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ABSTRACT: The universe is a complex fabric of repeating
patterns that unfold their beauty in system-specific diversity. The
periodic table, crystallography, and the genetic code are classic
examples that illustrate how even a small number of rules generate
a vast range of shapes and structures. Today, we are on the brink of
an AI-driven revolution that will reveal an unprecedented number
of novel patterns, many of which will escape human intuition and
expertise. We suggest that in the second half of the 21st century,
the challenge for Physical Chemistry will be to guide and interpret
these advances in the broader context of physical sciences and
materials-related engineering. If we succeed in this role, Physical
Chemistry will be able to extend to new horizons. In this article, we
will discuss examples that strike us as particularly promising,
specifically the discovery of high-entropy and far-from-equilibrium materials as well as applications to origins-of-life research and the
search for life on other planets.
KEYWORDS: self-organization, high-entropy materials, biomorphs, pattern formation, origins of life, machine learning,
artificial intelligence

Nearly all studies aimed at the elucidation of the mysterious
processes in living beings were studies on the living
organisms themselves. Only a few modern researchers have
tried, like the alchemists, to imitate these phenomena of life
with nonliving matter.

−Raphael Eduard Liesegang, 18961

■ INTRODUCTION
It is a common interpretation that the human brain evolved to
minimize surprise.2 This innate desire to predict future events
can also be seen as the root of scientific curiosity and progress. A
key building block of this reliable anticipation is our ability to
recognize patterns. Patterns present themselves in various forms
and contexts ranging from the rhythmic repetition of events to
causal chains and spatial order. And while we might think of
predators returning to a body of water at certain times of the day
or a tree with delicious fruits in a particular location, these
principles carry over into the realm of chemistry. Here patterns
take the form of characteristic reactivities, reaction classes, and
molecular structures, but they also go far beyond those
important categories.
An even cursory look at the history of chemistry is a look at

evolving patterns that have become so obvious that we barely
recognize them as such. For physical chemists, this is apparent in
the evolution of ancient ideas about matter to modern quantum
chemistry. In this progression, a patternless, continuum state of
infinitely divisible matter turned into atoms and molecules and

eventually wave functions so complicated that they continue to
resist descriptions by modern computational methods.3 They
also directly relate to concepts of determinism and the role of
chance as these opposing poles affect the success of predictions
and the minimization of surprise.4,5

As our understanding of patterns in chemistry has evolved
over the centuries, so too have the tools at our disposal to
recognize and use them. Today we are at the beginning of a new
era of pattern identifications that will be driven by machine
learning (ML) and artificial intelligence (AI). One of the prime
examples is how large language models (LLMs) recognize
human language patterns and even excel in translating languages
with limited digital data.6 Perhaps surprisingly, this ability can
also be used in chemistry. For example, with the help of the
simplified molecular-input line-entry system (SMILES), very
similar models can predict chemical reactions by treating them
as translations from one language (reactants/reagents) to
another (products).7

In addition to these advancements, LLMs have begun to
mimic our thought patterns, making them capable of answering
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complex questions such as “Why is AI so good at recognizing
patterns?”When prompted with this question, OpenAI’s GPT48

generates what appears to be an enthusiastic answer, stating “AI,
particularly machine learning algorithms, is exceptionally good
at recognizing patterns due to its underlying architecture and
training process”. Considering this type of answers, it is not
surprising that recent studies of GPT-4 have evoked Arthur
Eddington’s quote “Something unknown is doing we don’t know
what,” highlighting their intricate and elusive operations while
echoing the enigma of the electron.8,9 Beyond their broad
linguistic prowess, ML and AI systems are revolutionizing health
sciences10 and accelerating mainstream materials chemistry11 as
exemplified by the Materials Genome Initiative.12

Obviously, the potential impacts of ML/AI in (bio)chemistry
and chemical education will be far-reaching and are impossible
to discuss in a single article. We hence focus on three, in our
opinion, promising and interesting research directions: high-
entropymaterials, far-from-equilibriummaterials, and the role of
such complex matter in the origins of life. Throughout this
discussion, we will review the role of patterns that offer an
excellent leverage point forML/AI methods. We will not discuss
details of underlying algorithms, network architectures, and
learning approaches and refer the reader to an online resource by
Andrew White on deep learning for molecules and materials.13

We also note that this article was inspired by the ACS Phys.
Chem. Au call for “Visions for the Future of Physical Chemistry”
and this original intention permeates many of the topics and
viewpoints presented in the following.
Much of our direct scientific inspiration comes from living

matter which uses abundant reactants to create systems that
might seem imperfect and unreliable when compared to
crystalline materials and their well-defined properties. None-
theless, living systems boast a long list of remarkable abilities that
are entirely inaccessible to conventional materials. These
include growth, self-reproduction, adaptation to environmental
changes, learning, avoidance of destructive factors, and self-
healing.
In the spirit of the opening quote by Raphael Liesegang, we

suggest that these features are not intrinsically biological, but
available to abiotic and inorganic processes. Instances of these
life-like inorganic systems include self-organizing chemical
reactions such as the oscillating Belousov−Zhabotinsky or the
Turing-pattern-forming chlorite-iodide-malonic acid reac-
tion,14−18 chemical gardens,19 and BaCO3-silica biomorphs20

(Figure 1). The discovery of these life-like inorganic systems has
often been the result of fortuitous serendipity rather than
systematic searches, which might explain why they are often
viewed as anomalies. Notable exceptions include pioneering
work by Irving Epstein, Patrick De Kepper, and others on the
systematic design of chemical oscillators21 and Turing
patterns.14,22 These captivating systems and innovative
approaches hint at untapped potential to revolutionize our
understanding of the world and envision new types of
engineering.
What prevents us today from exploring this potential? The

main stumbling block is that we only grasp a small fraction of the
rules required to create these systems and struggle to chart their
complex dynamic and structural phases. For interesting
applications, we are further confronted with a mind-blowing
combination of kinetics problems, intricate questions concern-
ing crystal growth and unconventional crystallization, far-from-
equilibrium conditions, and transport processes such as
diffusion and reaction-driven convection. Often additional

factors exacerbate these challenges, such as temperature
gradients, phase separation, diffusiophoresis, and poorly under-
stood liquid precursors.
Is it naiv̈e to ask AI to come to the rescue? We believe it is not

as patterns seem to organize similar behaviors in extremely
different systems. If future AI can identify these ingredients and
unravel their complex interactions, remarkable applications
might result.

