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ABSTRACT: Titanium nitride thin films are used as an electrode
material in superconducting (SC) applications and in oxide
electronics. By controlling the defect density in the TiN thin
film, the electrical properties of the film can achieve low resistivities
and a high critical temperature (Tc) close to bulk values. Generally,
low defect densities are achieved by stoichiometric growth and a
low grain boundary density. Due to the low lattice mismatch of
0.7%, the best performing TiN layers are grown epitaxially on MgO
substrates. Here, we report for the first time a Tc of 4.9 K for
ultrathin (23 nm), highly textured (111), and stoichiometric TiN
films grown on 8.75% lattice mismatch c-cut Al2O3 (sapphire)
substrates. We demonstrate that with the increasing nitrogen
deficiency, the (111) lattice constant increases, which is
accompanied by a decrease in Tc. For highly N deficient TiN thin films, no superconductivity could be observed. In addition, a
dissociation of grain boundaries (GBs) by the emission of stacking faults could be observed, indicating a combination of two sources
for electron scattering defects in the system: (a) volume defects created by nitrogen deficiency and (b) defects created by the
presence of GBs. For all samples, the average grain boundary distance is kept constant by a miscut of the c-cut sapphire substrate,
which allows us to distinguish the effect of nitrogen deficiency and grain boundary density. These properties and surface roughness
govern the electrical performance of the films and influence the compatibility as an electrode material in the respective application.
This study aims to provide detailed and scale-bridging insights into the structural and microstructural response to nitrogen deficiency
in the c-Al2O3/TiN system, as it is a promising candidate for applications in state-of-the-art systems such as oxide electronic thin film
stacks or SC applications.

1. INTRODUCTION

Titanium nitride (TiN) is an intensely studied electrode
material for oxide and superconducting (SC) electronics. For
example, the successful combination of TiN and dielectric
materials has been demonstrated on hafnium oxide (HfO2) in
complementary metal-oxide-semiconductor field-effect transis-
tors and next-generation Hafnia-based resistive random access
memories (RRAM).1−3 Ferroelectric RAM (FeRAM), which
requires symmetric electrodes, can also be realized with TiN as
a bottom and top electrode.4−8 In addition, TiN is a strong
candidate as an electrode material in Josephson junctions and
SC coplanar waveguides9 with bulk transition temperature (Tc)
of up to 6.0 K10−12 and exhibits low losses at microwave
frequencies.13 In the search for the highest possible Tc,
extensive research including machine learning-based growth
parameter prediction is applied.14 TiN has also gained
significant interest in plasmonic and metamaterial applications
in the visible and near-infrared wavelength range.15 The
fabrication of TiN electrodes is generally based on thin film
deposition by either physical vapor deposition techniques, such

as radio frequency (RF) sputtering, chemical vapor deposition
(CVD) techniques like inorganic CVD or metal organic CVD
(MOCVD), or by sol−gel based approaches.
These films exhibit resistivity values ranging from 14 to 1000

μΩcm for film thicknesses above 40 nm.9,16−18 Sol−gel based
approaches of depositing a TiO2 film with subsequent
nitridation achieved 40 nm TiN films with a 1510 μΩcm
resistivity.19 In most cases, these TiN thin films exhibit a
polycrystalline microstructure with a columnar grain
growth20−22 and grain boundaries (GBs) that run along the
entire thin film thickness.23 This microstructure is commonly
discussed as the source for reduced conductivity in TiN thin
films.24 The use of highly epitaxial TiN thin films would be
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advantageous for thin film electronic applications.25 Epitaxial
or single-orientation growth of TiN has been previously
reported in the literature using DC reactive sputtering,26 pulse
laser deposition (PLD),27 atomic layer deposition (ALD),28,29

and reactive molecular beam epitaxy (RMBE) methods.9,30

High-quality epitaxy leads to very smooth thin film surfaces
and low-defect densities. In the work by Krockenberger et al.,
TiN grown on MgO substrates by RMBE yields Tc of up to
5.25 K and resistivity in the range of 10−15 μΩcm at 40 nm
film thickness.9 The highest surface quality with a Tc of 5.25 K
was obtained for thin films grown at 720 °C. Superconductivity
was found to disappear at lower growth temperatures due to a
decrease in the nitrogen content of the thin films. As
demonstrated by Torgovkin et al., this can be reversed by
annealing deficient TiN1−x layers in a nitrogen atmosphere.12

