)

(
mP + mQ +

σ2
Q − σ2

P

mQ −mP

)
(208)

= m2
Q + σ2

Q. (209)

By combining (204) and (209), we obtain Var(Y) = σ2
Q. Hence, the probability mass functions P

and Q defined on U = {u1, u2} (with u1 and u2 in (47)) such that

P(u1) = 1− P(u2) = r, Q(u1) = 1−Q(u2) = s (210)

satisfy the equality constraints in (39), while also achieving the lower bound on D(P‖Q) that is equal
to d(r‖s). It can be also verified that the second option where

u1 = mP −

√
(1− r)σ2

P
r

, u2 = mP +

√
rσ2

P
1− r

(211)

does not yield the satisfiability of the conditions E[Y] = mQ and Var(Y) = σ2
Q, so there is only a unique

pair of probability measures P and Q, defined on a two-element set that achieves the lower bound
in (40) under the equality constraints in (39).

We finally prove Item (c) in Theorem 2. Let m ∈ R, σ2
P, and σ2

Q be selected arbitrarily such that
σ2

Q ≥ σ2
P. We construct probability measures Pε and Qε, depending on a free parameter ε, with means

mP = mQ := m and variances σ2
P and σ2

Q, respectively (means and variances are independent of ε),
and which are defined on a three-element set U := {u1, u2, u3} as follows:

Pε(u1) = r, Pε(u2) = 1− r, Pε(u3) = 0, (212)

Qε(u1) = s, Qε(u2) = 1− s− ε, Qε(u3) = ε, (213)
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with ε > 0. We aim to set the parameters r, s, u1, u2 and u3 (as a function of m, σP, σQ and ε) such that

lim
ε→0+

D(Pε‖Qε) = 0. (214)

Proving (214) yields (48), while it also follows that the infimum on the left side of (48) can be
restricted to probability measures which are defined on a three-element set.

In view of the constraints on the means and variances in (39), with equal means m, we get the
following set of equations from (212) and (213):

ru1 + (1− r)u2 = m,

su1 + (1− s− ε)u2 + εu3 = m,

ru2
1 + (1− r)u2

2 = m2 + σ2
P,

su2
1 + (1− s− ε)u2

2 + εu2
3 = m2 + σ2

Q.

(215)

The first and second equations in (215) refer to the equal means under P and Q, and the third and
fourth equations in (215) refer to the second moments in (39). Furthermore, in view of (212) and (213),
the relative entropy is given by

D(Pε‖Qε) = r log
r
s
+ (1− r) log

1− r
1− s− ε

. (216)

Subtracting the square of the first equation in (215) from its third equation gives the equivalent
set of equations 

ru1 + (1− r)u2 = m,

su1 + (1− s− ε)u2 + εu3 = m,

r(1− r)(u1 − u2)
2 = σ2

P,

su2
1 + (1− s− ε)u2

2 + εu2
3 = m2 + σ2

Q.

(217)

We next select u1 and u2 such that u1 − u2 := 2σP. Then, the third equation in (217) gives
r(1− r) = 1

4 , so r = 1
2 . Furthermore, the first equation in (217) gives

u1 = m + σP, (218)

u2 = m− σP. (219)

Since r, u1, and u2 are independent of ε, so is the probability measure Pε := P. Combining the
second equation in (217) with (218) and (219) gives

u3 = m−
(

1 +
2s− 1

ε

)
σP. (220)

Substituting (218)–(220) into the fourth equation of (217) gives a quadratic equation for s,
whose selected solution (such that s and r = 1

2 be close for small ε > 0) is equal to

s = 1
2

1− ε +

√√√√(σ2
Q

σ2
P
− 1 + ε

)
ε

 . (221)

