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ABSTRACT
BACKGROUND: The neuroanatomical basis of autism spectrum disorder (ASD) has remained elusive, mostly owing
to high biological and clinical heterogeneity among diagnosed individuals. Despite considerable effort toward un-
derstanding ASD using neuroimaging biomarkers, heterogeneity remains a barrier, partly because studies mostly
employ case-control approaches, which assume that the clinical group is homogeneous.
METHODS: Here, we used an innovative normative modeling approach to parse biological heterogeneity in ASD. We
aimed to dissect the neuroanatomy of ASD by mapping the deviations from a typical pattern of neuroanatomical
development at the level of the individual and to show the necessity to look beyond the case-control paradigm to
understand the neurobiology of ASD. We first estimated a vertexwise normative model of cortical thickness
development using Gaussian process regression, then mapped the deviation of each participant from the typical
pattern. For this, we employed a heterogeneous cross-sectional sample of 206 typically developing individuals
(127 males) and 321 individuals with ASD (232 males) (6–31 years of age).
RESULTS: We found few case-control differences, but the ASD cohort showed highly individualized patterns of
deviations in cortical thickness that were widespread across the brain. These deviations correlated with severity of
repetitive behaviors and social communicative symptoms, although only repetitive behaviors survived corrections
for multiple testing.
CONCLUSIONS: Our results 1) reinforce the notion that individuals with ASD show distinct, highly individualized
trajectories of brain development and 2) show that by focusing on common effects (i.e., the “average ASD partici-
pant”), the case-control approach disguises considerable interindividual variation crucial for precision medicine.
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Autism spectrum disorder (ASD) is a lifelong neuro-
developmental disorder diagnosed exclusively on the basis
of symptomatology, period of onset, and impairment (i.e.,
impairments in social communication and interaction,
alongside repetitive stereotyped behavior and sensory
anomalies) (1). Autism is well recognized as being highly
heterogeneous on multiple levels—for example, in terms of
its clinical presentation and underlying neurobiology. Indeed,
more than 100 genes (2) and many aspects of brain structure
have been associated with ASD at the group level (3). Autism
is also grounded in the process of brain maturation, and it is
believed that alterations are evident throughout brain devel-
opment (4,5). In particular, differences in cortical thickness
(CT) have been reported across different studies and ages
(6), which—together with differences in surface area (SA)
(6–10)—underpin regional differences in brain volume in ASD
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(10–13). However, the precise etiology of the disorder in
terms of brain development and underlying mechanisms
remain elusive.

The heterogeneity of ASD is a fundamental barrier to un-
derstanding the neurobiology of ASD and the development of
interventions (14). Regional group-level differences have been
reported across several neuroanatomical measures, including
CT (8,10,15–22). However these findings show generally poor
replication across studies (3,7,19,23,24) and small effect sizes
(8,19). Heterogeneity is also evident in studies that have used
classifiers to discriminate ASD participants from control
subjects, which mostly show relatively low accuracy for
predicting diagnosis, especially in large samples (19,25,26).
An important reason for this is that most studies to date have
employed a traditional case-control approach, which is based
on the assumption that the clinical and control groups are
shed by Elsevier Inc. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).

567

ce and Neuroimaging June 2019; 4:567–578 www.sobp.org/BPCNNI

https://doi.org/10.1016/j.bpsc.2018.11.013
http://creativecommons.org/licenses/by/4.0/
http://www.sobp.org/BPCNNI


Table 1. Clinical Characteristics

Variable

ASD Cohort,
n = 321

(89 Female)

TD Cohort,
n = 206

(79 Female)
p

Value

Age, Years 17.01 6 5.79 17.14 6 5.97 .93a

IQ

Global IQ 100.89 6 18.53, n = 316 108.22 6 14.24 .00

Performance IQ 101.65 6 20.14, n = 316 108.26 6 15.72 .00

Verbal IQ 99.64 6 18.53, n = 313 107.32 6 16.13 .00

ADI-R n = 308

Social 16.20 6 6.71

Communication 13.11 6 5.69

Repetitive behavior 4.32 6 2.69

ADOS-2 n = 258

Total 5.12 6 2.77

Social 5.78 6 2.62

Repetitive behavior 4.78 6 2.76

Schedule, n

A: Adults 125 84

B: Adolescents 112 70

C: Children 64 52

D: IQ ,70 20 —

Values are mean 6 SD, except where noted.
ADI-R, Autism Diagnostic Interview-Revised; ADOS-2, Autism