■ THE ALGORITHMIC ALCHEMIST
Chemical research often resembles a puzzle; some pieces are
known, others are missing, and their mutual connections are
often unclear. Classic examples are Mendeleev’s work that led to
the periodic table of the elements and the structure elucidation
of DNA, but we dare say that most chemists’ research follows
this theme. At closer inspection, we also find that the main
challenge often boils down to identifying an underlying pattern
that can exist in real space or in some more abstract context such
as a high-dimensional reaction network or phase space. And
perhaps not surprisingly, the underlying physics is either far from
understood or not applicable when these major and minor
advances occur or fail.
Some chemical patterns manifest themselves by a predictable

repetition such as atomic positions in crystals or the surprising
alternating abundance of organic compounds with even and odd
numbers of carbon atoms.23 Some aremore elusive as beautifully
demonstrated by quasicrystals (Figure 2a) for which the atoms
are perfectly ordered but not periodic.24 These seemingly
impossible structures only gained acceptance after Dan
Shechtman’s 2011 Nobel Prize in Chemistry. (Some sources

Figure 1. Self-organizing chemical system. (a) Target patterns and
spiral waves in the Belousov−Zhabotinsky reaction occur due to
autocatalytic reaction-diffusion processes. Contrast arises from the
redox catalyst ferroin. (b) Near-stationary Turing patterns in the
chlorite-iodide-malonic acid reaction. Colors result from a pH
indicator. Scale bars: 4 mm. (c) Centimeter-scale chemical gardens
formed by precipitation reactions of Cu2+ ions in a basic silicate
solution. (d) Scanning electron micrograph of a BaCO3-silica
biomorph. Scale bar: 30 μm. Panel (b) reproduced with permission
from ref 14. Copyright 2009 AAAS.
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claim that Linus Pauling, who did not accept the existence of
quasicrystals, said “There is no such thing as quasicrystals, only
quasi-scientists.″) Other puzzling patterns are only discernible
by detailed analyses (Figure 2b,c) such as strange attractors in
chemical chaos.15,16 These and other fractal structures are self-
similar meaning that their appearance repeats to some extent as
we magnify them more and more. In chemistry, such structures
also include snowflakes and certain particle assemblies including
colloidal aggregates and dust bunnies. Yet another type of
pattern is the class of the “unknown unknowns”28 that escape
our otherwise excellent ability to spot and create patterns. They
serve as a warning that patterns are not necessarily obvious.
Indeed the sentiment that “it is easy to spot patterns” was
prominently disproven yet again in 2023, when a hobbyist
mathematician discovered the first einstein (“one stone”) tile, a
single shape that forces aperiodic tiling of the plane (Figure
2d).27 How many unknown patterns are woven through
chemical space and nature remains a mystery and we can only
speculate that many treasures remain hidden.
During the past few years, ML stepped into this world of

chemical puzzles and patterns as a powerful player. For instance,
in 2020/21 Alphafold predicted about 100,000 unique protein
structures with high accuracy29 followed by the 2022 release of
around 200 million protein structures from 1 million species.30

Then in 2023, ProGen predicted numerous novel proteins with
high catalytic activities that were largely confirmed exper-
imentally.31 While it is beyond the scope of this article to explain
the underlying transformer architectures and detailed learning
and refinement methods, we do emphasize that the most
successful models use enormous training sets which can create
limitations for certain chemical applications.
The main advantages of ML/AI for pattern recognition

include the ability to process these high volumes of data without
specific model assumptions. Given sufficient inputs, AI models,
particularly deep learning models, can handle and find patterns
in high-dimensional spaces that would be difficult or impossible
for humans to visualize or comprehend. The trained network
structures of advanced AI models have millions or even billions

Figure 2. Unusual patterns complementing the examples in Figure 1.
(a) Inverted Fourier transform of a high-resolution transmission
electron microscopy (TEM) image of a quasicrystal. (b) TEM
micrograph of a two-phase engine blade alloy. (c) Dendritic copper
deposits obtained by electrodeposition. (d) Copies of a 13-sided shape
that covers the plane but cannot form periodic tilings. Reproduced with
permission from (a) ref 24 Copyright 2009 AAAS, (b) ref 25 Copyright
2016 Springer Nature, (c) ref 26 Copyright 1997 Springer Nature, and
(d) adapted with permission under the Creative Commons BY 4.0
DEED Attribution 4.0 International License from ref 27 Copyright
2023 Smith, D.; Myers, J. S.; Kaplan, C. S.; Goodman-Strauss, C.

Figure 3. Patterns and pattern-induced properties in high entropy materials: (a) Illustration of the configurational disorder in high entropy materials.
(b) Top panels: electron diffraction patterns of low-entropy (LE) and high-entropy (HE) disordered rocksalt (DRX) highlight the lack of short-range
order in HE-DRX. Bottom panels: Schematics showing optimized Li percolation (left) and resulting higher rate capability (right). (c) Top panels:
atomic patterns in HE materials show significant lattice distortion that gives rise to a distribution of site energies. Bottom panels: The resulting
properties include distortion-induced low-ion-diffusion barriers and orders of magnitude improvement in ionic conductivity σ. Components of (b) and
(c) are modified with permission from refs 34 Copyright 2021 Springer Nature and 35 Copyright 2022 AAAS, respectively.

ACS Physical Chemistry Au pubs.acs.org/physchemau Perspective

https://doi.org/10.1021/acsphyschemau.3c00050
ACS Phys. Chem Au 2024, 4, 19−30

21

https://pubs.acs.org/doi/10.1021/acsphyschemau.3c00050?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsphyschemau.3c00050?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsphyschemau.3c00050?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsphyschemau.3c00050?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsphyschemau.3c00050?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsphyschemau.3c00050?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsphyschemau.3c00050?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsphyschemau.3c00050?fig=fig3&ref=pdf
pubs.acs.org/physchemau?ref=pdf
https://doi.org/10.1021/acsphyschemau.3c00050?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


of parameters that can be finely tuned to optimize performance
on specific tasks, allowing for nuanced and detailed pattern
detection. The following section will introduce a particular class
of materials as an interesting example that illustrates the
emerging pattern-finding abilities of ML/AI in materials
chemistry and physics.