Hence, s = 1
2 + O(

√
ε), which implies that s ∈ (0, 1− ε) for sufficiently small ε > 0 (as it is

required in (213)). In view of (216), it also follows that D(P‖Qε) vanishes as we let ε tend to zero.
We finally outline an alternative proof, which refers to the case of equal means with arbitrarily

selected σ2
P and σ2

Q. Let (σ2
P, σ2

Q) ∈ (0, ∞)2. We next construct a sequence of pairs of probability
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measures {(Pn, Qn)} with zero mean and respective variances (σ2
P, σ2

Q) for which D(Pn‖Qn)→ 0 as
n→ ∞ (without any loss of generality, one can assume that the equal means are equal to zero). We start
by assuming (σ2

P, σ2
Q) ∈ (1, ∞)2. Let

µn :=
√

1 + n
(
σ2

Q − 1
)
, (222)

and define a sequence of quaternary real-valued random variables with probability mass functions

Qn(a) :=

{
1
2 −

1
2n a = ±1,

1
2n a = ±µn.

(223)

It can be verified that, for all n ∈ N, Qn has zero mean and variance σ2
Q. Furthermore, let

Pn(a) :=

{ 1
2 −

ξ
2n a = ±1,

ξ
2n a = ±µn,

(224)

with

ξ :=
σ2

P − 1
σ2

Q − 1
. (225)

If ξ > 1, for n = 1, . . . , dξe, we choose Pn arbitrarily with mean 0 and variance σ2
P. Then,

Var(Pn) = 1− ξ
n + ξ

n µ2
n = σ2

P, (226)

D(Pn‖Qn) = d
(

ξ

n

∥∥∥∥ 1
n

)
→ 0. (227)

Next, suppose min{σ2
P, σ2

Q} := σ2 < 1, then construct P′n and Q′n as before with variances 2σ2
P

σ2 > 1

and
2σ2

Q
σ2 > 1, respectively. If Pn and Qn denote the random variables P′n and Q′n scaled by a factor of

σ√
2

, then their variances are σ2
P, σ2

Q, respectively, and D(Pn‖Qn) = D(P′n‖Q′n)→ 0 as we let n→ ∞.
To conclude, it should be noted that the sequences of probability measures in the latter proof

are defined on a four-element set. Recall that, in the earlier proof, specialized to the case of (equal
means with) σ2

P ≤ σ2
Q, the introduced probability measures are defined on a three-element set, and the

reference probability measure P is fixed while referring to an equiprobable binary random variable.

5.4. Proof of Theorem 3

We first prove (52). Differentiating both sides of (22) gives that, for all λ ∈ (0, 1],

F′(λ) =
1
λ

χ2(P‖Rλ

)
log e (228)

≥ 1
λ

[
exp

(
D(P‖Rλ)

)
− 1
]

log e (229)

=
1
λ

[
exp

(
F(λ)

)
− 1
]

log e, (230)

where (228) holds due to (21), (22) and (50); (229) holds by (16) and (230) is due to (21) and (50).
This gives (52).
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We next prove (53), and the conclusion which appears after it. In view of [16] [Theorem 8],
applied to f (t) := − log t for all t > 0, we get (it should be noted that, by the definition of F in (50),
the result in [16] [(195)–(196)] is used here by swapping P and Q)

lim
λ→0+

F(λ)
λ2 = 1

2 χ2(Q‖P) log e. (231)

Since lim
λ→0+

F(λ) = 0, it follows by L’Hôpital’s rule that

lim
λ→0+

F′(λ)
λ

= 2 lim
λ→0+

F(λ)
λ2 = χ2(Q‖P) log e, (232)

which gives (53). A comparison of the limit in (53) with a lower bound which follows from (52) gives

lim
λ→0+

F′(λ)
λ
≥ lim

λ→0+

1
λ2

[
exp

(
F(λ)

)
− 1
]

log e (233)

= lim
λ→0+

F(λ)
λ2 lim

λ→0+

exp
(

F(λ)
)
− 1

F(λ)
· log e (234)

= lim
λ→0+

F(λ)
λ2 lim

u→0

eu − 1
u

(235)

= 1
2 χ2(Q‖P) log e, (236)

where (236) relies on (231). Hence, the limit in (53) is twice as large as its lower bound on the right side
of (236). This proves the conclusion which comes right after (53).