Diagnostic Observation Schedule, Second Edition; ASD, autism
spectrum disorder; TD, typically developing.

aNot significant.
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homogeneous entities (7,27). Thus, the case-control
approach provides information about alterations at the
group level or, in other words, in the “average ASD partici-
pant.” However, different participants may have different
symptom profiles and different etiological pathways, and
resulting neurobiological changes may converge on the same
symptoms. Therefore, to understand the neurobiology of
ASD, it is important to understand the range of associated
neurobiological variation, which may subsequently inform
intervention at the level of the individual in the spirit of
“precision medicine” (28). A common approach to study the
biological heterogeneity underlying ASD is to find subtypes
using clustering algorithms, mostly on the basis of symptoms
or behavioral characteristics (29–34). This approach has been
somewhat successful and is appropriate if the clinical cohort
can be cleanly partitioned into a relatively small number of
homogeneous subgroups on the basis of the chosen mea-
sures. However, it does not tackle heterogeneity within sub-
groups, and it may be the case that no clearly defined
subgroups exist in the data. Moreover, subgroups derived
from behavior or symptoms require extensive validation on
external measures and still may not fully reflect the underlying
biology (35,36).

Here, we apply a complementary normative modeling
approach (36,37) to understand the biological heterogeneity
of ASD. This shifts the focus away from group-level
comparisons—which can detect consistent differences
across groups of individuals (e.g., diagnoses or putative
subtypes)—toward characterizing the degree of alteration in
each individual, with reference to the typically developing (TD)
brain. This allows us to detect and map neuroanatomical
alterations at the level of the individual and has recently shown
promise in understanding the biological variation of psychotic
disorders (37). Normative modeling is analogous to the use of
growth charts in pediatric medicine, which allow the develop-
ment (e.g., in terms of height or weight) of each individual child
to be measured against expected centiles of variation in the
population. To achieve this, we first estimated a statistical
model characterizing typical cortical development that accu-
rately quantifies the variation within the population and across
brain development. We then placed each individual ASD
participant in relation to the typical distribution to identify
alterations in individual cases with respect to the typical
pattern of brain maturation. Our main goals were to 1) to map
the neuroanatomical features by which each individual ASD
participant differs from the expected TD pattern, across both
different developmental stages and different levels of func-
tioning, and thereby 2) demonstrate the value of normative
modeling techniques for understanding the biological hetero-
geneity of ASD. For this, we employed data from a large in-
ternational study (38) with harmonized data acquisition
procedures and a design that naturally groups subjects
according to different developmental stages. While normative
modeling is suitable for many different aspects of brain
structure or function, here we focused on CT, which is a
sensitive and reliable measure of cortical morphology in ASD
(6,8,39), although we also investigated SA. Ultimately, we hope
this approach will yield a set of individualized neurobiological
“fingerprints” facilitating a route toward precision medicine
approaches in ASD (28).
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METHODS AND MATERIALS

Participants

Full details on study design and clinical characteristics have
been described previously (38). Briefly, we included all par-
ticipants from the Longitudinal European Autism Project (40)
cohort with a structural magnetic resonance imaging scan
surviving quality control and the necessary clinical and de-
mographic data. We included 206 TD individuals 7 to 31
years of age (127 males) (Table 1; Supplemental Table S1
and Supplemental Figure S1) and 321 individuals 6 to 31
years of age with ASD (232 males). There were no significant
differences between the TD and ASD cohorts in age, but the
IQ of ASD participants was lower than TD participants.
Under the study design, each cohort was split into four
subgroups according to age and level of intellectual ability
(Table 1): 1) adults with ASD without intellectual disability (ID)
and TD control subjects 18 to 30 years of age (IQ $70);
2) adolescents with ASD without ID and TD control subjects
12 to 17 years of age; 3) children with ASD without ID or TD
control subjects 6 to 11 years of age; and 4) adolescents
and adults with ASD and ID [i.e., full-scale IQ between 50
and 70 (1)] 12 to 30 years of age. Note that only TD par-
ticipants were included in the estimation of the normative
model.

