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Mechanistic target of rapamycin (mTOR) C1 and its downstream effectors have

been implicated in synaptic plasticity and memory. Our prior work

demonstrated that reactivation of cocaine memory engages a signaling

pathway consisting of Akt, glycogen synthase kinase-3β (GSK3β), and

mTORC1. The present study sought to identify other components of

mTORC1 signaling involved in the reconsolidation of cocaine contextual

memory, including eukaryotic translation initiation factor 4E (eIF4E)-eIF4G

interactions, p70 S6 kinase polypeptide 1 (p70S6K, S6K1) activity, and

activity-regulated cytoskeleton (Arc) expression. Cocaine contextual memory

was established in adult CD-1 mice using conditioned place preference. After

cocaine place preference was established, mice were briefly re-exposed to the

cocaine-paired context to reactivate the cocainememory and brains examined.

Western blot analysis showed that phosphorylation of the mTORC1 target,

p70S6K, in nucleus accumbens and hippocampus was enhanced 60min

following reactivation of cocaine memories. Inhibition of mTORC1 with

systemic administration of rapamycin or inhibition of p70S6K with systemic

PF-4708671 after reactivation of cocaine contextual memory abolished the

established cocaine place preference. Immunoprecipitation assays showed that

reactivation of cocaine memory did not affect eIF4E–eIF4G interactions in

nucleus accumbens or hippocampus. Levels of Arc mRNA were significantly

elevated 60 and 120min after cocaine memory reactivation and returned to

baseline 24 h later. These findings demonstrate that mTORC1 and p70S6K are

required for reconsolidation of cocaine contextual memory.
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Introduction

Drug reward memories are reactivated by exposure to cues

that were previously associated with drug use, and then undergo

a process of reconsolidation through synaptic plasticity which

strengthens the memory (Mactutus et al., 1979; Przybyslawski

and Sara, 1997). Reactivated memories become unstable and can

be modified through pharmacological or behavioral

manipulations that disrupt the reconsolidation process (Nader

et al., 2000; Walsh et al., 2018). Since drug-associated cues can

trigger craving and relapse, pharmacological interference with

reconsolidation-related plasticity may be a useful approach to

prevent relapse (Saladin et al., 2013). Understanding the

molecular processes involved in reconsolidation of cocaine

memories is needed to develop therapeutic strategies to help

dampen cue-induced craving and relapse. Previous reports have

demonstrated that cocaine engages molecular signaling pathways

that are involved in associative learning processes, such as MEK/

ERK/CREB/Elk-1 signaling pathway (Miller andMarshall, 2005),

and NMDA/PP1/GSK3/mTORC1 signaling pathway (Shi et al.,

2014; Shi et al., 2019).

Reconsolidation is a process that requires de novo protein

synthesis after memory reactivation (Nader et al., 2000). More

recently, mechanistic (previously mammalian) target of

rapamycin (mTOR) has gained much attention for its role in

regulating protein synthesis during memory reconsolidation

(Roesler, 2017; Jarome et al., 2018; Radiske et al., 2021).

mTOR is a serine-threonine protein kinase that forms two

distinct multiprotein complexes, mTORC1 and mTORC2

(Loewith et al., 2002). mTOR interacts with the adaptor

protein Raptor and forms a complex as mTOR complex 1

(mTORC1). mTORC1 regulates protein translation by

controlling the phosphorylation state of its two main

downstream substrates, eukaryotic translation initiation factor

4E (eIF4E)-binding proteins (4EBPs) and ribosomal S6 kinases

(S6Ks) (Raught et al., 2001). Hypophosphorylated 4E-BPs bind

strongly to eIF4E, whereas mTORC1-induced phosphorylation

of 4E-BP1 results in its release from eIF4E, which in turn binds to

eIF4G, allowing the formation of eIF4F complex to promote the

translation initiation (Gingras et al., 2001). mTORC1-induced

phosphorylation of S6K1 regulates translation initiation and

elongation through phosphorylation of several downstream

effectors, including eIF4B (Raught et al., 2004) and eukaryotic

elongation factor 2 (eEF2) kinase (Browne and Proud, 2002).

Evidence suggests that mTORC1 signaling pathway plays an

important role in memory reconsolidation. For example, both

consolidation and reconsolidation of fear memories are

dependent on mTORC1 activity and can be disrupted by

inhibition of mTORC1 with rapamycin (Blundell et al., 2008;

Gafford et al., 2011; Mac Callum et al., 2014). Moreover, the

persistence of fear memory requires both eIF4E-eIF4G

interaction and S6K1 activation. mTORC1 plays an essential

role in reconsolidation of drug-related memories as shown in

studies using conditioned place preference (Lin et al., 2014) or

self-administration models (Barak et al., 2013; Zhang et al.,

2021). However, whether eIF4E–eIF4G interactions and S6K1,

two mTORC1 downstream targets, are involved in

reconsolidation of cocaine contextual memories remains

unknown.

As an effector immediate-early gene, the activity-regulated

cytoskeletal-associated protein (Arc/Arg3.1) is necessary for

long-term memory formation (Guzowski et al., 2000). Arc has

been implicated in synaptic plasticity (Plath et al., 2006; Rial

Verde et al., 2006), memory consolidation (Plath et al., 2006;

Ploski et al., 2008), and reconsolidation of Pavlovian fear

memory (Maddox and Schafe, 2011; Chia and Otto, 2013).

Arc is regulated by drug-related memories including alcohol

(Barak et al., 2013), cocaine (Hearing et al., 2008a; Hearing et al.,

2008b; Alaghband et al., 2014), and morphine (Lv et al., 2015).