Chen et al. achieved RMBE-based quasi-epitaxial growth31

TiN thin films on Si and Al2O3 substrates at elevated
temperatures, resulting in Tc as high as 5.9 K for 130 nm
thick films30 (closest to bulk TiN, Tc = 6.0 K11). At the same
time, the presence of nitrogen vacancies and GBs in TiN for
RRAM applications has been reported to be beneficial for
oxygen incorporation at the HfO2/TiN interface during
resistive switching processes.32

To our knowledge, highest surface quality TiN (001) thin
films were reported when grown on MgO (001) substrates due
to their low lattice mismatch (0.7%). However, Narayan et al.
reported the epitaxial growth of TiN (001) on Si(001)
substrates by PLD, which was suggested to occur via a domain
matching epitaxy.33 This is unexpected because Si (001) as a
substrate for TiN (001) thin films should not yield high
epitaxial growth due the high lattice mismatch of 25%. Here,
the epitaxy is induced by the common structure, which is
composed of four TiN (001) unit cells matching on three Si
(001) unit cells, resulting in a lattice mismatch of less than 4%.
Reisinger et al. identified a recombination in the Si (001)/TiN
(001) system with a “5-on-4-cube-on-cube” reconstruction
(lattice mismatch 2.4%) for lower deposition temperatures.34,35

For 100 nm thick films, Talyansky et al. reported epitaxial
growth of TiN (111) film on c-cut sapphire substrates with

resistivity as low as 13 μΩcm and surface roughness (RMS) of
0.6−1 nm.36 A high lattice misfit of 8.75% was calculated
considering a rhomb-on-rhomb growth on the c-cut sapphire
substrate.
Although quasi epitaxial growth of TiN thin films was

reported for both Silicon and c-cut sapphire substrates,31,37

there is a lack of experimental evidence to clarify the specific
nature and properties of the grown microstructures. The high
relevance of microstructural effects in TiN is underpinned by
studies reporting a total loss of SC for films thinner than 40
nm.12,16 Most studies are limited by being confined to
macroscopic characterization methods like resistivity and X-
ray diffraction (XRD) techniques, which allow for functional
assessment of the as-grown films, but provide an incomplete
picture of the deposited thin films. This study aims at
broadening the understanding of defect sources in TiN thin
films, namely, nitrogen deficiency and grain boundary density,
by combining macroscopic and microscopic investigations
down to the atomic level.

2. RESULTS AND DISCUSSION

2.1. TiN1−xNitrogen Deficiency. Figure 1a shows the
temperature-dependent resistivity measurements of the ∼25
nm thick TiN thin films. Films with increasing nitrogen
deficiency are presented in the sample series number #1 to #5.
The N deficiency was introduced by (a) lowering the substrate
temperature and (b) increasing the Ti evaporation rate; see the
Experimental Section for further details. Figure 1b shows the
low-temperature regime of Figure 1a to reveal the transition
temperature to the SC state. Only sample #5 does not show a
critical temperature (Tc) above the lowest measurement
temperature of 4.2 K. To investigate the influence of the
growth temperature in more detail, out-of-plane d-spacing
(111) values were retrieved from XRD 2θ/ω-scans, as shown
in Figure S1. The TiN thin film with the largest d-spacing
(2.451 Å, #1) shows the highest Tc value (4.9 K), as shown in
Figure 1c. Tc drops to 4.4 K at a d-spacing of 2.440 Å (#4).
The film with the lowest d-spacing (2.438 Å, #5) shows no SC.
The d-spacings found for the different deposition conditions