TD participants were recruited via advertisement. In-
dividuals with an existing ASD and/or mild ID diagnosis
(according to DSM-5/ICD-10 criteria) were recruited from
existing databases and clinic contacts across one of seven
study sites: the Institute of Psychiatry, Psychology and
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Neuroscience, King’s College London, London, United
Kingdom; Autism Research Centre at the University of Cam-
bridge, Cambridge, United Kingdom; Radboud University Nij-
megen Medical Centre, Nijmegen, the Netherlands; University
Medical Centre Utrecht, Utrecht, the Netherlands; Central
Institute of Mental Health, Mannheim, Germany; and University
Campus Bio-Medico, Rome, Italy. The combined information
from the Autism Diagnostic Interview-Revised (ADI-R) (41) and
Autism Diagnostic Observation Schedule, Second Edition
(ADOS-2) (42) were used to measure symptom severity (33).
However, individuals with a clinical ASD diagnosis who did not
reach conventional cutoffs on these instruments were not
excluded. The ADI-R is a parent-reported measure of lifetime
or past developmental window symptom severity, whereas the
ADOS-2 is an expert rating of current symptoms. A standard
set of exclusion criteria were applied and are provided in the
Supplement. All subjects were scanned with a T1-weighted
imaging protocol, and FreeSurfer (version 5.3; https://surfer.
nmr.mgh.harvard.edu/) was used to estimate measures of
regional CT and SA. See the Supplemental Methods for
details.

Constructing a Normative Model of CT

An overview of the normative modeling approach is shown in
Figure 1 and has been described previously (36). Briefly,
Gaussian process regression (43) was used to estimate
separate normative models of CT and SA at each vertex on
the cortical surface (see Supplemental Methods for details).
This normative model can be used to predict both the ex-
pected CT and the associated predictive uncertainty for each
Figure 1. Methodological overview. First, a normative model was estimated f
dots). Then we used this model to predict cortical thickness (CT) in autism spectr
probability maps, which show the regional deviations from the expected pattern
overall deviation for each subject by taking maximum deviation across brain usi
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individual participant. The contours of predictive uncertainty
can then be used to model centiles of variation within the
cohort. This allows us to place each individual participant
within the normative distribution, thereby quantifying the
vertexwise deviation of CT from the healthy range across the
brain.

To achieve this, we generated a developmental model of
typical brain development by training a Gaussian process
regression model on the TD cohort (n = 206) using age and
gender as covariates (i.e., independent variables) to predict CT
(i.e., dependent variable). In pediatric medicine, growth charts
are normally estimated on the basis of a large population
cohort (i.e., potentially including patients with various disorders
based on the population prevalence). In our sample, the
prevalence of ASD is much higher than in the population, so for
simplicity and to avoid the normative model’s being enriched
for ASD, we estimated the normative model on the basis of the
TD participants only. Moreover, while the amount of data we
employ here is relatively small in comparison with population-
based studies, our Bayesian statistical model provides a
principled method to handle uncertainty and therefore auto-
matically makes inferences more conservative as the number
of data points decreases, although more data would allow
more precise estimates. To assess generalization, we used 10-
fold cross-validation before retraining the model using the
whole dataset to make predictions on the ASD participants
following standard practice in machine learning (Supplemental
Methods). Importantly, all parameters were estimated using
the training data using empirical Bayesian estimation (36), and
the use of cross-validation ensures unbiased estimates for the
rom cortical thickness derived from typically developing (TD) subjects (gray
um disorder (ASD) subjects (red dots). This allowed us to estimate normative
in each subject. Finally, we generated a summary statistic quantifying the

ng extreme value statistics.
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TD cohort as well as for the ASD cohort. Therefore, deviations
can be compared with one another.