The expression of Arc mRNA can be used as a marker for

neuronal plasticity. Unlike the mRNAs of other immediate

early genes that remain in the cell body, newly synthesized

Arc mRNA is rapidly distributed throughout the dendritic

segments near active synapses after neuronal activation

(Steward et al., 2014).

The current study sought to determine the role of

mTORC1 and its downstream effectors in the reconsolidation

of cocaine contextual memories. A mouse model of cocaine place

conditioning was used to establish cocaine contextual memories.

The regulation of phosphorylated p70S6K, a readout of

mTORC1 activity, was examined following reactivation of

cocaine memory and demonstrated an activation of mTORC1

60 min after memory reactivation. Further experiments

examined the functional role of mTORC1 and p70S6K in the

process of reconsolidation of cocaine-associated memory.

Regulation of targets of mTORC1 in the nucleus accumbens

and hippocampus were investigated including the eIF4E–eIF4G

complex and Arc mRNA expression. The study focused on the

nucleus accumbens and hippocampus because little is known

about the potential role of mTORC1 signaling in these regions as

related to the reconsolidation of cocaine reward memories.

Neurons in both the nucleus accumbens and hippocampus are

activated during reactivation of cocaine-associated memory

(Soderman and Unterwald, 2008; Shi et al., 2014) and

evidence suggests that the nucleus accumbens (Miller and

Marshall 2005; Milekic et al., 2006; Théberge et al., 2010) and

hippocampus (Milekic et al., 2006; Sakurai et al., 2007) may

participate in the reconsolidation of drug-associated memory.

The nucleus accumbens receives convergent glutamatergic

projections from ventral hippocampus, medial prefrontal

cortex and basolateral amygdala (Phillipson and Griffiths,

1985; Sesack and Grace, 2010; Britt et al., 2012; Russo and

Nestler, 2013) which encode stimuli such as the context and

cues that predict rewarding events (Everitt and Wolf, 2002;

Kelley, 2004; Pennartz et al., 2011; Floresco, 2015).

Information transmitted from the basolateral amygdala or the
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hippocampus in response to memory consolidation and

reconsolidation is further modulated within the accumbens

(Kerfoot and Williams, 2018; Torregrossa et al., 2019). Thus,

nucleus accumbens may function as a coordination hub for the

reconsolidation of cue-drug memory (Exton-McGuinness and

Milton, 2018).

Materials and methods

Animals

Male CD-1 mice (8 weeks old on delivery, Charles River

Laboratories, Wilmington, MA) were housed in groups of four

per cage under a 12-h light/dark cycle (7:00 a.m./7:00 p.m.)

without additional enrichment objects. Mice had access to

standard chow and water ad libitum. Animals were housed for

5 days before experiments began and were weighed daily. Behavioral

procedures were conducted between 13:00–17:00. Animal

procedures were performed in compliance with the National

Institutes of Health guidelines for the Care and Use of Laboratory

Animals, and animal use was reviewed and approved by Temple

University Institutional Animal Care and Use Committee.

Drugs

Cocaine hydrochloride was generously supplied by the

National Institute on Drug Abuse Drug Supply Program,

dissolved in sterile saline, and injected intraperitoneally (i.p.)

in a volume of 3 ml/kg body weight. An equal volume of saline

served as the vehicle control for cocaine. Rampaycin was

purchased from LC labs (Woburn, MA), and prepared in 5%

DMSO/5%Tween80/saline. PF4708671 was purchased from

Selleck Chemicals (Houston, TX), and prepared in 30%PEG-

400/0.5%Tween-80/5%propylene glycol/saline. Both rapamycin

and PF4708671 were injected i. p. in the volume of 10 ml/kg body

weight. Equal volumes of 5%DMSO/5%Tween80/saline and 30%

PEG-400/0.5%Tween-80/5%propylene glycol/saline served as

the vehicle controls for rapamycin and PF4708761, respectively.

Cocaine-induced conditioned place
preference and reactivation of cocaine
contextual memory

The procedures were the same as described in our prior

publication (Shi et al., 2019). Place conditioning occurred in

rectangular plastic chambers (45 × 20 × 20 cm) consisting of two

unique compartments, one with white and black vertical striped

walls and smooth flooring and the other with white walls with

black circles and rough flooring. Illumination in both

compartments was equal. The two compartments were

separated by a removable wall during conditioning and a door

during testing. Prior studies showed that >90% of mice tested in

these chambers show no initial preference to either

compartment. An unbiased conditioned place preference

(CPP) procedure was used wherein the mice were randomly

assigned to receive cocaine in one or the other compartment in a

counterbalanced design without a pre-test. Mice were injected

with 10 mg/kg ip cocaine or saline and were immediately

confined to one compartment of the conditioning chamber

where they remained for 30 min. Conditioning occurred once

per day for eight consecutive days resulting in four conditioning

sessions with saline in one compartment and four sessions with

cocaine in the opposite compartment of the conditioning

chamber. The test for place preference occurred on day 9,

when mice had access to both compartments for 15 or 30 min

in a drug-free state. The time spent in each compartment was

recorded. Preference scores were calculated as: [time spent in the

cocaine-paired compartment] minus [time spent in the saline-

paired compartment] and reported in seconds. Mice that did not

show a cocaine place preference on day 9 were eliminated from

further study. On day 10, 24 h following assessment of cocaine

place preference, one group of mice was re-exposed to the

previously cocaine-paired compartment for 10 min to

reactivate cocaine-associated memory, whereas another group

was kept in the home cage and made up the no exposure control

group.