We finally prove the known result in (51), by showing an alternative proof which is based on (52).
The function F is non-negative on [0, 1], and it is strictly positive on (0, 1] if P 6= Q. Let P 6= Q
(otherwise, (51) is trivial). Rearranging terms in (52) and integrating both sides over the interval [λ, 1],
for λ ∈ (0, 1], gives that

∫ 1

λ

F′(t)
exp

(
F(t)

)
− 1

dt ≥
∫ 1

λ

dt
t

log e (237)

= log
1
λ

, ∀ λ ∈ (0, 1]. (238)

The left side of (237) satisfies

∫ 1

λ

F′(t)
exp

(
F(t)

)
− 1

dt =
∫ 1

λ

F′(t) exp
(
−F(t)

)
1− exp

(
−F(t)

) dt (239)

=
∫ 1

λ

d
dt

{
log
(

1− exp
(
−F(t)

))}
dt (240)

= log

(
1− exp

(
−D(P‖Q)

)
1− exp

(
−F(λ)

) )
, (241)

where (241) holds since F(1) = D(P‖Q) (see (50)). Combining (237)–(241) gives

1− exp
(
−D(P‖Q)

)
1− exp

(
−F(λ)

) ≥ 1
λ

, ∀ λ ∈ (0, 1], (242)

which, due to the non-negativity of F, gives the right side inequality in (51) after rearrangement of
terms in (242).
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5.5. Proof of Theorem 4

Lemma 3. Let f0 : (0, ∞)→ R be a convex function with f0(1) = 0, and let { fk(·)}∞
k=0 be defined as in (58).

Then, { fk(·)}∞
k=0 is a sequence of convex functions on (0, ∞), and

fk(x) ≥ fk+1(x), ∀ x > 0, k ∈ {0, 1, . . .}. (243)

Proof. We prove the convexity of { fk(·)} on (0, ∞) by induction. Suppose that fk(·) is a convex
function with fk(1) = 0 for a fixed integer k ≥ 0. The recursion in (58) yields fk+1(1) = 0 and, by the
change of integration variable s := (1− x)s′,

fk+1(x) =
∫ 1

0
fk(s′x− s′ + 1)

ds′

s′
, x > 0. (244)

Consequently, for t ∈ (0, 1) and x 6= y with x, y > 0, applying (244) gives

fk+1((1− t)x + ty) =
∫ 1

0
fk
(
s′[(1− t)x + ty]− s′ + 1

) ds′

s′
(245)

=
∫ 1

0
fk
(
(1− t)(s′x− s′ + 1) + t(s′y− s′ + 1)

) ds′

s′
(246)

≤ (1− t)
∫ 1

0
fk(s′x− s′ + 1)

ds′

s′
+ t

∫ 1

0
fk(s′y− s′ + 1)

ds′

s′
(247)

= (1− t) fk+1(x) + t fk+1(y), (248)

where (247) holds since fk(·) is convex on (0, ∞) (by assumption). Hence, from (245)–(248), fk+1(·) is also
convex on (0, ∞) with fk+1(1) = 0. By mathematical induction and our assumptions on f0, it follows that
{ fk(·)}∞

k=0 is a sequence of convex functions on (0, ∞) which vanish at 1.
We next prove (243). For all x, y > 0 and k ∈ {0, 1, . . .},

fk+1(y) ≥ fk+1(x) + f ′k+1(x) (y− x) (249)

= fk+1(x) +
fk(x)
x− 1

(y− x), (250)

where (249) holds since fk(·) is convex on (0, ∞), and (250) relies on the recursive equation in (58).
Substituting y = 1 into (249)–(250), and using the equality fk+1(1) = 0, gives (243).