Figure 1. With an increase in growth temperature, the room temperature resistivity ρ(300 K) decreases (a) while Tc increases (b), which is
associated with an increase in the residual resistance ratio (RRR = ρ(300 K)/ρ(10 K)), and (c) increase in the TiN1−x (111) d-spacing (d); dashed
lines indicate literature references for N-deficient and stoichiometric TiN1−x compositions.
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can be compared to literature data of known stoichiometry,
here (111) TiN0.71

38 and TiN0.9
39 (dashed lines, Figure 1c,d),

which allows for the estimation of the nitrogen deficiency. The
most stoichiometric film yields a high Tc, whereas the most
nitrogen deficient sample shows no Tc. Changing nitrogen
deficiency directly translates to the formation of nitrogen
vacancies in the crystal lattice.11 To investigate the defect
density of the TiN thin film, the residual resistance ratio
(RRR)12 was calculated (Figure 1d). RRR is defined as the
quotient of the resistivity at room temperature (RT) and at 10
K [RRR = ρ(300 K)/ρ(10 K)]. The conductivity at 10 K is an
indirect measure of defect density because the (thermal)
phonon scattering contribution is greatly reduced at this
temperature.40 In the present system, this defect density is
primarily governed by N deficiency shown by a decrease in
RRR with smaller d-spacing.
2.2. Thin Film Microstructure. The doubling of resistivity

cannot be only explained by the volume defects introduced by
the increased nitrogen deficiency. Another source of defects
that decreases electrical conductivity in a material is the
presence of GBs. A first indication for the presence of GBs
would be the existence of more than one in-plane orientation
of the (111) oriented TiN grains. The out-of-plane texture that
was extracted from the 2θ/ω scans is TiN (111)||Al2O3 (001).
The in-plane alignment of the TiN grains can be achieved by
azimuthal or ϕ-scan. The results are depicted in Figure S1 and
show that TiN {111} peaks are separated by 60° and are offset
by ± 30° to the Al2O3 {1̅02} peaks. This indicates the presence
of two in-plane locked crystal orientations or domains, which
are 60° in-plane rotated to each other. This was also previously
reported for epitaxial TiN (111) thin films on c-cut Al2O3 and
Si substrates36,41 where the equivalent TiN (011̅) and (101̅)
crystal orientations align along Al2O3 (100). The full epitaxial
relationship can thus be summarized as follows: TiN (111)||
Al2O3 (001) out-of-plane and TiN(011̅),(101̅)||Al2O3(100) in-
plane.
With an electron mean free path (MFP) of ∼100 nm for

TiN thin films as estimated by Krockenberger et al.9 for a 40
nm TiN (001) film on MgO (001), a supposedly grain
boundary free TiN film was grown epitaxially on the low lattice
mismatch substrate. In the present samples, a grain size
distribution analysis provides insights into the contribution of
these boundaries in the resistivity.10 The contribution of these
GBs is higher if the distance between the boundaries is the
same length scale as the MFP.42 A common method to image
GBs is backscatter electron (BSE) imaging, which has been
applied to the present sample series and is displayed in Figure
2.
Figure 2a shows a model for two 60° in-plane rotated TiN

grains with GBs indicated by dashed lines. The GBs that are
formed can be understood as twins (with boundaries of the
(1̅21̅)/(2̅11)/(112̅) type). Figure 2b−f shows representative
top-view BSE images of the TiN films. BSE contrast is
susceptible to the crystal quality, grain orientation, and RMS.
With the film fully aligned in the (111) orientation, the
observed contrast should only indicate GBs and roughness.
GBs reduce the number of backscattered electrons due to the
presence of defects in the crystal lattice, thus giving a detailed
view of the thin film microstructure. For the sample with the
highest nitrogen deficiency (Figure 2f), GBs are visible as
meandering dark lines. For the samples grown at 620, 660, and
690 °C and the stoichiometric sample grown at 750 °C, no
distinct GBs can be observed. Dark spots observed for the low