Brain tissue collection

Brains were obtained 30min, 60 min, 120 min, or 24 h following

memory reactivation; mice were briefly exposed to CO2 anesthesia

followed by decapitation. In experiment 1, the nucleus accumbens

and hippocampus were dissected, frozen on dry ice and store

at −80°C. In experiment 4-5, brains were removed, flash frozen in

isopentane (−40°C) and stored at −80°C. One hemisphere of each

frozen brain was used for RNA extraction. In this case, brains were

sectioned on a cryostat microtome and 1 mm punches were used to

obtain the nucleus accumbens, dorsal hippocampus, and ventral

hippocampus (Paxinos and Watson, 2007) from four slices 200 µm

thick. Tissue punches were placed in RNAlater-ICE (Invitrogen,

Waltham, MA), incubated overnight at −20°C before storage

at −80°C. The other hemispheres were used for

immunoprecipitation assays. In this case, the nucleus accumbens,

dorsal hippocampus, and ventral hippocampus were dissected on ice

using a mouse brain matrix, frozen on dry ice, and store at −80°C.

Quantitative reverse transcriptase
polymerase chain reaction

Total RNA was extracted using a Quick-RNA Miniprep kit

(Zymo Research, Irvine, CA), and RNA concentration was
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measured using a NanoDrop 2000 spectrophotometer. RNA

samples were diluted to the same RNA concentration before

cDNA was synthesized using the High-Capacity cDNA Reverse

Transcription Kit (Applied Biosystems, Waltham, MA).

Quantitative RT-PCR (RT-qPCR) was performed using

TaqMan Fast Advanced Master Mix and TaqMan Gene

Expression Assays for Arc (Mm00479619_g1), and the control

18S rRNA (Hs99999901_s1). Relative fold change in gene

expression level was calculated using the 2–ΔΔCt method (Livak

and Schmittgen, 2001).

Immunoprecipitation assay

Tissue was sonicated in ice cold lysis immunoprecipitation

buffer containing in 50 mM Tris (pH7.4), 0.15 M NaCl, 1% NP-

40 (IGEPAL CA-630, Sigma), 0.5% DOC (sodium deoxycholate),

Complete Mini protease inhibitor tablet (Pierce), and Halt™
phosphatase inhibitor cocktail (Thermo Fisher Scientific).

Nucleus accumbens and hippocampus were homogenized in

250 ul of lysis buffer to fine suspension and centrifuged at

12,000 g for 10 min at 4°C. The supernatant was transferred to

a new tube, protein concentration was measured by means of the

BCA assay (Pierce). Homogenates (125–250 ug) were precleared

by adding 40 ul Protein A/G PLUS agarose (SC-2003, Santa

Cruz) and incubated for 30 min at 4°C. The supernatant was

saved and incubated with elF4G antibody conjugated to Protein

A/G Plus-Agarose (20 ug/10ul, SC-133155 AC, Santa Cruz)

overnight at 4°C on the rocker. The agarose-antibody-antigen

complex was collected by centrifugation (12,000 g for 20 s) at 4°C.

Immunoprecipitated complexes were washed three times in cold

lysis buffer and once in cold wash buffer (0.1% NP-40, 25 mM

Tris (pH7.4), 1 mM EDTA). After the final wash, the

immunoprecipitated complexes were eluted with gel loading

buffer (4% SDS, 25 mM Tris (pH7.4)). The resulting elutes

were saved for western blot analysis.

Western blot analysis

For experiment 1, tissue was homogenized in ice cold lysis

buffer and supernatant was collected by centrifugation as

mentioned above. Samples were diluted in gel loading buffer

and boiled for 5 min, 10 µg of protein was separated on 4–15%

Tris–HCl Bio-Rad Ready-gels (Cat#: 4561026. Bio-Rad

Laboratories, Hercules, CA) and transferred to nitrocellulose

membranes. Membranes were blocked in Odyssey blocking

buffer (LI-COR Biosciences, Lincoln, NE) and incubated

overnight at 4°C with the following primary antibodies: anti-

phospho-p70S6K (1:1,000, Cat#9205, Cell Signaling, Beverly,

MA) and anti-p70S6K (1:1,000; Cat#9202, Cell Signaling).

Membranes were washed in TTBS and incubated with anti-

rabbit (1:15,000, Cat# 926–32211) or anti-mouse (1:15, 000,

Cat# 926–68070) secondary antibodies conjugated to two

different infra-red dyes (LI-COR Biosciences, Lincoln, NE).

Bands were visualized using the Odyssey infrared imaging

system and software (Li-COR), and intensities were

quantitated using ImageJ software. Levels of phospho-p70S6K

were expressed as a ratio to total P70SK6 for each sample. The

mean ratio of the no exposure control group was set to 100% and

all data points are presented relative to that value.

To detect the efficiency of the immunoprecipitation for

experiments 4–5, five µg of input (total lysate) and 50% or

100% of eluates were loaded to 4–15% Tris-glycine gradient

gels (Bio-Rad). Separated proteins were transferred onto

nitrocellulose membranes. Membranes were blocked with 3%

BSA in Tween-TBS for 1 h and incubated overnight at 4°C in the

following primary antibodies; anti-eIF4G1 (1:1,500, cell

signaling, #2498), anti-eIF4E (1:1,500, #9742), followed by

secondary antibody (HRP-conjugated goat anti-rabbit IgG, 1:

10,000, Jackson Immuno Research, 211–032–171) incubation for

1 h at room temperature. Membranes were washed and proteins

were detected by enhanced chemiluminescence reagent (ECL+;

GE Healthcare). Membranes were stripped and incubated with

anti-GAPDH antibody (1:1,500, Cat# Cell Signaling, Beverly,

MA) to normalize the optical density values of eIF4G or eIF4E

(input). Images were visualized by FUJIFILM LAS-1000 imaging

system and staining intensities of bands were quantitated using

the ImageJ software. Band density values were normalized to

GAPDH (input eIF4G or eIF4E), or eIF4G

(immunoprecipitation eIF4E: eIF4G).