We next prove Theorem 4. From Lemma 3, it follows that D fk
(P‖Q) is an f -divergence for

all integers k ≥ 0, and the non-negative sequence
{

D fk
(P‖Q)}∞

k=0 is monotonically non-increasing.
From (21) and (58), it also follows that, for all λ ∈ [0, 1] and integer k ∈ {0, 1, . . .},

D fk+1
(Rλ‖P) =

∫
p fk+1

( rλ

p

)
dµ (251)

=
∫

p
∫ (p−q)λ/p

0
fk(1− s)

ds
s

dµ (252)

=
∫

p
∫ λ

0
fk

(
1 +

(q− p)s′

p

) ds′

s′
dµ (253)

=
∫ λ

0

∫
p fk

( rs′

p

)
dµ

ds′

s′
(254)

=
∫ λ

0
D fk

(Rs′‖P)
ds′

s′
, (255)
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where the substitution s := (p−q)s′
p is invoked in (253), and then (254) holds since rs′

p = 1 + (q−p) s′
p for

s′ ∈ [0, 1] (this follows from (21)) and by interchanging the order of the integrations.

5.6. Proof of Corollary 5

Combining (60) and (61) yields (58); furthermore, f0 : (0, ∞) → R, given by f0(x) = 1
x − 1 for

all x > 0, is convex on (0, ∞) with f0(1) = 0. Hence, Theorem 4 holds for the selected functions
{ fk(·)}∞

k=0 in (61), which therefore are all convex on (0, ∞) and vanish at 1. This proves that (59) holds
for all λ ∈ [0, 1] and k ∈ {0, 1, . . .}. Since f0(x) = 1

x − 1 and f1(x) = − loge(x) for all x > 0 (see (60)
and (61)), then, for every pair of probability measures P and Q:

D f0(P‖Q) = χ2(Q‖P), D f1(P‖Q) = 1
log e D(Q‖P). (256)

Finally, combining (59), for k = 0, together with (256), gives (22) as a special case.

5.7. Proof of Theorem 5 and Corollary 6

For an arbitrary measurable set E ⊆ X , we have from (62)

µC(E) =
∫
E

1C(x)
µ(C) dµ(x), (257)

where 1C : X → {0, 1} is the indicator function of C ⊆ X , i.e., 1C(x) := 1{x ∈ C} for x ∈ X . Hence,

dµC
dµ

(x) =
1C(x)
µ(C) , ∀ x ∈ X , (258)

and

D(µC‖µ) =
∫
X

f
(dµC

dµ

)
dµ (259)

=
∫
C

f
(

1
µ(C)

)
dµ(x) +

∫
X\C

f (0) dµ(x) (260)

= µ(C) f
(

1
µ(C)

)
+ µ(X \ C) f (0) (261)

= f̃
(
µ(C)

)
+ (1− µ(C)) f (0), (262)

where the last equality holds by the definition of f̃ in (63). This proves Theorem 5. Corollary 6 is next
proved by first proving (67) for the Rényi divergence. For all α ∈ (0, 1) ∪ (1, ∞),

Dα

(
µC‖µ

)
=

1
α− 1

log
∫
X

(
dµC
dµ

)α

dµ (263)

=
1

α− 1
log

∫
C

(
1

µ(C)

)α

dµ (264)

=
1

α− 1
log
((

1
µ(C)

)α

µ(C)
)

(265)

= log
1

µ(C) . (266)

The justification of (67) for α = 1 is due to the continuous extension of the order-α Rényi
divergence at α = 1, which gives the relative entropy (see (13)). Equality (65) is obtained from (67) at
α = 1. Finally, (66) is obtained by combining (15) and (67) with α = 2.
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5.8. Proof of Theorem 6

(100) is an equivalent form of (27). From (91) and (100), for all α ∈ [0, 1],

1
log e Sα(P‖Q) = α 1

log e Kα(P‖Q) + (1− α) 1
log e K1−α(Q‖P) (267)