■ HIGH ENTROPY MATERIALS
Research on high entropy materials is an emerging area of
modern chemistry and materials science. Their name is derived
from attempts to create alloys of five or more elements stabilized
by configurational entropy, which specifically refers to the
entropy stemming from the various possible arrangements or
configurations of atoms or molecules in a system with a periodic
lattice (Figure 3a). They are also known as multiprincipal-
element materials or compositionally complex materials. Such
materials were first designed to reach a sweet spot in the trade-
off game of strength and ductility in structural materials,32,33 as
high entropy alloys show special plastic deformation mecha-
nisms.33 Later advancements extended these concepts to the
design of energy storage materials, encompassing battery
electrodes34 and superionic conductors.35

The rise of these applications pivots on the chemical
manipulation of patterns within crystal lattices. For high entropy
materials, there is a minimization of typical patterns, i.e.,
deviations from the commonly seen repeating positions of atoms
in the lattice. In these materials, all symmetries are broken save
for the translational symmetry, resulting in the formation of
unique lattice patterns. This characteristic underpins their
distinct functionalities. Take, for example, high entropy Li-
containing disordered rocksalt materials. When used as a battery
cathode, these materials limit atomic pairing, also known as the
chemical short-range order, as illustrated in Figure 3b (top
panels). Consequently, more efficient ion transport arises due to
the maximization of fast Li diffusion channels in a fully random
configuration, creating a distinct “new pattern”. This allows such
battery electrodes to achieve much quicker charge/discharge
rates than standard batteries.
Additionally, when designing optimal superionic conductors,

the inclusion of multiple principal elements introduces
significant lattice distortions. This is due to the amalgamation
of elements of different sizes, creating a challenge for lattice
rigidity. As the conventional lattice patterns are disrupted, a
transformative ion transport channel, or “highway”, emerges.
This transformation can elevate a crystalline framework from a
subpar ionic conductor to a superior one, as illustrated in Figure
3c.
Accompanied by the rapid development of high entropy

structural and functional materials, deciphering the underlying
design pattern will be challenging due to the enormous
composition and synthesis space. State-of-the-art AI algorithms
can serve as a potential solution to such a high-dimensional
design problem. Despite considerable progress toward machine
learning of high entropy alloys, the journey of AI-drivenmachine
learning is still in its infancy. The challenge for AI-assisted design
of high entropy materials stems from two parts: (i) Unbiased
harvesting of scientific data that can be used for learning the
design pattern; (ii) the need for interpretable methods that can
reveal the underlying physics. AI/ML techniques in other
branches of materials chemistry that can potentially benefit high
entropy materials, are summarized in the following two
paragraphs.

Two research streams have emerged concerning the
collection and effective utilization of data. To begin with,
natural language processing (NLP) has been applied to text-
mine or image-mine the existing literature. With a rapid increase
in the number of papers on high entropy materials, a substantial
amount of data is available in various styles and formats within
the literature. NLP algorithms can be developed to scrape such
data and reorganize them in a more accessible form by machine
learning algorithms. A notable example of such initiatives is the
inorganic synthesis database established by Ceder, Olivetti et
al.,36,37 which compiles synthesis methods from millions of
sources (accessible via the Materials Project38). Beyond data
collection, another challenge is effectively processing diverse
data qualities.39 Recent literature demonstrates the utility of
transfer learning40 as an effective tool to extract useful materials
design patterns from diverse data sets, such as data sets from
different levels of simulation and experiments. This capability
facilitates the pretraining of machine learning models on more
generic data sets for specific research domains including high
entropy materials.
Beyond data collection and utilization, efforts are intensifying

to improve interpretability in pattern recognition. A clear
progression exists in the encoding of materials, evolving from
early compositional deep learning models to those that
encompass structural features.41 Such an evolution became
evident with the development of crystal graph convolutional
neural network for materials prediction, showcasing that an
interpretable encoding process fosters more accurate predictive
models. Additionally, symbolic machine learning stands out as a
rapidly growing field.42 Instead of acting merely as black boxes
predicting numerical outcomes, this approach aims to capture
underlying principles. Symbolic machine learning predom-
inantly seeks the optimal mathematical representation of large
data sets, often producing models that align with both data-
driven trends and foundational physical principles.

■ FAR-FROM-EQUILIBRIUM MATERIALS
A further leap in complexity takes us to far-from-equilibrium
matter which, in the realm of inorganic chemistry, is today more
a vision than an existing reality. Accordingly, applications of
ML/AI are less clear here, but we suggest that underlying
universalities and patterns provide evidence for potential and
powerful future applications. This potential is demonstrated by
model-free machine learning predictions of spatiotemporally
chaotic or turbulent systems. Prominent examples include work
on the Kuramoto−Sivashinsky equation which captures the
dynamics of flame fronts in combustible media and drift waves in
plasmas.43,44 Using anMLmethod called reservoir computing, a
type of neural (“echo state”) network, the complex evolution of
these systems can be predicted in both space and time for
surprisingly long periods. In the following, we will first provide a
very brief overview of chemical self-organization and then
discuss future opportunities that could arise over the next
decades.
A good starting point is to distinguish self-organization from

self-assembly. Both processes are fascinating and some chemists
use the terms in broad and overlapping ways. For us andmany in
our field, however, self-assembly is a process that occurs close to
equilibrium resulting in structures that approach energy minima
as they arise from the forces between different units (e.g.,
surface-bound polymers or colloidal aggregates). Self-organ-
ization, however, takes place far from equilibrium and neither
dynamics nor patterns are controlled by energy minimization.
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Indeed, much of the initial disbelief in chemical oscillations and
other forms of self-organization resulted from the misconcep-
tion that oscillations occurred around the equilibrium rather
than far from the equilibrium.
In chemical processes, the distinction between systems that

are near and those far from equilibrium is not inherently
determined by the system structure; instead, it is controlled by
the strength of the applied driving “forces”. These forces can
encompass various factors, including external fields, rates of
mass exchange, and more. An instructive analogy for this
behavior is the flow of water from a tilted bottle. At gentle tilt
angles, water flows out calmly, following a laminar pattern. As
the tilt becomes more pronounced, the water begins to spurt,
influenced by the formation of vortices and necessary adjust-
ments in air pressure. This shift in water behavior, from laminar
to turbulent, mirrors certain chemical phenomena. Specifically,
the oscillations and turbulence seen in the flowing water can be
paralleled to chemical concentration oscillations and determin-
istic chaos.16 Using further nonlinear dynamics concepts, the tilt
angle, where the behavior changes, signifies a bifurcation
point.15 This point is heavily influenced by the shape of the
bottleneck, which in the realm of chemical systems can be
likened to nonlinearities in the underlying rate laws.
Open systems can further sustain low entropic states by