Experimental design

Experiment 1. Regulation of mTORC1 activity following

reactivation of cocaine contextual memories.

To assess the regulation of mTORC1 activity after cocaine

memory reactivation, 20 mice underwent cocaine conditioned

place preference See Figure 1. Cocaine CPP was established in

15 out of the 20 mice; five mice that had a CPP score of <180 s (in
a 30 min test session) were removed from further study. 24 h

following the test for cocaine place preference, half the mice were

re-exposed to the previously cocaine-paired compartment for

10 min to reactivate cocaine-contextual memory, while the

others remained in the home cage and served as no exposure

controls. Brains were collected 60 min following the 10-min

reactivation session. Nucleus accumbens and hippocampus

were dissected, stored at -80°C, and prepared for measurement

of mTORC1 activity by immmunoblotting as described above.

Experiment 2. Effect of mTORC1 inhibition on reconsolidation

of cocaine contextual memories.

Five groups of mice underwent cocaine place conditioning

and were tested on day 9 for preference; 47 out of 60 mice had
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CPP scores >180 s and continued in the study. On day 10, three

groups of mice were re-exposed to the compartment previously

paired with cocaine for 10 min followed by administration of the

mTORC1 inhibitor rapamycin (0, 1, and 5 mg/kg, i. p.). The

other two groups served as no-reactivation controls, remained in

their home cages and were injected with vehicle or rapamycin

(5 mg/kg, i. p.) according to the same time schedule. On days

11 and 18, all mice were re-tested for place preference without

further drug injections or conditioning sessions.

Experiment 3. Effect of p70S6K inhibition on reconsolidation

of cocaine contextual memories.

To investigate the role of p70S6 kinase, an effector downstream

of mTORC1 in the reconsolidation of cocaine contextual memories,

52mice underwent cocaine conditioned place preference. On test day

9, 41 mice showed a cocaine place preference and were used in the

subsequent memory test. The procedures were the same as described

in Experiment 2 except that mice were injected with the p70S6K

inhibitor PF-4708671 (0, 10, 50 mg/kg ip) on day 10.

Experiment 4. Regulation of Arc mRNA expression following

reactivation of cocaine contextual memories.

To assess the effects of reactivation of cocaine-associated

memories on Arc expression, 96 mice underwent cocaine

conditioned place preference; 24 mice were excluded for failure

to reach the criteria of >90 s CPP score during a 15 min test session

for place preference on day 9. Mice that showed a cocaine place

preference were re-exposed to the cocaine context or remained in

the home cage on day 10. Brains were collected 30 min, 60 min,

120 min, or 24 h following the 10-min reactivation session.

Nucleus accumbens and hippocampus (dorsal and ventral)

samples were prepared for ArcmRNA analysis as described above.

Experiment 5. eIF4E-eIF4G interactions after reactivation of

cocaine reward memory.

To investigate effects of reactivation of cocaine associated

memories on eIF4E-eIF4G interactions, 48 mice underwent

cocaine conditioned place preference; 36 mice showed a cocaine

place preference on day 9 and continued in the study. Mice were

re-exposed to the cocaine context or remained in the home cage on

day 10. Brains were collected 60 or 120 min following the 10-min

reactivation session. and the nucleus accumbens and hippocampus

were prepared for IP and protein analysis as described above.

Data analysis

Conditioned place preference data were analyzed using

repeated measures two-way ANOVA (treatment × test day in

experiment 2 and 3). Levels of p-p70S6K (Exp. 1), Arc mRNA

(Exp. 4), and eIF4E bound to eIF4G (Exp. 5) were analyzed using

two-tailed t-test. Statistical analyses were performed using

GraphPad Prism 9 (La Jolla, CA).

Results

Experiment 1: Reactivation of cocaine
contextual memories activates
mechanistic target of rapamycin
complex 1

The measurement of phosphorylation of the

mTORC1 target, p70S6K, was used to assess the time-course

of regulation of mTORC1 activity after cocaine memory

FIGURE 1
Experimental timeline.
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reactivation (Hay and Sonenberg, 2004). Cocaine place

preference was determined on day 9 following 8 days of

conditioning. Two groups of mice showed similar preference

for the cocaine-paired context (Figure 2A). On day 10, one group

of mice was placed back into the previously paired cocaine

compartment for 10 min while the others remained in home

cages. Brains were obtained 60 min later. Representative

immunoblots of nucleus accumbens (Figure 2B) and

hippocampus (Figure 2C) from mice with (Exposure +) or

without exposure (Exposure -) to the cocaine context are

presented. (full-length blots are included in the Supplementary

Figure S1,S2). The level of p-p70S6K was significantly higher

60 min post reactivation as compared with no exposure controls

in the nucleus accumbens (t = 3.043, df = 13, p < 0.01). A similar

pattern of p-p70S6K regulation was found in the hippocampus

(Figure 2C); levels of p-p70S6K were significantly higher after

memory reactivation as compared with no exposure controls (t =

2.643, df = 12, p < 0.05). These results demonstrate an increase in

mTORC1 activity in the nucleus accumbens and hippocampus

following cocaine contextual memory reactivation.