Estimating Regional Deviations for Each Subject

To estimate a pattern of regional deviations from typical CT for
each participant, we derived a normative probability map
(NPM) that quantifies the deviation from the normative model
for CT at each vertex. This was done by using the normative
model to predict vertexwise estimates of CT for each individual
participant, then estimating a subject-specific Z score (36)
(Supplemental Methods). This provides a statistical estimate
of how much each individual differs from the healthy pattern at
each vertex. We thresholded the NPMs, correcting for multiple
comparisons by controlling false discovery rate (FDR) at p ,

.05 within each participant, as in Marquand et al. (36).
To measure the spatial overlap of the individualized de-

viations across the cohort, we calculated an overlap map by
counting the significant (FDR-corrected) vertices derived from
the Z-score maps across all subject-level NPMs. The resulting
summary maps indicate the spread of vertexwise deviations
across the brain, separately for positive and negative de-
viations. This allowed us to identify a set of brain regions where
participants had increased (positive deviation) or decreased
(negative deviation) CT relative to the reference cohort.

To provide a simple comparison for these subject-level
deviations, we also estimated a standard vertexwise general
linear model to establish significant differences between
groups including age as a covariate. We also investigated
models including quadratic and cubic age terms (corrected
using FDR at p , .05) and separate models for male and
female subjects.

Constructing an Individual-Level Atypicality Score

A key benefit of normative modeling is a probabilistic inter-
pretation of the deviations across all subjects. The NPMs
therefore provide a multivariate measure of deviation from the
normative range across all brain regions. This captures
spatially distributed differences from the TD pattern. To better
understand most important focal differences for each subject,
we estimated a summary score for each participant capturing
the individual’s largest deviation from the typical pattern (which
is potentially the most clinically relevant). This can be modeled
using extreme value statistics (44) and is based on the notion
that the expected maximum of any random variable converges
to an extreme value distribution. Therefore, we estimated a
maximum deviation for each subject by taking a trimmed mean
of 1% of the top absolute deviations for each subject across
all vertices and fit an extreme value distribution to these
deviations.

Mapping Behavioral Associations

Last, to assess the clinical relevance of these deviations, we
computed Spearman correlation coefficients between global
and regional extreme deviation from the normative model and
ADOS-2/ADI-R symptom severity scores (p , .05, FDR). The
global measure (described above) provides an overall sum-
mary of the deviation for each individual, while the regional
assessment helps to determine the functional correspondence
of the deviations across individuals on a region-by-region
570 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging J
basis. The regional extreme deviation was computed as the
trimmed mean of the 1% of top absolute deviations for each
region after parcellating the cortex using the Desikan-Killiany
atlas (45).

Checking for Potential Confounds

To investigate whether potential confounds could have influ-
enced our findings, we estimated a separate normative model
additionally including dummy regressors for IQ, site, and
FreeSurfer Euler number (46). We also performed post hoc
tests between the deviations from the normative model and
potential confounding variables (IQ, comorbid symptoms, and
surrogate measures of image quality) (see Supplemental
Tables S2 and S3).

RESULTS

A Normative Model Quantifying the Decline of CT
With Age

Figure 2 shows the developmental normative model of CT
derived from the TD male cohort, thresholded to show vertices
where the correlation between true and predicted labels was
higher than predicted by chance (p , .05, FDR corrected) (see
Supplemental Figure S3 for female cohort). The unthresholded
map showing the correlation between true and predicted CT
values is shown in Supplemental Figure S2 along with the root
mean square error of the normative model across different
vertices. In most regions, CT decreases consistently and
approximately linearly with age. However, in some regions, CT
followed a nonlinear (i.e., inverted U-shaped) trajectory with an
early rise followed by a decline, e.g., in the inferior temporal
and posterior frontal regions. This corresponds well with the
known developmental trajectory of CT (47–51). The normative
model for SA showed a similar, relatively global pattern of
decline as for CT (not shown).

Widespread Deviations From the Normative Pattern
of CT Among the ASD Cohort

Figure 3 shows the classical mass-univariate group difference
(i.e., case-control) map between ASD and TD cohorts. This
shows few significant differences between groups; only two
small regions of increased CT in the superior frontal and pa-
rietal cortices survived FDR correction. There were also few
significant differences when additionally including quadratic
and cubic age terms and no differences in the age-by-
diagnosis interaction. The separate models for male and fe-
male subjects also did not show any significant differences
after FDR correction.