= α
∫ α

0
sDφs(P‖Q)ds + (1− α)

∫ 1−α

0
sDφs(Q‖P)ds (268)

= α
∫ α

0
sDφs(P‖Q)ds + (1− α)

∫ 1

α
(1− s)Dφ1−s(Q‖P)ds. (269)

Regarding the integrand of the second term in (269), in view of (18), for all s ∈ (0, 1)

Dφ1−s(Q‖P) =
1

(1− s)2 · χ
2(Q ‖ (1− s)P + sQ

)
(270)

=
1
s2 · χ

2(P ‖ (1− s)P + sQ
)

(271)

= Dφs(P‖Q), (272)

where (271) readily follows from (9). Since we also have Dφ1(P‖Q) = χ2(P‖Q) = Dφ0(Q‖P) (see (18)),
it follows that

Dφ1−s(Q‖P) = Dφs(P‖Q), s ∈ [0, 1]. (273)

By using this identity, we get from (269) that, for all α ∈ [0, 1]

1
log e Sα(P‖Q) = α

∫ α

0
sDφs(P‖Q)ds + (1− α)

∫ 1

α
(1− s)Dφs(P‖Q)ds (274)

=
∫ 1

0
gα(s) Dφs(P‖Q)ds, (275)

where the function gα : [0, 1]→ R is defined in (102). This proves the integral identity (101).
The lower bounds in (103) and (104) hold since, if f : (0, ∞)→ R is convex, continuously twice

differentiable and strictly convex at 1, then

µχ2(QX , WY|X) ≤ µ f (QX , WY|X), (276)

(see, e.g., [46] [Proposition II.6.5] and [50] [Theorem 2]). Hence, this holds in particular for the
f -divergences in (95) and (96) (since the required properties are satisfied by the parametric functions
in (97) and (98), respectively). We next prove the upper bound on the contraction coefficients in (103)
and (104) by relying on (100) and (101), respectively. In the setting of Definition 7, if PX 6= QX , then it
follows from (100) that for α ∈ (0, 1],

Kα(PY‖QY)

Kα(PX‖QX)
=

∫ α
0 sDφs(PY‖QY)ds∫ α
0 sDφs(PX‖QX)ds

(277)

≤
∫ α

0 s µφs(QX , WY|X) Dφs(PX‖QX)ds∫ α
0 sDφs(PX‖QX)ds

(278)

≤ sup
s∈(0,α]

µφs(QX , WY|X). (279)

Finally, taking the supremum of the left-hand side of (277) over all probability measures PX such
that 0 < Kα(PX‖QX) < ∞ gives the upper bound on µkα

(QX, WY|X) in (103). The proof of the upper
bound on µsα(QX, WY|X), for all α ∈ [0, 1], follows similarly from (101), since the function gα(·) as
defined in (102) is positive over the interval (0, 1).
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5.9. Proof of Corollary 7

The upper bounds in (106) and (107) rely on those in (103) and (104), respectively, by showing that

sup
s∈(0,1]

µφs(QX , WY|X) ≤ µχ2(WY|X). (280)

Inequality (280) is obtained as follows, similarly to the concept of the proof of [51] [Remark 3.8].
For all s ∈ (0, 1] and PX 6= QX ,

Dφs(PXWY|X ‖QXWY|X)

Dφs(PX‖QX)

=
χ2(PXWY|X ‖ (1− s)PXWY|X + sQXWY|X)

χ2(PX ‖ (1− s)PX + sQX)
(281)

≤ µχ2((1− s)PX + sQX , WY|X) (282)

≤ µχ2(WY|X), (283)

where (281) holds due to (18), and (283) is due to the definition in (105).