Experiment 2: Inhibition of mTORC1 with
rapamycin disrupted the reconsolidation
of cocaine contextual memories

Mice underwent 8 days of cocaine place conditioning followed

by a test for preference on day 9. Mice were re-exposed to the

cocaine-paired context on day 10 to reactivate cocaine memories,

followed immediately by administration of the mTORC1 inhibitor

rapamycin (1 or 5 mg/kg ip) or vehicle. Results demonstrate that

rapamycin dose dependently reduced the previously established

cocaine place preference when retested on days 11 and 18, as

shown in Figure 3A. Repeated measures two-way ANOVA of

preference scores revealed a significant interaction (F4,50 = 2.66,

p < 0.05) between rapamycin treatment (F2,50 = 4.12, p < 0.05) and

test day (F2,50 = 4.6, p < 0.05). Post hoc tests indicated that

administration rapamycin (5 mg/kg) immediately following

reactivation of cocaine reward memories significantly attenuated

preference for the cocaine-paired chamber when tested 24 h later

(p < 0.01 vs. vehicle, day 11) or 7 days later (p < 0.05 vs. vehicle, day

18). In order to demonstrate that rapamycin was interfering with

memory reconsolidation, a control experiment was performed

wherein vehicle or rapamycin (5 mg/kg) was administered to

mice in the home cage environment. In the absence of cocaine

memory reactivation, rapamycin had no effects on the established

place preference; preference for the cocaine-paired compartment

was maintained on days 11 and 18 (Figure 3B). These data indicate

that mTORC1 activity is required for cocaine memory

reconsolidation following memory reactivation.

Experiment 3: Inhibition of p70S6K
disrupted the reconsolidation of cocaine
contextual memories

The role of p70S6 kinase in cocaine memory reconsolidation

was investigated using a similar approach as Experiment 2. The

FIGURE 2
Regulation of mTORC1 activity in the nucleus accumbens and hippocampus after reactivation of cocaine memories. Place conditioning with
cocaine 10 mg/kg occurred once daily for 8 days (A) Cocaine place preference scores from day 9 are shown; similar preference for the cocaine-
paired compartment was found for two groups of mice. On day 10, mice were re-exposed to the cocaine compartment for 10 min to reactivate
cocaine contextual memories (exposure group) or left in home cage (no exposure control group), and brains harvested 60 min later. Levels of
phospho-p70S6K (p-p70SK6) and total p70S6K were quantified by Western blot and expressed as a ratio of p-p70S6K/p70S6K for each sample.
p-p70S6K was significant induced 60 min following reactivation of cocaine memories in nucleus accumbens (B) and hippocampus (C), as shown by
comparison of the exposure group with no exposure controls. Mean ratio of p-p70S6K/p70S6K for the no exposure controls is set to 100% and data
points are expressed relative to 100% of no exposure controls. *p < 0.05, **p < 0.01 exposure vs. no exposure. Data are expressed as means ± SEM.
N = 7–8/group.
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FIGURE 3
Rapamycin disrupts reconsolidation of cocaine memories. (A) Condition place preference was established with cocaine 10 mg/kg in three
groups of mice as shown on day 9 during a 30-min post-conditioning test session. On day 10, mice were re-exposed to the cocaine-paired context
in a drug-free state for 10 min to reactivate cocaine-associated memories. Rapamycin (1 or 5 mg/kg ip) or vehicle was administered immediately
after exposure to the cocaine compartment. Mice were re-tested for cocaine place preference 24 h and 7 days later. Rapamycin (5 mg/kg)
significantly abolished the previously established place preference when tested 24 h and 7 d after administration (days 11 and 18). Mice injected with
vehicle maintained a significant cocaine place preference on days 11 and 18. (B) Condition place preference was established with cocaine 10 mg/kg
in two groups of mice as shown on day 9. On day 10, mice remained in their home cages in the testing room and were injected with rapamycin
(5 mg/kg ip) or vehicle. Mice were re-tested for cocaine place preference 24 h and 7 days later. Rapamycin administered in the home cage (ie, no
exposure to the cocaine context) did affect the previously established cocaine place preference; both vehicle and rapamycin groups maintained a
cocaine place preference when retested on days 11 and 18. *p < 0.05, **p < 0.01 vs. vehicle, N = 9/group. Data are expressed as means ± SEM.

FIGURE 4
Inhibition of p70S6K attenuates reconsolidation of cocaine contextual memory. (A) Condition place preference was established with cocaine
10 mg/kg in three groups of mice as shown on day 9 during a 30-min test session. Mice were re-exposed to the cocaine-paired context in a drug-
free state for 10 min to reactivate cocaine-associated memories on day 10. The p70S6K inhibitor, PF-4708671 (10 or 50 mg/kg ip), or vehicle was
administered immediately after exposure to the cocaine compartment. Micewere re-tested for cocaine place preference 24 h and 7 d later. PF-
4708671 (50 mg/kg) significantly abolished the previously established place preference when tested 24 h and 7 d after administration (days 11 and
18). Mice injected with vehicle maintained a significant cocaine place preference on days 11 and 18. (B) Condition place preference was established
with cocaine 10 mg/kg in two groups of mice as shown on day 9. On day 10, mice remained in their home cages in the testing room and were
injected with PF-4708671 (50 mg/kg ip) or vehicle. The test for cocaine place preference was repeated 24 h and 7 days later. PF-4708671
administered in the home cage (i.e., no exposure to the cocaine context) did not alter the previously established cocaine place preference; both
vehicle and PF-4708671 groups maintained a cocaine place preference when retested on days 11 and 18 in the absence of re-exposure to the
cocaine context. **p < 0.01, ***p < 0.001 for drug vs. vehicle at same time point; Data are expressed as means ± SEM. N = 9–10/group.
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p70S6K inhibitor, PF-4708671 (10 or 50 mg/kg ip), or vehicle was