increasing the entropy of their surroundings. This universal
feature of living systems is also a rather common aspect in
chemical engineering where (continuous-stirred tank) reactors
(CSTRs) are steadily fed while useful products and waste are
extracted.15,16 This through-flow mode of operation is the
driving force that establishes steady states that are not the
thermodynamic equilibrium. As shown by numerous studies
from the 1980s, sufficiently high flow rates can result in complex
reactor dynamics including nonlinear (i.e., nonsinusoidal)
oscillations, bi- and multistability, as well as deterministic
chaos.15,21 For practical and safety reasons, these states are often
deemed unwanted in engineering applications (although some
might provide higher yields), but they seem to be an
advantageous theme in living systems where they result in
desired rhythms and flexible response possibilities. One can only
wonder how many opportunities in chemistry and engineering
are missed by a focus on simple reaction conditions.
Beyond these temporal patterns, continuous flow unstirred

reactors (CFURs) can produce intriguing spatiotemporal
concentration patterns including rotating spiral waves and
stationary Turing structures (Figure 1b).14,15 These dissipative
patterns are maintained in thin porous glass disks or gels that
allow undisturbed diffusion within the self-organizing layer.
Other examples include the catalytic oxidation of CO on
Pt(110) surfaces for which micrometer-scale wave patterns in
CO coverage can be monitored by photoelectron emission
microscopy.18 This research was pioneered by the 2007 Nobel
laureate Gerhard Ertl and co-workers. Even unfed (and
essentially isolated) systems, such as a Petri dish with the
aqueous Belousov−Zhabotinsky solution (Figure 1a), create
similar patterns for hours if the key reactants (bromate and
malonic acid) are present in sufficiently high concentrations.17

This fascinating class of spatiotemporal patterns in reaction-
transport systems is again not limited to chemistry but arguably
more widespread in living systems. Examples include calcium
waves in single cells, traveling action potentials coordinating the
contractions of the human heart, and even wave-like phenomena
in groups of aggregating amoebae and giant honeybees.
However, other types of chemical self-organization do exist.

Among them, reaction systems that create solid product
structures are of particular interest to materials science.
Liesegang patterns are one such system, characterized by their
spatially periodic crystallization in cm-scale (or shorter)
concentration gradients.45 However, here we will introduce
two other examples, namely chemical gardens and biomorphs,
that help illustrate some of the particular features of solids
formed under nonequilibrium conditions.
Chemical gardens are thin (inorganic) precipitate membranes

that take the shape of hollow tubes and irregular spheres (Figure
1c).19 The classic experiment, which dates back over three
hundred years, involves the placement of small salt particles into
a sodium silicate solution. Salt dissolution and the high pH of the
silicate solution result in the precipitation of metal hydroxides
that form a semipermeable membrane around the salt seed. Now
osmosis drives the flow of water toward the seed, builds up
pressure, and bursts the delicate membrane. A resulting buoyant
jet of salt solution rises in the silicate solution and templates the
growth of a precipitate tube.
Additional growth modes exist, specifically fully closed tubes

that expand through stretching and periodic ejection of
membrane segments as well as tubes with attached gas bubbles.
The resulting tubes form within seconds or minutes, reach
lengths of up to several centimeters, and have tube diameters
anywhere between a few micrometers and several millimeters.
The tube wall is typically between 1 and 10 μm in thickness
and�in the classic experiment�consists of microporous metal
hydroxide with a thin outer layer of amorphous silica.
Modern research has greatly improved our understanding of

these enigmatic structures. For example, we know today that the
newly formed chemical gardenmembrane (typically at the upper
tip of the precipitate tube) is remarkably dynamic and elastic in
response to the expanding enclosed solution volume. This
expansion increases the membrane mass and resembles living
systems, which grow by increasing their number of cells.
For analogy, consider a cantaloupe: as it grows, its rind

initially expands evenly through cell division. Later, as the outer
layer hardens and cannot keep pace with internal growth, a net-
like pattern forms due to macroscopic cracks and a protective
polymer. In chemical gardens, the specific chemistry driving
these patterns remains understudied, but it involves a shift from
self-healing microbreaches to prominent ridges and cracks akin
to those on cantaloupes.19 Aging of the material, influenced by
hydration changes and silica deposition, plays a pivotal role in
this transition and the resulting shapes of chemical gardens,
highlighting the intricate nature of dynamic materials.46

Furthermore, particle aggregation is an important factor in
chemical garden growth. These colloidal building blocks form in
solution and assemble onto the thickening precipitate walls. This
attachment process can generate dendritic patterns as well as
parallel bands with the latter resulting from spatially separated,
steadily moving aggregation zones.47 The resulting internal
features are part of a simple hierarchical architecture and in this
way relate to biomineralized structures such as the complicated
skeletal silica structure of certain glass sponges that surprises the
observer with distinct and optimized features spanning over
seven orders of length scales.48

Biomorphs are the second example that we will briefly discuss.
They are fully inorganic polycrystalline objects that grow as leaf-
like sheets, single and double helices, funnels, or urns (Figure
1d).20 These and other rather fantastic structures have sizes of
typically 50−100 μm, but can extend to centimeters. Biomorphs
form in high pH solutions with millimolar concentrations of
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barium, strontium, or calcium ions and sodium silicate when
CO2 enters the solution from the atmosphere (or carbonate is
added). While the immediate interest in these structures arises
from their mesoscopic shapes, they also show a surprising
nanoscale architecture featuring a multitude of metal carbonate
nanorods all locally aligned in the original growth direction.
Biomorph shapes were discovered by Juan Manuel Garciá-

Ruiz in the 1970s, initially in experiments with silica gels rather
than solutions, and since then have continued to attract interest
due to their life-like appearance.49 In 2017, it was also shown
that biomorphs can form in natural spring waters such as those
found at the Ney spring in Northern California which have a pH
of up to 12 and a silica concentration of 4200 ppm.50