Figures 4 and 5 show a summary of the NPMs for the ASD
and TD cohorts. Specifically, these figures show the number of
participants in each group that deviate negatively (Figure 4) or
positively (Figure 5) from the normative model at each vertex
after intraindividual FDR correction. Importantly, and contrast
to the general linear model, these deviations need not overlap
between subjects. As expected, the TD cohort shows few
significant deviations, indicating that the normative model
provides a good fit for this cohort. Crucially, this fit was ach-
ieved under cross-validation and is therefore unbiased.
Therefore, under the null hypothesis that ASD participants
une 2019; 4:567–578 www.sobp.org/BPCNNI
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Figure 2. Normative model of developmental changes of cortical thickness across the developmental range in the typically developing male cohort (the
model was estimated using both genders). Cortical thickness was predicted using a trained normative model across the age range of 6 to 31 years of age. The
predicted cortical thickness map was thresholded so that only vertices that could accurately predict the true cortical thickness in the healthy cohort under
cross-validation were retained (Pearson correlation, p , .05, false discovery rate). Blue and yellow vertices indicate reduced and increased cortical thickness,
respectively. Moreover, the predicted cross-sectional developmental trajectories of cortical thickness in four randomly selected vertices are shown.
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follow a similar trajectory of brain development to TD partici-
pants, there is no prior reason to expect that the fit will be
better in TD than in ASD participants. In contrast, the total
number of deviating vertices was noticeably higher in the ASD
cohort and was widespread across the brain, suggesting that
there are widespread and individualized deviations from the
normative model in certain subsets of participants. When
considering each age group separately, negative deviations
were most prominent in children, whereas positive deviations
were most prominent in adolescents and adults. The
results were very similar for the models including IQ, scanning
Figure 3. Vertexwise group differences between the autism spectrum disorde
.05). The green circles indicate the regions showing the vertexwise group differenc
group differences map between autism spectrum disorder and typically develop
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site, and Euler number as covariates (Supplemental Figures S4
and S5), and a similar pattern of results was observed for SA,
albeit with slight differences with respect to the pattern of de-
viations across brain regions (Supplemental Figures S6 and S7).

ASD Participants Deviate More Than TD
Participants From the Normative Pattern of
Development

Figure 6 shows the distribution of the most extreme deviations
from the normative model across the brain. This shows that the
r and typically developing cohorts after false discovery rate correction (p ,

e. No vertices survived after false discovery rate correction in the vertexwise
ing female and male subjects.
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Figure 4. Overlap of vertexwise negative deviation
across each cohort and schedule. This map shows
the spatial distribution of individual subjects with
significant deviations in each vertex after false dis-
covery rate correction. The proportion of subjects
contributing to each map is also shown (i.e., the
proportion of subjects having deviations surviving
false discovery rate correction). ASD, autism spec-
trum disorder; TD, typically developing.
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maximum deviation across the brain is higher in the ASD cohort
than the TD cohort and shows that the distribution of the ASD
cohort is shifted toward the right, implying relatively more
subjects with extreme deviations. Saliently, the top 15 deviating
individuals belong to the ASD cohort, which is extremely un-
likely to occur by chance (p , .0005, binomial test). The NPMs
of these participants (Supplemental Figure S8) have highly
individualized patterns of deviation not only with respect to
brain regions, but also in sign, with some participants having
positive deviations (i.e., greater CT) or negative deviations
(reduced CT). These participants did not show a consistent
pattern with respect to their symptom scores (Supplemental
572 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging J
Table S5), which underscores the degree of clinical and
neurobiological heterogeneity within the ASD cohort. However,
with regard to their demographic profile, subjects with pre-
dominantly positive deviations were adolescents or adults,
while most subjects with negative deviations were children.
Association With Symptoms

Global deviations from the normative model were negatively
associated with ADOS-2 repetitive behaviors (r = 2.21, p ,