administered immediately following reactivation of cocaine

memories or in the home cage on day 10. As shown in

Figure 4A, repeated measures two-way ANOVA of preference

scores revealed a significant interaction between the main effects

of treatment and test day (interaction: F4,44 = 4.78, p < 0.01; PF-

4708671 treatment: F2,44 = 5.05, p < 0.05; test day: F2,44 = 9.84, p <
0.001). Post hoc tests revealed that administration PF-4708671

(50 mg/kg) immediately following reactivation of cocaine reward

memories significantly attenuated preference for the cocaine-

paired chamber when tested 24 h later (p < 0.001 vs. vehicle, day

11) or 7 days later (p < 0.01 vs. vehicle, day 18). In the control

study with no reactivation session on day 10, PF-4708671

(50 mg/kg) given in the home cage did affect the previously

established cocaine place preference when tested 1 or 7 days later

(Figure 4B). These results show that PF-4708671 was effective in

abolishing an established cocaine place preference only when

administered post memory reactivation, suggesting that p70S6

kinase is involved in reconsolidation of cocaine-contextual

reward memories.

Experiment 4: Arc mRNA expression was
upregulated 60 and 120min post
reactivation of cocaine contextual
memories

ArcmRNA was measured 30 min, 60 min, 120 min, and 24 h

following cocaine memory reactivation. As shown in Figure 5,

ArcmRNA levels were significantly higher in nucleus accumbens

(A. t = 4.04, df = 17, p < 0.001), dorsal hippocampus (B t = 2.197,

df = 17, p < 0.05), and ventral hippocampus (C. t = 3.560, df = 18,

p < 0.01) 60 min following the 10-min re-exposure to the cocaine

context, as compared with expression in mice kept in their home

cages (no exposure) without reactivation session. Moreover, the

elevated ArcmRNA levels were maintained 2 h post reactivation

in nucleus accumbens (A. t = 4.04, df = 17, p < 0.001), dorsal

hippocampus (B. t = 2.197, df = 17, p < 0.05), and ventral

hippocampus (C. t = 3.560, df = 18, p < 0.01). No changes in Arc

expression were found 30 min or 24 h after memory reactivation

(all ps > 0.05). These results show that Arc mRNA expression is

upregulated following reactivation of cocaine contextual

memories.

Experiment 5: No changes in eIF4E-eIF4G
interactions were found following
reactivation of cocaine contextual
memories

The interaction of eIF4E-eIF4G was measured by IP and

western blot in tissues obtained 60 and 120 min following cocaine

memory reactivation. As shown in Figure 6A, two groups of mice

showed similar place preference scores on day 9. No significant

differences in levels of eIF4E bound to eIF4G between exposure

and no exposure groups of mice were found in nucleus

FIGURE 5
Arc mRNA is upregulated following reactivation of cocaine
memories. Cocaine place preference was established with once
daily conditioning sessions for 8 days, followed by a test for place
preference on day 9. On day 10, 24 h after condition place
preference was established, half the mice were re-exposed to the
cocaine-paired compartment for 10 min while the other half
remained in the home cage (i.e., no exposure). Brains were
obtained 30 min, 60 min, 120 min, or 24 h later. Brain regions of
interest were processed for qRT-PCRmeasurements of ArcmRNA
expression. Levels of ArcmRNA were significantly elevated 60 and
120 min after exposure to the cocaine context in the (A) nucleus
accumbens, (B) dorsal hippocampus, and (C) ventral
hippocampus. No differences were noted at the 30 min or 24 h
time points in any brain region. *p < 0.05, **p < 0.01, ***p <
0.001 for exposure vs. no exposure at same time point. Data are
expressed as means ± SEM. N = 7–10/group.
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accumbens (B. 60 min: t = 0.5521, df = 12, p > 0.05; 120 min: t =

1.864, df = 12, p > 0.05), dorsal hippocampus (C. 60 min: t =

0.7580, df = 12, p > 0.05; 120 min: t = 1.055, df = 13, p > 0.05) and

ventral hippocampus (D. 60 min: t = 0.2381, df = 12, p > 0.05;

120 min: t = 0.3538, df = 13, p > 0.05) 60 or 120 min following the

10-min re-exposure to the cocaine-paired compartment.

Representative immunoblots of nucleus accumbens, dorsal and

ventral hippocampus from mice with or without exposure to the

chamber previously paired with cocaine are included in the

Supplementary Figures S3–S8. These data indicate that eIF4E-

eIF4G interactions are not regulated in response to the

reactivation of cocaine contextual memories in the nucleus

accumbens or hippocampus at these time points.

Discussion

The present findings demonstrate that mTORC1 activity is

upregulated in the nucleus accumbens and hippocampus 60 min

after cocaine memory reactivation as evidenced by increased

phosphorylation of its target, p70S6K. Our previous study found

that p70S6K phosphorylation was reduced immediately after

cocaine memory reactivation (Shi et al., 2014), indicating the

dynamic regulation of mTORC1 activity in nucleus accumbens

and hippocampus following reactivation of cocaine memory.