As of today, there is no clear mechanism that would resolve
the peculiar tension between the limitation to a small set of
alkaline earth metal ions, restriction in the crystal system of the
products (almost exclusively orthorhombic although one
example in the trigonal system has been reported), and the
dramatic deviation from the euhedral shape repertoire.51 Recent
studies by two of us also revealed a complicated growth
mechanism via solution-borne nanoparticles, particle-to-bio-
morph attachment, and subsequent transformations from
nanodots to nanorods.52

In addition, there is mounting evidence that the biomorph
patterns are selected by nonlinear reaction-diffusion processes
akin to those in the Belousov−Zhabotinsky reaction (Figure 1a).
Simulations based on such qualitative models can reproduce and
explain the logarithmic spirals traced by biomorph leaf edges,
pinned constant-pitch (Archimedean) spirals formed by
biomorph-on-biomorph growth, and coral-like patterns (Figure
4).53,54 These examples show that nonlinear reaction-diffusion
patterns can produce lasting 3D structures that effectively
“fossilize” certain aspects of their spatiotemporal progression as
intricately patterned materials.

■ CHEMICAL GOLEM LESSONS
A golem is an entity crafted from lifeless materials like soil or
clay, animated to life through Hebrew characters such as the
word emet́ (“truth”) and deactivated by removing the letter
aleph to yield the word for “dead”. What immediate lessons can
be learned from the golem-like chemical garden and biomorph
systems?
(i) Chemical self-organization is a powerful method for

producing three-dimensional meso- andmacroscopic structures.

These permanent products can be hierarchically structured, as in
the case of nanorod-based shapes of biomorphs, and show
compositional gradients as exemplified by chemical gardens that
have an outer layer of silica and interior surface of various
catalytic compounds. The latter feature was recently used to
produce tubes capable of self-propelling in H2O2 solution by
ejection of oxygen bubbles that primarily form in the tube cavity
and not its silica-shielded outer skin.55 Also the hierarchical
architecture of (fluorescein-doped) helical biomorphs was
utilized in a recent study that demonstrated highly directional
light emission along their long axes with enantiomorph-specific
polarization.56

(ii) True far-from-equilibriummaterials intricately depend on
their surroundings, the exchange of energy and matter, as well as
local gradients within and near the growing system. This
requirement constitutes a clear distinction from most materials
studied in chemistry today, with the possible exception of liquid
crystals. Field-controlled liquid crystals are−within tight limits−
rapidly reprogrammable and in this sense provide a glimpse at
the possible future of reactive far-from-equilibrium materials.
We envision that this class of materials will be reprogrammable
in both shape and composition, respond to external changes and
performance demands, potentially be capable of repositioning
and exploratory motion, as well as have the ability to self-repair
and reproduce.
While our vision formulated under (ii) is clearly ambitious,

isolated and admittedly humble examples of many of these
features do exist today. Only thorough and broad investigations
will reveal the full potential and limits of this research direction.
We remind the skeptical reader that the universe provides us
with one exceedingly convincing example of this chemical
technology: life. The surprisingly confusing line between abiotic
and biotic patterns and shapes is the topic for the next two
sections of this article, but before we continue, it is worth
summarizing some of the problems chemistry is facing with
regard to far-from-equilibrium processes and materials.
Chemical gardens and biomorphs serve as potent reminders

that contemporary chemistry can struggle to elucidate and
predict the emergence of life-like macrostructures and
hierarchical architectures. This limitation arises even when the
reaction systems consist of only a small number of inorganic
reactants and bulk products are compositionally simple. One of
the underlying problems is the coexistence and mechanistic
coupling of self-organization and self-assembly.

Figure 4. BaCO3-silica biomorph shapes: experiment vs simulations based on nonlinear reaction-diffusion models. (a) Biomorph sheets observed by
optical microscopy. Scale bars: 100 μm (top row), 50 μm (bottom row). (b) Simulated sheets with growth fronts that laterally shrink, match the
experimental shapes in (a), especially their edges that trace logarithmic spirals (blue/red curves). (c) Top row: scanning electronmicrographs of coral-
shaped biomorphs. Scale bars: 20 μm. Bottom row: three-dimensional patterns formed by a nonlinear reaction-diffusion model. Reproduced with
permission from (a,b) ref 53 Copyright 2017 ACS and (c) ref 54 Copyright 2019 American Institute of Physics.
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We believe that it will prove difficult to untangle these
interdependencies under a hard reductionist approach as they
are typically inseparable without loss of pattern formation and
shape generation. This situation is reminiscent of the processes
in a living cell that is often discussed as a machine with parts that
appear static and separable. However, this viewpoint, which has
been remarkably successful, is not without controversies. It
overlooks the dynamic and structural complexity of most
involved players, from proteins to organelles. For a deeper dive
into this debate, we recommend Daniel Nicholson’s insightful
review, “Is the cell really a machine?”57

How can we unravel these messy systems and gain a deeper
understanding of their nature? One important path to
meaningful answers is provided by the patterns formed as well
as the phase diagrams indicating structural and dynamic states.
The field of nonlinear science has developed a remarkable
arsenal of methods and frameworks to test and describe these
patterns both in the space and time domains.15,16,18,21 However,
these methods have not entered the common teaching canon for
physical chemists and still await to be discovered by larger
groups of chemists. This lack of integration might be driven by
two factors: (i) a focus on molecular and crystalline systems and
(ii) a lack of direct ways to apply nonlinear dynamics to
complicated, poorly understood reaction systems that undergo a
multitude of processes including dozens of reactions,
autocatalysis, diffusion, fluid flow, osmosis, crystallization,
particle aggregation, simultaneously.
The way forward appears to be a soft reductionist approach

and a focus on model systems for which sufficiently accurate
reaction mechanisms and transport equations can be formulated
and then analyzed in terms of bifurcation analyses and direct
numerical simulations. Simultaneously, physical chemistry will
have to adapt and develop methods that are more suited to
messy systems. One of these approaches is clearly ML/AI due to
its supreme ability to detect patterns.
The possible rewards become clear as we gain the ability to

contribute to the understanding of living matter, corrosion
science, geochemistry, oceanography, astrobiology, and other
fields that currently are at the distant periphery of physical
chemistry. Moreover, truly disruptive technologies might result
from this expansion of physical chemistry. In this possible
revolution, adaptive materials will replace static ones just like
programmable computers replaced fixed-function calculators.
Perhaps, these materials and systems will even be capable of
some degree of self-improvement or evolution and future
generations might look at materials through the lens of Charles
Darwin who wrote “··· from so simple a beginning endless forms
most beautiful and most wonderful have been, and are being,
evolved.”58