growth temperature samples (Figure 2b−d) can be correlated
with the increase in RMS as indicated by the X-ray
reflectometry (XRR) results (Figure S3a) down to a RMS of
1.5 nm for the films grown at 750 °C. The meandering of the
boundaries in the sample shown in Figure 2f does not indicate
a random behavior, but it follows a set of three dominating
orientations. They correspond to the twin boundaries marked
by dashed lines shown in Figure 2a. Consequently, this
indicates the presence of a high number of twin boundaries for
the sample shown in Figure 2f.
With BSE imaging, no GBs could be observed for the

samples grown at lower temperatures. However, XRD ϕ-scans
indicate that there are two orientations of the TiN grains
present in each sample. To investigate the microstructure of all
samples, ion channeling contrast (iCC) imaging43 was
performed, as shown in Figure 3. The imaging conditions
were selected to give the strongest iCC between the two
orientations. A sample tilt of 54° from the 30 keV Ga ion beam
allowed the ions to penetrate one TiN orientation at the
prominent (001) zone axis, while the other grain orientation
would be oriented at the same time along the (1̅22) zone axis.
The discrepancy between the index of the zone axis directly
correlates with the secondary electron (SE) yield and thus the
observed contrast in the images (prominent {001} zone axis,
low SE yield; {1̅22} zone axis, high SE yield).44 With the high
contrast achieved in an otherwise featureless surface, this
method proved to be ideal to identify grain sizes and
microstructures in this system, which can also be optimized
by a ϕ/azimuth rotation series. In the iCC images, large, over
100 nm sized grains can be observed for all samples.
The anisotropy of the grain size can be attributed to a miscut

of the c-cut sapphire substrate, which was used for all samples.
Cuccureddu et al. found that even for nominally 0° miscut “c-
cut” samples, there are still surface steps present that are
homogeneously distributed on the surface.45 For a 0.15°
miscut c-Al2O3 sample, the step width was found to be 120 nm.
In addition, annealing leads to a “bunching” of the surface
steps if they are held at elevated temperatures, meaning that
each resulting step height is a multiple of c/6 = 2.2 Å of the
Al2O3 c-axis unit cell parameter (c = 13 Å). The step width and
height converge to uniformity.46 The (111) d-spacing value of
TiN is 2.439 Å, which is a ∼10% deviation of the c/6 Al2O3 =
2.2 Å (see Figure S4) lattice constant along growth direction. A

Figure 2. (a) Twin grain boundary of two 60° in-plane rotated TiN
grains (red and green). (b−e) Top view BSE maps of the SC TiN thin
films showing no visible GBs in contrast to the non-SC TiN thin film
(f). False color is applied to enhance contrast.
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bunched surface step of 5*c/6 Al2O3 would introduce an
overall mismatch of 56%, whereas a surface step of 9*c/6
Al2O3 would be a full TiN (111) d-spacing. Depending on the
step height, the bonding configuration for the first adatom
differ47 and might trigger the respective TiN in-plane rotation
(the out-of-plane direction fixed by the rhomb-on-rhomb
epitaxy). By this high degree of ordering, the observed
consistent alternation of in-plane orientations can be under-
stood as an effect of uniform step widths and heights on the
seeding conditions. The investigated TiN films have been
grown on the same batch of substrates, which were heated
during deposition and which will therefore yield to similar
surface steps, as indicated by the uniform grain size
distribution throughout the sample series. The four-point
electrode geometry used in the resistivity measurement was
not aligned with the observed elongation. The anisotropy,
induced by the substrate miscut, dictates one crucial source for
defects in the thin film: the grain boundary density. It is
virtually the same for all samples and thus will have the same
contribution for all samples. For the following high-resolution
scanning transmission electron microscopy (HR-STEM)
analysis, cross-sectional FIB lamellae have been cut from the
samples grown at 750 °C. Cutting was performed perpendic-
ular to the elongated grain structures (indicated in Figure 3e,f)
to ensure that the GBs are aligned along the observation
direction of the STEM.
2.3. Atomic Structure of (Dissociated) Twin GBs.