5.10. Proof of Proposition 3

The lower bound on the contraction coefficients in (108) and (109) is due to (276). The derivation
of the upper bounds relies on [49] [Theorem 2.2], which states the following. Let f : [0, ∞) → R
be a three–times differentiable, convex function with f (1) = 0, f ′′(1) > 0, and let the function
z : (0, ∞)→ R defined as z(t) := f (t)− f (0)

t , for all t > 0, be concave. Then,

µ f (QX , WY|X) ≤
f ′(1) + f (0)
f ′′(1) Qmin

· µχ2(QX , WY|X). (284)

For α ∈ (0, 1], let zα,1 : (0, ∞)→ R and zα,2 : (0, ∞)→ R be given by

zα,1(t) :=
kα(t)− kα(0)

t
, t > 0, (285)

zα,2(t) :=
sα(t)− sα(0)

t
, t > 0, (286)

with kα and sα in (97) and (98). Straightforward calculus shows that, for α ∈ (0, 1] and t > 0,

1
log e z′′α,1(t) = −

α2 + 2α(1− α)t

t2
[
α + (1− α)t

]2 < 0, (287)

1
log e z′′α,2(t) = −

α2[α + 2(1− α)t
]

t2
[
α + (1− α)t

]2
− 2(1− α)

t3

[
loge

(
1 +

(1− α)t
α

)
− (1− α)t

α + (1− α)t
− (1− α)2t2

2
[
α + (1− α)t

]2
]

. (288)

The first term on the right side of (288) is negative. For showing that the second term is also
negative, we rely on the power series expansion loge(1 + u) = u− 1

2 u2 + 1
3 u3 − . . . for u ∈ (−1, 1].

Setting u := − x
1+x , for x > 0, and using Leibnitz theorem for alternating series yields

loge(1 + x) = − loge

(
1− x

1 + x

)
>

x
1 + x

+
x2

2(1 + x)2 , x > 0. (289)
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Consequently, setting x := (1−α)t
α ∈ [0, ∞) in (289), for t > 0 and α ∈ (0, 1], proves that the second

term on the right side of (288) is negative. Hence, z′′α,1(t), z′′α,2(t) < 0, so both zα,1, zα,2 : (0, ∞)→ R are
concave functions.

In view of the satisfiability of the conditions of [49] [Theorem 2.2] for the f -divergences with f = kα

or f = sα, the upper bounds in (108) and (109) follow from (284), and also since

kα(0) = 0, k′α(1) = α log e, k′′α(1) = α2 log e, (290)

sα(0) = −(1− α) log α, s′α(1) = (2α− 1) log e, s′′α (1) = (1− 3α + 3α2) log e. (291)

5.11. Proof of Proposition 4

In view of (24), we get

D(PY‖QY)

D(PX‖QX)
=

∫ 1
0 χ2(PY ‖ (1− s)PY + sQY)

ds
s∫ 1

0 χ2(PX ‖ (1− s)PX + sQX)
ds
s

(292)

≤
∫ 1

0 µχ2((1− s)PX + sQX , WY|X) χ2(PX ‖ (1− s)PX + sQX)
ds
s∫ 1

0 χ2(PX ‖ (1− s)PX + sQX)
ds
s

(293)

≤ sup
s∈[0,1]

µχ2((1− s)PX + sQX , WY|X). (294)

In view of (119), the distributions of Xs and Ys, and since
(
(1− s)PX + sQX

)
WY|X = (1− s)PY +

sQY holds for all s ∈ [0, 1], it follows that

ρm(Xs; Ys) =
√

µχ2((1− s)PX + sQX , WY|X), s ∈ [0, 1], (295)

which, from (292)–(295), implies that

sup
s∈[0,1]

ρm(Xs; Ys) ≥

√
D(PY‖QY)

D(PX‖QX)
. (296)

Switching PX and QX in (292)–(294) and using the mapping s 7→ 1− s in (294) gives (due to the
symmetry of the maximal correlation)

sup
s∈[0,1]

ρm(Xs; Ys) ≥

√
D(QY‖PY)

D(QX‖PX)
, (297)

and, finally, taking the maximal lower bound among those in (296) and (297) gives (120).
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