■ LIFE’S AMBIGUOUS DAWN
...or how patterns can fool us. Let us imagine a timemachine that
sends us safely back four billion years. Early Earth is a wild place,
most likely an ocean world, and volcanic activity is still very
strong. Themoon had formed, in a cataclysmic collision with the
Mars-sized body Theia, a mere 500 million years earlier. Our
goal is to study how life emerged and we are lucky enough to
have access to the best analytical instruments of the 21st century.
Where do we look and what will we see?
The rock−water interface on the seafloor is littered with

hydrothermal vents where hot mineral-rich water surges into the
ocean creating large precipitate towers. This place seems a
promising starting point and we start to look for patterns−

molecular patterns, kinetic patterns, morphological patterns. We
detect numerous molecules loosely associated with life and find
high reaction rates driven by steep temperature and concen-
tration gradients. We find porous rocks with adsorbed organic
molecules acting as catalysts, and strange inorganic microshapes.
Perhaps, we see that particular environments carry out reactions
that purposefully remove toxic elements or notice randomly
emerging cycles of autocatalytic reactions, but are the results
conclusive? Is the emergence of life a unique event between dead
and alive, a flickering between states, or perhaps a drawn-out,
continuous process?
This little story and the concluding questions highlight several

problems that to a large extent relate to the ambiguity of
patterns. Short of fossilized dinosaur bones or proteins, what
compounds are reliable life indicators? This intriguing question
has not received much attention, partly because we have only
Earth’s biology as our sample base. Nonetheless, in recent years
Cronin, Walker et al. have developed a method called “assembly
theory” that aims to evaluate whether a molecule could be
derived from a life process.59 In order to gauge the complexity of
the molecule, it is broken down into its elemental parts in a
recursive manner. The molecular assembly index (MA) is then
calculated as the minimal number of steps needed to reassemble
the object. This process yields high indices for molecules such as
adenosine triphosphate (ATP, MA = 21) and the third-
generation antibiotic Ceftiofur (524 g/mol, MA = 27), but
low values for glycine (MA = 4) and succinic acid (MA = 5).
Combined with mass spectrometry analyses of complex biotic
(e.g., yeast extracts) and abiotic samples (e.g., Miller−Urey
spark dischargemixtures), this approach suggests that only living
systems produced MA indices greater than ∼15. (Interestingly,
borosilicate glass containers increase the number of organic
compounds formed in the Miller−Urey experiment compared
to Teflon flasks. Several amino acids, a dipeptide, carboxylic
acids, and aromatic compounds are produced only in the
presence of borosilicate.60) We also note that assembly theory
has been the subject of discussion, with some likening it to
aspects of the Shannon-Fano and Huffman’s encoding
algorithms.61

Above the molecular scale, this ambiguity continues and
complicates efforts to distinguish life from life-like shapes based
on morphology. To navigate this, we must delineate what
constitutes the “shape of life,″ spanning from living organisms to
their biomineral derivatives. Recognizing that living entities
predominantly exhibit curvilinear shapes, while abiotic forms
often present rectilinear characteristics (e.g., the flat faces and
sharp edges of crystals), provides an initial guideline: Is it
smoothly curved?
Historically, morphology has served as a primary indicator of

life. Although this approach still persists in some areas, it is now
more broadly recognized�albeit not always heeded�that
relying solely on morphology can result in misidentifying early
Earth life and, by extension, extraterrestrial life. A notable
example of this contention centers around structures found in
the Early Archean Apex Basalt in Western Australia. In a pivotal
1987 article, Schopf and Packer announced the discovery of
what they believed to be the oldest known microfossils, dated
between 3.3 and 3.5 billion years ago, highlighting their
similarity to present-day cyanobacteria.62

However, in 1999, these purported fossils underwent
reevaluation by Martin Brasier, who argued that the observed
patterns, resembling spheroidal cells in either globular or
filamentous aggregates, were of abiotic origin.63 As the
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knowledge of silica−carbonate biomorphs grew, Schopf’s
microstructures were further reinterpreted in the light of these
strikingly similar globular and worm-like shapes. The debate
between Schopf and Brasier continued through 2017, spawning
a series of research papers either supporting Schopf’s claim or
echoing Brasier’s skepticism regarding the biogenicity of the
structures in the Apex chert. This discourse expanded,
integrating multiple chemical analysis techniques.62,63

Drawing parallels, in the 1990s, a purported microfossil in
Martian meteorite ALH 84001 captivated global attention as
potential evidence of life on an early, wet Mars.65 It prompted
the following statement by President Clinton: “Today, rock
84001 speaks to us across all those billions of years and millions
of miles. It speaks of the possibility of life. If this discovery is
confirmed, it will surely be one of the most stunning insights into
our universe that science has ever uncovered. Its implications are
as far-reaching and awe-inspiring as can be imagined.”64 While
initial carbon-residue findings seemed promising, the minute
diameter (20−100 nm) of the object caused skepticism. Today,
only a minority of scientists consider these structures as Martian
fossils, highlighting yet again the risks of relying solely on
morphology. More recently, Dodd et al. identified potential
microfossils in 4-billion-year-old rocks from the Canadian
Nuvvuagittuq Supracrustal Belt (Figure 5a,b). However, also
these samples have faced scrutiny,66 as theymorphologically and
chemically mirror small, iron-mineralized chemical garden tubes
(Figure 5c,d).