Figure 4 shows representative cross sections of GBs for the
samples grown at 750 °C. The sets of neighboring grains are all
oriented with (111) pointing upward along growth direction,
which confirms the observations of the 2θ/ω scans (Figure 1).
Both of the imaged GBs can be indexed as twin boundaries of
the {1̅21̅} type. For the sample grown at a Ti evaporation rate
of 0.2 Å/s (Figure 4a), atomic resolution high-angle annular
dark-field (HAADF)-STEM imaging shows that the defects
present at the boundary are located at the boundary itself,
where the joining of the lattices of the grains form periodic
recombination sites along the boundary. This is in stark

contrast to the boundary of the sample grown at 0.6 Å/s
(Figure 4b). Here, an extended defect structure indicated by
split atomic columns (indicated by blue arrows) can be
observed. These variations in contrast can be attributed to
stacking faults along the (111) axis for the left grain shown in
Figure 4b. Twin boundary dissociation by stacking fault
emission is observed for other systems48,49 as well as for TiN,
but up until this point, only under mechanical deformation.50

Strain induced by the lattice mismatch in the present
substrate/thin film stack in combination with the growth
conditions of the RMBE deposition process was reported as
the cause for the occurrence of stacking faults in the Si/GaAs
system.51,52 Here, the volume affected by stacking faults
extends through the full film thickness up to the surface of the
film, where it gives rise to the grain boundary contrast found in
the BSE images (Figure 2f), as they pose a sample volume of
high defect concentration, reducing the backscatter yield.
Strongly confined geometrical conditions for the micro-

structure developed during the thin film growth process have a
direct impact on the physical properties. A high fraction of
high symmetry boundaries are generally associated with
reduced resistance in conductors.41,53 This is the case in our
study because the microstructure of the TiN films contains
almost solely twin boundaries. If the average grain size is in the

Figure 3. (a) Ion channeling contrast (iCC) imaging geometry. (b−f) iCC images of the samples revealing an elongated grain structure with
comparable grain sizes for all samples. Red lines (e,f) showing the orientation of the cross sections cut in the subsequent focused ion beam lamella
preparation, perpendicular to the observed GBs.

Figure 4. High-angle annular dark-field scanning transmission
electron microscopy (HAADF-STEM) images of {1̅21̅} twin
boundaries in the (a) SC and (b) non-SC TiN thin films. The
grain boundary in (b) shows a high density of stacking faults in the
atomic resolution image, indicated by blue arrows.
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range of the MFP, the grain boundary can be considered as a
main contributor to electron scattering, increasing the
resistivity.24,54 Due to the equal average grain size in the
present sample series, the impact on resistivity should therefore
be equivalent. Nonetheless, the defects associated with the
extended GBs play a crucial role in the contribution to the
resistivity. Extended scattering regions lead to higher resistivity,
which is described as a reduction of “grain boundary
transparency” in terms of electrical conduction across a grain
boundary.55−57 This is directly evident in the increase of
conductivity (Figure 1a). There is also a higher concentration
of oxygen12 and other contaminants58 expected at the
boundaries, which could negatively affect electronic transport
properties.
In their application as bottom electrodes for valence change

memory RRAM devices, the ability of the electrodes to
incorporate oxygen plays a fundamental role in the resistive
switching process.59−63 Nitrogen-deficient TiN thin films
lower the energy necessary to incorporate oxygen ions in the
electrode material.32 As GBs form a localized high density of
defects, especially for the dissociated GBs observed in this
work, they would have the potential to locally facilitate
electroforming and switching processes.3 As the microstructure
of the TiN electrode also defines the growth conditionsor
conditions for crystallization by annealing for ALD grown
films64GBs present a predefined seeding location and thus
will have a direct influence on the microstructure observed in
subsequent layers of a thin film stack.3 This influence can be
further addressed by nanoscale orientation mapping techniques
like automated crystal orientation mapping in a plan-view
geometry.65