Inhibition of mTORC1 activity after cocaine memory

reactivation abolished the previous established cocaine place

preference, suggesting the requirement of mTORC1 in the

reconsolidation of cocaine contextual memory. Moreover,

p70S6K contributes to cocaine memory reconsolidation, as

evidenced by attenuated cocaine place preference with

systemic administration of a selective p70S6K inhibitor. Arc is

a target gene of mTORC1 and its expression was upregulated in

the nucleus accumbens and hippocampus following cocaine

memory reactivation. The association of eIF4E-eIF4G was

unchanged 60 and 120 min after reactivation of cocaine

contextual memory.

Our previous report (Shi et al., 2014) suggests that

reactivation of cocaine reward memory engages a signaling

pathway consisting of Akt-GSK3β-mTORC1. GSK3β activity

was induced following reactivation of cocaine memory and

required for the reconsolidation of cocaine-associated

memories. In contrast, mTORC1 activity, as assessed by

phosphorylation of its target p70S6K, was downregulated in

the hippocampus and nucleus accumbens immediately

following cocaine memory reactivation (Shi et al., 2014). In

the current study, the time-course of regulation of

mTORC1 activity after cocaine memory reactivation was

assessed through measurement of p70S6K phosphorylation

(Hay and Sonenberg, 2004). mTORC1 activity was elevated in

the hippocampus and nucleus accumbens 60 min after memory

reactivation, which aligns with studies on reactivation of fear

memories (Gafford et al., 2011, 2013; Jarome et al., 2018). This is

the first report of the dynamic and bidirectional regulation of

mTORC1 activity in response to reactivation of cocaine

contextual memory.

Initial studies in the field supported the hypothesis that retrieval

returns a consolidatedmemory to a labile state, which then requires

a protein synthesis-dependent reconsolidation process to maintain

the memory (Nader et al., 2000; Sara, 2000; Nader, 2003). However,

accumulating evidence suggests that memory reconsolidation

process is more complicated than initially thought. A growing

body of literature suggest that both protein degradation and

synthesis are required for reconsolidation of spatial and fear

memory (Artinian et al., 2008; Lee et al., 2008; Jarome et al.,

2011). For example, inhibition of protein degradation with the

inhibitor lactacystin immediately, but not 3 h, after memory

reactivation impairs the reconsolidation of spatial memory

(Artinian et al., 2008). Several reports demonstrate that

mTORC1 plays an important role in controlling a balance

between protein synthesis and degradation during cell growth

(Zhang et al., 2014; Zhao et al., 2015; Zhao J. et al., 2016;

Boutouja et al., 2019). Inactivation of mTORC1 rapidly

stimulates the ubiquitination and proteasomal degradation of

many proteins in controlling cell growth (Zhao R. et al., 2016).

FIGURE 6
Reactivation of cocaine memories did not affect interactions
between eIF4E and eIF4G. (A) Two groups of mice for each
experimental time point (60 or 120 min) were conditioned with
10 mg/kg cocaine and saline once daily for 8 days. A 15-min
post-conditioning test for cocaine place preference on day
9 showed similar preference for the cocaine-paired compartment.
Cocaine memory was reactivated by exposure to the cocaine
context for 10 min in a drug-free state, and brains obtained 60 or
120 min later. The eIF4E-eIF4G complex was measured by co-IP
and Western blot methods. Levels of eIF4E bound to eIF4G in (B)
nucleus accumbens, (C) dorsal hippocampus, and (D) ventral
hippocampus were not significantly different in mice exposed to
the cocaine context compared to the mice with no re-exposure.
Data are expressed as % of no exposure controls, and means ±
SEMs are shown. N = 7–10/group.
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Our finding of early reduction and later elevation of

mTORC1 activity after reactivation of cocaine memory suggests

that mTORC1 also may play an important role in controlling the

balance between protein degradation and synthesis during

reconsolidation of cocaine memory.

The current finding that inhibition of mTORC1 with

rapamycin disrupted the previous established cocaine place

preference suggests the requirement of mTORC1 in the

reconsolidation of cocaine memory and supports a previous

similar finding in rats (Lin et al., 2014). It is unlikely that

rapamycin is enhancing extinction or causing extinction itself.

The control groups showed no extinction upon retest on days

11 or 18, and there was no spontaneous recovery of place

preference when tested 1 week post rapamycin administration.

In a previous study (Lin et al., 2014), disruption of cocaine

memory reconsolidation with rapamycin lasted at least 2 weeks,

and a cocaine priming injection failed to reinstate cocaine-

induced conditioned place preference. This is further support

against rapamycin enhancing extinction; an extinguished

memory will show spontaneous recovery or reinstatement in

the presence of the unconditioned stimulus (i.e., drug priming).

We further investigated the contribution of the

mTORC1 downstream target p70S6K and found that

inhibition of p70S6K with systemic administration of the

specific inhibitor PF4708671 disrupted the reconsolidation of

cocaine-associated memory. This indicates that p70S6K

contributes to the essential role of mTORC1 in cocaine

memory reconsolidation. In a prior investigation,

PF4708671 did not affect reconsolidation of fear memories

when measured 24 h later, but disrupted memory retention

when measured 10 days after reactivation (Huynh et al.,

2014). The discrepancies between their and our current

findings may be due to the differences in type of memory

trace (aversive fear memory vs. appetitive drug memory).