Lastly, modern science is not limited to the nearby moons and
planets of our solar system, but has started to expand the search
for life to exoplanets of which to date more than 5000
representatives have been confirmed for our galaxy. A question
of direct interest to physical chemists is whether life indicators
can be detected by spectroscopic measurements of exoplanets.
In 2012, this idea prompted Loeb and Turner to suggest that
artificial illumination (i.e., nonblackbody radiation such as LED
light) would signal the existence of extraterrestrial technolo-

gies.68 While this suggestion still sounds ambitious a decade
later, recent data from the JamesWebb Space Telescope provide
evidence for CO2, water, active photochemistry, and possibly
clouds in the atmosphere of the exoplanet WASP-96b.69

Another exoplanet, a Venus-like object called TRAPPIST-1c,
was believed to have a dense atmosphere, but careful
measurements of its heat balance revealed that the atmosphere
is very thin.70 Again the key questions return to the identification
of patterns in the average and temporally resolved characteristics
of thousands of planets and the study of life-markers in general.
We believe that these questions are suited for ML/AI analyses
and also challenge physical chemists to improve the current
knowledge of interactions between bio- and atmospheres. Such
research would connect us back to one of the first physical
chemists, Svante Arrhenius, who in 1896 predicted rising global
temperatures due to manmade CO2 production and the
greenhouse effect.71

■ LIFE-GENERATING MATERIALS
While the existence of life on other planets remains uncertain,
deciphering the origins of life on Earth is one of the grand
scientific challenges. Surprisingly, it is also one of the more
neglected problems in chemistry, although it is not only
intellectually challenging and philosophically relevant but also a
perfect target for cross-disciplinary research that should greatly
benefit from modern measurement and analysis techniques. For
physical chemists, the origins-of-life problem appears at the top
level as a problem of thermodynamics and kinetics. Diving
deeper into the details, we likely require knowledge of surface
chemistry, porous materials, electron transport, autocatalysis,
phase separation, and many other facets of physical chemistry.
And yet again, we believe that both physical and temporal
patterns provide needed guidance for the identification of the
enigmatic materials and conditions that started life from the
abiotic.
The origins of life clearly required some level of prebiotic

complexity (and possibly prebiotic evolution) to provide the
molecular building blocks for information-carrying units such as
RNA or other self-replicating macromolecules. One of the
leading theories for the emergence of this chemical complexity
was proposed by Mike Russell and others who proposed
hydrothermal vents (Figure 6a) as the birthplace of life.73,74,77

Despite their vast size and global abundance, hydrothermal vent
systems were only discovered in 1976.77 Commonly found near
volcanically active parts of the seafloor, they produce tall
precipitate structures where superheated mineral-rich water
surges through fissures on the seabed into the cooler ocean. So-
called white smokers are rich in barium, calcium, and silicon
minerals, whereas black smokers contain larger amounts of
metal (e.g., Fe and Mn) sulfides and also green rust. Off-axis
alkaline vents emit fluids below 100 °C and are rich in methane
and hydrogen with some additional hydrocarbons formed
during serpentinization, the reaction of certain silicate rocks with
hot water that produces serpentine minerals (Figure 6b).77

The potential advantages of alkaline vents for the emergence
of life are intriguing. First of all, they were abundant on Earth and
most vents provided, akin to the CFUR reactors discussed
before, a steady supply of reactants and free energy that lasted for
thousands of years.76,77 The precipitates formed layers of porous
material that allowed for spatial confinement without the need
for lipids (Figure 6c). The interior of these connected pores
showed catalytic activity that possibly became more specific as
small organic molecules adsorbed to the minerals. Some of these

Figure 5.Comparison of (a,b) transmitted light micrographs of around
four billion-year-old putative ancient microfossils extracted from
sedimentary rocks interpreted as a sea-floor hydrothermal vent and
(c,d) abiotic ferrous-based chemical garden tubes formed in lab
experiments imaged using optical (c) and scanning electron (d)
microscopy. (a,b) Reproduced with permission from ref 67 Copyright
2017 Springer Nature. (c) Reproduced with permission under a
Creative Commons BY 4.0 DEED Attribution 4.0 International from
ref 66 Copyright 2019 Royal Society Publishing.
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surfaces might have shared similarities to modern metal-
loproteins such as iron−sulfur proteins which employ small
Fe−S clusters as their active sites.78 Lastly, the precipitate walls
and membranes were subject to steep gradients in temperature
and various chemical species. Specifically, the pH gradients
provide some intriguing resemblance to the proton gradients of
modern cells and organelles.
All of this might have provided a globe-spanning set of diverse

reactors that for millions of years explored a high-dimensional
parameter space of flow rates, catalyst materials, gradient values,
and physical conditions. Considering additional factors like
cooperativity between neighboring precipitate regions and
chemical exchange between different vents, it seems daunting
to recreate this process in the lab. However, during the past
decade, some groups have started to tackle this challenge in
hopes of demonstrating specific aspects of hydrothermal vent
chemistry. Many of these studies draw on parallels between
chemical gardens and hydrothermal vents as both are porous,
inorganic precipitates that form and exist in steep concentration
gradients. In our opinion, microfluidic realizations of chemical
gardens are of particular promise as they provide controlled
experimental conditions, easily exclude oxygen, require small
solution volumes, and are readily accessible for in situ
spectroscopy (Figure 6d).75,79

Of particular interest to physical chemists is how concen-
tration gradients as steep as 1 mol/L per micron affect the
growth of the porous material, its internal structure, and
reactivity. These far-from-equilibrium conditions clearly have
the potential to induce different forms of pattern formation. A
simple example is the formation of bands similar to those shown
in the lower, right panel of Figure 6d. Here different colors
indicate different types of cobalt precipitates that in a prebiotic
context could have enriched the chemical possibilities of the
material. These include the recently reported production of
pyrophosphates�a possible early substitute for ATP�in
similar experiments with iron oxyhydroxides.79 Braun et al.
further investigated the extreme accumulation of nucleotides by
thermal gradients in simulated hydrothermal pore systems.80

This effect is of additional importance as thin pores can
concentrate only long polynucleotides, while thicker pores
accumulate short and long polynucleotides equally well and,
thus, could create cell-like compositional patterns within the
system.