.05), and regional deviations were associated with symptoms
in several brain regions (Figures 7 and 8). Associations were
une 2019; 4:567–578 www.sobp.org/BPCNNI
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Figure 5. Overlap of vertexwise positive deviation
across each cohort and schedule. See Figure 4
legend for further details. ASD, autism spectrum
disorder; TD, typically developing.
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found with symptom severity in the repetitive domain of the
ADOS-2 or ADI-R in prefrontal regions in female subjects. In
male subjects, a similar pattern was seen but did not survive
multiple comparison correction, except for the superior frontal
region in the ADI-R. Social interaction and communication
scores also had nominally significant associations in female
subjects, but these did not survive correction.
DISCUSSION

In this study, we aimed to dissect the heterogeneous neuro-
biology of ASD by mapping the deviation of each individual
Biological Psychiatry: Cognitive Neuroscience and N
participant from a normative model of CT development. In a
large, heterogeneous cohort spanning a wide range of the ASD
phenotype, we showed few significant group-level differences
between ASD and TD cohorts in CT using a classical case-
control analysis. In contrast, our normative modeling
approach showed striking, widespread patterns of cortical
atypicality at the level of individual ASD participant. These
patterns were highly individualized across participants, distinct
across different developmental stages, and associated with
symptoms, especially repetitive behaviors. This supports the
notion that a subset of ASD participants follow a different
developmental trajectory than TD subjects, and that the
euroimaging June 2019; 4:567–578 www.sobp.org/BPCNNI 573
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Figure 6. Extreme value histogram and distribution. ASD, autism spectrum disorder; TD, typically developing.
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trajectory each ASD participant follows is highly individualized.
From a methodological standpoint, our study shows that 1) it is
necessary to look beyond the case-control paradigm to un-
derstand the heterogeneous neuroanatomy of ASD, 2)
Figure 7. Regional extreme value deviation correlation with autism spectrum
Desikan-Killiany parcellation scheme. Blue and yellow regions indicate nega
respectively. Green circles indicate the regions that survived after false discovery
Diagnostic Observation Schedule, Second Edition; RRB, repetitive behavior.

574 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging J
normative modeling provides an alternative conceptual
framework for understanding the heterogeneous neurobiology
of ASD in terms of deviations from a typical pattern, and 3)
focusing on an “average autistic individual” provides only a
disorder (ASD) symptoms for female subjects (p , .05) according to the
tive and positive association with autism spectrum disorder symptoms,
rate correction. ADI, Autism Diagnostic Interview-Revised; ADOS II, Autism
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Figure 8. Regional extreme value deviation correlation with autism spectrum disorder (ASD) symptom for male subjects (p , .05) according to the Desikan-
Killiany parcellation scheme. ADI, Autism Diagnostic Interview-Revised; ADOS II, Autism Diagnostic Observation Schedule, Second Edition; RRB, repetitive
behavior.
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partial reflection of the nature of the condition. In other words,
the case-control approach focuses on common effects rather
than interindividual variation. Capturing and capitalizing on
such variation at the individual level is at the heart of precision
medicine.

The normative model describes the variation in typical brain
development showed a largely monotonic—and in some areas
nonlinear—decrease of CT throughout development, consis-
tent with previous neuroimaging studies (47–55). The fact that
we observed widespread interindividual differences between
ASD participants in terms of their deviations from the norma-
tive model explains why our classical case-control analysis
revealed few significant differences and why several large
previous neuroimaging studies have also only detected rela-
tively modest group level effects (8,19). The heterogeneity
underlying ASD is widely recognized (2,56–62); some studies
have reported reductions in CT in ASD (15), whereas some
studies have reported increases (16,63). Saliently, these in-
consistencies remain evident even in large studies; for
Biological Psychiatry: Cognitive Neuroscience and N
example, a large study derived from the ENIGMA (Enhancing
Neuro Imaging Genetics Through Meta Analysis) consortium
demonstrated both regional increases and decreases in ASD
at the group level that were consistent across development (8).
Other studies—many derived from the ABIDE (Autism Brain
Imaging Data Exchange) dataset (64)—have shown wide-
spread increases in CT early in development that are attenu-
ated later in development (19,20,48). Our results complement
these studies because of our focus on studying individual
variation within the ASD cohort. We show that 1) a subset of
participants show decreased CT and SA in childhood while 2)
other patients show regional increases in childhood in different
areas (e.g., pericalcarine cortex), and 3) some participants
show increased CT and SA in adolescence or adulthood.
Crucially, however, these effects show minimal overlap across
brain regions in different individuals. This is in line with another
recent study applying normative modeling to ASD, which
found effects in a subset of participants that were different
from the main group effects (65). Thus, we consider that group-
euroimaging June 2019; 4:567–578 www.sobp.org/BPCNNI 575