3. CONCLUSIONS

The impact of nitrogen deficiency on the room and low
temperature conductivity as well as on the microstructure and
type of evolving GBs was studied for the c-Al2O3/TiN system.
By combining XRD 2θ/ω, ϕ-scans, BSE, iCC imaging in a
multibeam FIB system and atomic resolution HR-STEM, the
microstructure, grain size, and type of GBs were determined.
The ∼25 nm thick TiN films exhibit a homogeneous (111)
out-of-plane texture, with a set of two in-plane rotations,
separated by 60°. This texture is defined by the quasi epitaxial
growth of (111) TiN on c-Al2O3 where the large lattice
mismatch of 8.75% is compensated by a rhomb-on-rhomb
configuration. A fixed grain size as observed for the present
sample series allowed us to separate the grain boundary
density, as one contributor to defect density, from the effect of
increasing nitrogen deficiency. The observed grain boundary
density and the anisotropy of the grain size are directly related
to the surface step density found on nominally 0° c-cut
sapphire substrates. These steps also define the initial seeding
conditions of the TiN grains and result in the alternating in-
plane rotations observed in the thin film microstructure.
Increased nitrogen deficiency has three effects on the film
properties: (a) the loss of superconductivity, (b) an increase in
resistivity, and (c) grain boundary dissociation by stacking fault
emission. Nonetheless, the same morphological quality is
achieved. Stoichiometric, ultrathin 25 nm films are achieved for
the first time with a room-temperature conductivity of 10
μΩcm and a Tc of 4.9 K with a RMS of ∼1.5 nm. The observed
properties match best in class SC epitaxially grown TiN films
on MgO substrates.

4. EXPERIMENTAL SECTION
BSE imaging was performed on a Tescan Mira3 XMH at 15
kV, 320 μs dwell time and 434 pA specimen current using a
Deben 4 quadrant detector. Ion beam channeling contrast
(iCC) imaging and cross-sectional focused ion beam (FIB)
sample preparation for scanning transmission electron
microscopy (STEM) were performed on a JEOL JIB-4600F,
and iCC imaging was conducted at 30 keV acceleration
voltage. Atomic resolution high-angle annular dark-field
(HAADF) STEM imaging was performed on a JEOL JEM-
ARM200F operated at 200 kV with a semiconvergence angle
of 25 mrad.
In this study, an electron-beam evaporation setup was used

to evaporate elemental sources of titanium (99.99%,
Chempur). Nitrogen radicals obtained using a RF plasma
source (Oxford Applied Research, HD25) were used as the
source of nitridation in our experiments. Mass flow controllers
(MFC) allowed us to control the flow rates of nitrogen
(99.995% purity) to the radical sources. The growth
temperature was increased from 620 to 750 °C with a constant
Ti evaporation rate of 0.2 Å/s, a nitrogen flow of 1.0 sccm, and
a RF power of 200 W. For a sample with higher nitrogen
deficiency, a Ti evaporation rate of 0.6 Å/s has been selected.
Initial selection of the growth parameters included aspects like
minimization of nitrogen deficiency26 stoichiometry, RMS, and
grain size.17,66

XRD and XRR were performed on a Rigaku (SmartLab) X-
ray diffractometer by using Cu Kα1 (λ = 1.54057 Å) at 45/170
kV/mA and a parallel beam geometry and on a Seifert PTS by
using Cu Kα1,2 (λ = 1.54057 Å) at 40/40 kV/mA and a parallel
beam geometry with a graphite monochromator.
A Keithley 6221 model current source and Keithley 2182A

model nanovoltmeter were used for the presented four-probe
resistivity measurements, while the temperature was measured
using a calibrated Lakeshore silicon diode sensor (model DT-
670D-SD), placed in contact with the sample stage.
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