We believe that the necessary existence of an inorganic
material capable of starting life from abiotic conditions should
inspire more research activity than it currently attracts. This type
of material will likely be a porous geochemical system and only
function in the presence of appropriate gradients and feed-
through conditions. We speculate that these conditions will
create not only the needed prebiotic chemistry but also self-
organize into patterns capable of performing different tasks.
Another example of this type of pattern formation relates to

the formose reaction that, in the presence of CaCO3,
autocatalytically generates ribose and other sugars from
formaldehyde.81 The relevance of this reaction to prebiotic
chemistry was criticized by Stanley Miller, who showed that at
the high pH conditions needed for the formose reactions, sugars
decay within minutes.82 However, if these processes occurred in
a mineral membrane subject to pH gradients, they could
generate sugars in a high-pH region and accumulate them in a
nearby neutral zone of the chemical pattern. These and other
examples show that it is unavoidable to consider spatial patterns
when analyzing or designing complex materials and systems
including those that enabled the emergence of life.
The idea that the search for the origins of life can be

accelerated or solved byML/AI approaches has been pursued by
Lee Cronin.83 His group develops “chemputers”, lab automation
systems controlled by AI, that seek faint patterns in the high-
dimensional search space that somewhere encodes emerging
life. There is a certain irony if machine systems should solve the
mystery of our geochemical origins and we are vaguely reminded
of a collection of science fiction stories by Stanisław Lem.84 Lem
describes a civilization of self-constructing robots that have
forgotten the existence of organic life. The robots treat the
notion of “fleshy” life as an ancient myth and ponder the
question of their origins as they cannot comprehend the idea
that soft, biological beings could have ever given rise to their
metallic and silicon-based existence.

■ CONCLUSIONS
Recognizing and understanding patterns is fundamental to
scientific inquiry because it allows us to formulate predictions,
develop theories, and understand the underlying mechanisms or
principles at play. Even in the absence of immediate under-
standing, recognizing patterns has direct implications as
sufficiently reliable predictions allow for engineering applica-

Figure 6. (a)Modern hydrothermal vent chimneys at the ocean floor. (b) Schematics summarizing the processes and chemical species responsible for
the emergence of life according to the alkaline vent theory. Fouger̀ite is a naturally occurring green rust mineral. The Hadean is the oldest of Earth’s
eons, ending about 3.8 billion years ago. (c) Scanning electron micrograph of a small cross-section of an alkaline vent chimney. (d) Microfluidic
experiment creating similar precipitates as long membranes in microfluidic channels. Reproduced with permission (a) from ref 72 Copyright 2008
Springer Nature, (b) under a Creative Commons BY 3.0 DEED Attribution 3.0 Unported from ref 73 Copyright 2023 Frontiers Media SA, (c) ref 74
Copyright 2007 Royal Society Publishing, and (d) ref 75 Copyright 2017 ACS.
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tions. In this paper, we have tried to illustrate that patterns
provide important information for the exploration and creation
of novel types of materials, specifically complex inorganic matter
such as high entropy and far-from-equilibrium materials. These
patterns often share similarities with patterns found in living
systems and can suggest ways to design novel functionalities
ranging from hierarchical architectures to adaptability, self-
propulsion, and self-healing which are common in biology but
rare in chemistry.
The latter view is not common among contemporary physical

chemists who frequently employ a hard reductionist approach
and, over the past decades, have focused less on kinetics,
transport processes, and (nonequilibrium) thermodynamics.
However, we suggest that these classic subdisciplines are
essential for progress toward the novel types of complex and
life-like materials described here. We are also reminded of
Donald Mikulecky’s thought-provoking statement “The widely
accepted myth that biology is special and that physics is generic
is totally wrong. In fact, far more can be learned about the
material world by a careful study of biology than can ever be
learned from physics.”85 Perhaps, the time is right for physical
chemistry to look up at biological, geological, or even planetary
systems for valuable insights and inspiration that ultimately will
complement the remarkable achievements inspired by atomic
physics.
We further aimed to show that patterns in man-made and

natural systems can be intricate, hidden, or misleading and that
superficial similarities are insufficient for concluding similar
underlying mechanisms. We also discussed that these patterns
do not necessarily present themselves in real space or time, but
that they can exist in high-dimensional phase spaces, chemical
reaction networks, or even more abstract spaces such as those
defined by assembly theory and related approaches. Regardless
of the details, these patterns contain precious information that,
in our opinion, is a terra incognita of chemistry and science in
general waiting to be explored for both intellectual and
technological purposes.
Considering AI’s powerful ability to transmute large data sets

into patterns, ML/AI appears a promising way to accelerate this
exploration into the complex fabric of nature; in some cases, it
might turn out to be the only path forward as AI will likely
outperform human abilities as pattern detectives. However,
ML/AI methods are also susceptible to biases and can learn
patterns that are artifacts rather than fingerprints. We believe
that physical chemists should play a major role in overseeing and
guiding the AI-assisted hunt for complex inorganic matter.
Lastly, we emphasize that both AI predictions as well as isolated
engineering applications should not be the end goal, but rather a
stepping stone toward a deeper understanding of the world in
terms of physical laws and theories.

■ AUTHOR INFORMATION

Corresponding Authors

Pamela Knoll − School of Physics and Astronomy, Institute for
Condensed Matter and Complex Systems, University of
Edinburgh, Edinburgh EH9 3FD, U.K.; orcid.org/0000-
0002-2539-3926; Email: pknoll@ed.ac.uk

Bin Ouyang − Department of Chemistry and Biochemistry,
Florida State University, Tallahassee, Florida 32306-4390,
United States; orcid.org/0000-0002-8181-6815;
Email: bouyang@fsu.edu

Oliver Steinbock−Department of Chemistry and Biochemistry,
Florida State University, Tallahassee, Florida 32306-4390,
United States; orcid.org/0000-0002-7525-6399;
Email: osteinbock@fsu.edu

Complete contact information is available at:
https://pubs.acs.org/10.1021/acsphyschemau.3c00050

Author Contributions

All three authors contributed equally to the manuscript with an
emphasis on pattern formation (Steinbock), high-entropy
materials (Ouyang), and origins-of-life-related topics (Knoll).
The authors are listed in alphabetical order. CRediT: Pamela
Knoll conceptualization, visualization, writing-original draft,
writing-review & editing; Bin Ouyang conceptualization,
visualization, writing-original draft, writing-review & editing;
Oliver Steinbock conceptualization, visualization, writing-
original draft, writing-review & editing.
Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
The idea for this paper was inspired by the competition “Visions
for the Future of Physical Chemistry”, for which we thank the
organizers at ACS Physical Chemistry Au. Pamela Knoll
acknowledges support from the Human Frontier Science
Program through a Cross-disciplinary Fellowship. We thank
Dayton Syme and Franco Zanotto for help with the photo of the
Belousov−Zhabotinsky reaction (Figure 1a) and the simulated
reaction-diffusion pattern (left ToC graphic component),
respectively.

■ REFERENCES
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