The interaction of eIF4E–eIF4G is regulated by 4E-BP1 and

was investigated as a potential effector of mTORC1 involved in

memory reconsolidation. No changes in eIF4E–eIF4G associations

were found in the nucleus accumbens or hippocampus in response

to reactivation of cocainememory. This finding is similar to that of

a previous study of fear memories which did not find changes in

eIF4E-eIF4G interactions in the amygdala after reactivation of fear

memories (Hoeffer et al., 2011). Although they found no

alterations in eIF4E–eIF4G interactions in the amygdala

following fear memory reactivation, Klann and colleagues went

on to demonstrate that inhibition of eIF4E–eIF4G interactions

with 4EGI-1 infused icv together with systemic administration of

PF-4708671 diminishes fear memory measured either 24 h or

10 days after memory reactivation (Huynh et al., 2014),

indicating the combined influence of eIF4E–eIF4G interactions

and p70S6K1 activation in fear memory reconsolidation. Although

the current results did not find alterations in eIF4E-eIF4G

interactions following cocaine memory reactivation, the

importance of this complex in process of reconsolidation

cannot be ruled out. Further investigation at other time points

after reactivation of cocainememory and in other brain regions are

necessary, in addition to functional studies of the complex to

determine if reconsolidation of cocaine contextual memory is

dependent on the eIF4E–eIF4G complex.

Prior work has shown that Arc expression is upregulated

following exposure to contextual cues associated with drug

(Schiltz et al., 2005) and cue-induced reinstatement of drug-

seeking behavior after abstinence (Hearing et al., 2008a; Hearing

et al., 2008b) or extinction (Koya et al., 2006; Zavala et al., 2008)

using self-administration methods. Conditioned place preference

is frequently used to investigate drug-context associated

memories. Using this method, we found that Arc mRNA was

higher in the nucleus accumbens and dorsal and ventral

hippocampus 60 and 120 min after reactivation of cocaine

contextual memory. Our findings are largely in agreement

with a report that upregulation of Arc protein occurs

following reactivation of cocaine-cue memory in rats, except

no increase in Arc protein was found in the dorsal hippocampus

(Alaghband et al., 2014). This discrepancy may be due to

measurement of mRNA versus protein, different time points

tested (60 or 120 vs. 40 min), or different species used in the two

studies. There may be a delay between induced transcription

(mRNA) and increased protein level (Liu et al., 2016) in the

dorsal hippocampus. Other studies report disparities between

levels of Arc mRNA and protein (Kelly and Deadwyler, 2003;

McIntyre et al., 2005), which can be explained by the complexity

of gene expression regulation under various scenarios (Liu et al.,

2016). Interestingly, a previous report showed that Arc mRNA

was highly induced 1–2 h after a single electroconvulsive seizure,

and the levels of Arc mRNA return to near control levels about

6 h later, which is almost the same time window during which

synaptic modifications are vulnerable to inhibition of protein

synthesis (Steward and Worley, 2001). Arc protein is also

elevated in the amygdala and hippocampus 90 min (Mamiya

et al., 2009) or 2 h after retrieval of fear memory (Zhu et al.,

2018). Given that Arc mRNA expression increased 60–120 min

after retrieval of cocaine memory in the present study, Arc

mRNA may be a marker of memory reconsolidation process.

Arc expression can be regulated by mTORC1 (Takei et al., 2004;

Barak et al., 2013). Evidence demonstrates that upregulation of

Arc expression in response to alcohol memory reactivation is

dependent on mTORC1 activity and can be abolished by

inhibition of mTORC1 with rapamycin (Barak et al., 2013).

Future studies will identify whether mTORC1 activity drives

the enhanced ArcmRNA expression induced by cocaine memory

reactivation.

The current study focused on regulation of mTORC1 and

its potential downstream effectors in the mouse nucleus

accumbens and hippocampus because of the known role of

these regions in memory reconsolidation processes (Miller

and Marshall, 2005; Milekic et al., 2006; Sakurai et al., 2007;

Theberge et al., 2010; Noe et al., 2019). Results demonstrate

Frontiers in Pharmacology frontiersin.org10

Shi et al. 10.3389/fphar.2022.976932

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.976932


regulation of mTORC1 activity and Arc expression in these

regions following reactivation of cocaine contextual

memories. The reconsolidation of cocaine memory was

shown to be dependent on the activity of mTORC1 and

p70S6K, although the site of action was not elucidated in

this study. Several other brain regions have been implicated in

the reconsolidation of drug reward memories including the

basolateral amygdala (Milekic et al., 2006; Bernardi et al.,

2009; Li et al., 2010; Theberge et al., 2010; Otis et al., 2013) and

prefrontal cortex (Otis et al., 2013; Sorg et al., 2015). For

example, inactivation of the basolateral amygdala with

animycin after memory reactivation disrupts

reconsolidation of morphine-conditioned place preference

(Milekic et al., 2006) and β-adrenergic receptor blockade

specifically in the basolateral amygdala impairs cocaine-

associated memory reconsolidation (Otis et al., 2013). It is

possible that multiple brain regions interconnect to regulate

memory processes. Further studies are needed to elucidate the

site of critical importance of mTORC1 signaling for the

reconsolidation of cocaine contextual memory.

In summary, the data presented herein demonstrate that

mTORC1 activity is necessary for reconsolidation of cocaine

memory. p70S6K activity contributes to the essential role of

mTORC1 in cocaine memory reconsolidation. Targeting drug

memory reconsolidation processes could yield beneficial results

in the prevention of cue-induced relapse to drug-seeking

behaviors. Identification of the cellular processes that

maintain drug-associated memory is important to achieve

that goal.
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