http://www.sobp.org/BPCNNI


Dissecting Heterogeneity of ASD With Normative Modeling
Biological
Psychiatry:
CNNI
level effects can be understood as the background on which
individual variation is superimposed. The individualized de-
viations we report were mostly located in areas previously
associated with ASD, such as the medial cortex including the
cingulate and dorsomedial prefrontal regions, lateral prefrontal
and parietal cortices, temporal cortices, and hippocampal
formation (6,7,63,66,67). While some of these regions have
been associated with social processing, the individual de-
viations in these regions were not associated with social
interaction or communication symptoms at the group level.
This could be for several reasons; for example, the anatomical
patterns associated with these symptoms may be expressed in
other measures of cortical anatomy [e.g., (68,69)] or in
subcortical regions. Adults and adolescents had relatively
fewer deviations, but these were positive (relatively increased
CT and SA) and widespread across prefrontal and temporal
cortices. Notably, we detected relatively few deviations in ASD
with ID, which is important to exclude the possibility that these
subjects were driving the effects described above. However,
the ASD with ID group was relatively small (n = 20), so we do
not draw strong conclusions about potential differences be-
tween ASD with and without ID.

The 15 subjects with the most atypical anatomy all had
ASD, which is extremely unlikely to occur by chance. More-
over, these participants had individualized brain alterations and
clinical characteristics. At the group level, the regional de-
viations we detected from the normative model were associ-
ated with the severity of lifetime and current autistic symptoms
(ADI-R and ADOS-2, respectively), demonstrating that our
model predictions may be clinically relevant. The deviation
from the normative range was most informative about repeti-
tive behavior symptom severity in that the strongest correla-
tions were between CT in prefrontal regions with restricted
repetitive behaviors, especially in female subjects and across
both parental report via ADI-R and observer ratings of current
symptoms via ADOS-2. These results broadly correspond with
previous reports (6,70,71) and suggest that ASD may be more
heterogeneous in male individuals, but we are cautious about
this interpretation because we did not test it directly. Taken
together, our results add weight to the importance of consid-
ering ASD in the context of a model of typical brain develop-
ment and at the individual level (39,63,67).

Our findings should be considered in the light of several
limitations. First, the trajectories of brain development were
based on cross-sectional data and should be validated in a
longitudinal cohort. Longitudinal follow-up data are currently
being acquired and will be the subject of a future report.
Moreover, while our sample size is similar to other neuro-
imaging studies of brain development [e.g., (72)], the model
would yield more precise estimates with more data. Second,
we registered all subjects to a standard adult template brain,
as is standard in the field (10,63,67,73–75), which could cause
bias. However, there were few deviations in the TD cohort,
which makes this possibility unlikely. Third, our data do not
permit strong inferences about the degree to which con-
founding variables may have influenced our findings. We found
moderate associations between deviations from the normative
models and a surrogate metric of image quality, but these were
also associated with childhood ASD symptoms, comorbid
attention-deficit/hyperactivity disorder symptoms, and IQ.
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Moreover, our study design does not permit inferences about
the direction of causality. For example, subjects with the most
abnormal anatomy may also have the most impairment.
Finally, we did not perform manual edits on the cortical surface
reconstructions. While this eliminates one potential source of
bias, the results need to be interpreted in the light of this, and it
is possible that performing manual edits may improve the
quality of the surface reconstructions in some cases.

In conclusion, we estimated a normative model of cortical
development based on a large TD cohort and applied this
model to a heterogeneous ASD cohort. Our results show that it
is necessary to look beyond the case-control paradigm—

which is limited to detecting group-level effects describing
the “average ASD participant”—to understand the heteroge-
neous neurobiology of ASD. Normative modeling is well suited
for this purpose, as it can chart the individualized deviation of
each individual subject relative to the normative range, and
hence provides an excellent tool for understanding the het-
erogeneity of psychiatric disorders.
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