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INTRODUCTION

Detecting brain tumors in the early stages is important 
because prognosis depends on tumor progression, such as 
size and location [1]. While the gold standard for brain 
tumor diagnosis remains detection by contrast-enhanced 
brain MRI, relatively long scanning time under emergent 
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conditions becomes a problem, along with the risk of side 
effects due to contrast media use [2]. In contrast, CT has 
the advantages of faster scan times, widespread availability, 
and low cost. Therefore, brain CT is frequently chosen 
as the first imaging modality for diagnosing intracranial 
disease. However, depending on the properties of the 
tumor, conventional CT may occasionally fail to depict a 
brain tumor because of lower contrast with the surrounding 
tissue.

Dual-energy CT (DECT) images are derived by a 
combination of two separate polychromatic image data, 
which enables the creation of virtual monochromatic 
images (VMIs) at arbitrary energy (keV) levels and material-
specific images such as iodine density images [3-6]. VMIs 
represent a simulation of the attenuation behavior of an 
ideal monochromatic X-ray beam, and they can better 
suppress both beam-hardening and energy-shift phenomena 
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compared with conventional polychromatic CT images [7-
10]. Thus, VMIs can be used to obtain constituent images 
of varying contrasts by changing the monochromatic energy 
levels.

DECT can potentially improve the detection of brain 
tumors, and a few reports on DECT use for brain tumors 
have been published [11]. However, to the best of our 
knowledge, information on the suitability of VMIs and 
optimal energy levels for the diagnosis of brain tumors has 
not been established [12-16]. Therefore, this study aimed 
to evaluate the usefulness of VMIs acquired using dual-layer 
(DL) DECT for diagnosing brain tumors and to identify the 
optimal energy levels for detecting brain tumors.

MATERIALS AND METHODS

This retrospective study was approved by the Institutional 
Review Board, and the need for informed consent was 
waived (IRB No. 1367).

Patients
We retrospectively screened and identified 34 patients 

with brain tumors who had undergone plain head DL-DECT 
(IQon Spectral CT; Philips Healthcare) between March 2017 
and June 2018 for potential inclusion in this study. Among 
them, 2 patients with meningioma and schwannoma were 
excluded to not include patients with tumors outside the 
brain parenchyma in the study. Data from the remaining 
32 cases comprising 18 men and 14 women (mean age, 
65.5 years; range, 34–85 years) with body weights ranging 
from 38.7 to 87.8 kg (mean, 60.6 kg) were used for 
analyses in this study. Of the 32 patients with tumors, 15 
had glioblastoma (GBM), 7 had malignant lymphoma, 5 
had high-grade glioma other than GBM, 3 had low-grade 
glioma, and 2 had metastatic tumor. Of these 32 patients 
with tumors, 29 were diagnosed pathologically, whereas 
3 were diagnosed on the basis of clinical background and 
additional or follow-up imaging, including MRI. Brain 
tumors with tumor sizes ranging from 1.3 to 7.5 cm (mean, 
4.2 cm) were located in the cerebrum in 28 cases, the brain 
stem in 2 cases, and the cerebellum in 2 cases.

CT Scanning Protocols
The parameters for non-contrast head CT imaging were 

detector collimation 64 x 0.625 mm, 500 ms tube rotation 
time, and 0.298 helical pitch (beam pitch). The tube 
voltage was 120-kVp with a tube current of 268 mA. The 

head was scanned from the foramen magnum to the end 
of the skull in a caudocranial direction. The mean CT dose 
index volume was 76.1 mGy.

CT Image Reconstruction
Spectral image data were post-processed at a dedicated 

workstation (Spectral Diagnostic Suite; Philips Healthcare) 
to generate VMIs at 17 different energy levels (range 40–
200 keV at 10 keV intervals) with a spectral level of 1. We 
used iterative reconstruction-reconstructed conventional CT 
images (iDose level 1; Philips Healthcare) as controls. The 
slice thickness of the head CT was 1 and 5 mm, and 1 mm 
images were used for analyses.

Quantitative Image Analysis 
A radiologist with 21 years of experience with 

neuroimaging quantitatively analyzed the VMIs and 
conventional CT images. A circular region of interest (ROI) 
of approximately 25 mm2 was placed on each anatomic area 
to measure the CT attenuation of grey matter (GM; ROIGM), 
white matter (WM; ROIWM), and brain tumor (ROItumor), while 
carefully avoiding neighboring tissue and cerebrospinal 
fluid. The ROIGM was placed in the putamen, while the ROIWM 
was placed contralateral to the normal WM of the tumor to 
exclude edema of the tumor from the ROI. Image noise was 
defined as the standard deviation (SD) of the ROIWM. The 
GM-WM contrast was calculated as the difference between 
CT attenuation of GM and WM. The contrast-to-noise ratio 
(CNR) was calculated using the following formula: 

CNRGM-WM = (ROIGM - ROIWM)/image noise
CNRtumor-WM = (ROItumor - ROIWM)/image noise
CNRtumor-GM = (ROItumor - ROIGM)/image noise

We defined the optimized energy VMI as that which 
resulted in images with the highest CNR. We compared 
attenuation, image noise, contrast, and CNR between VMIs 
at the optimized energy level and conventional CT images. 

Qualitative Image Analysis 
We also performed a qualitative image analysis of the 

optimized energy VMI and conventional CT images. We 
used the standard brain window setting (window level, 35 
Hounsfield unit [HU]; window width, 80 HU) and adjusted 
the window level and width as needed during the qualitative 
assessment.

Two board-certified radiologists with 8 and 10 years of 
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experience in neuroimaging, respectively, used a 4-point 
subjective scale to independently score the image quality 
with regard to noise, contrast, margin, artifact, and 
diagnostic confidence of tumor detection. Both optimized 
energy level VMIs and conventional CT images were scored. 
Both readers were blinded to the reconstruction technique 
and evaluated a randomized CT dataset. 

Contrast was evaluated between the tumor and its 
surrounding tissue, and the margin was assessed as the 
clarity of the tumor margins. Diagnostic confidence of 
tumor detection was evaluated as a positively suspected 
lesion in the tumor region. The scores for contrast, margin, 
and diagnostic confidence were 1 (unacceptable), 2 
(suboptimal, but acceptable), 3 (good), or 4 (excellent). 
Noise and artifacts were scored as grade 1 (poor), grade 2 
(evaluable with moderate artifacts, acceptable for routine 
clinical diagnosis), grade 3 (good with minor artifacts, good 
diagnostic quality), and grade 4 (excellent, no artifacts, 
unrestricted evaluation). Interobserver disagreement was 
resolved by consensus.

Statistical Analysis
All statistical analyses were performed using Python 

programming software (version 3.6.3). Numerical values 
are expressed as the mean ± SD. Quantitative image 
analysis using the paired t test was performed to compare 
optimized VMIs and conventional CT images. In qualitative 
image analysis, all scores between the optimized VMIs 

and conventional CT images were compared using the 
Wilcoxon signed-rank test. To evaluate the interobserver 
agreement in the qualitative analysis, we used the following 
interpretation of the kappa coefficients: < 0.20 = slight, 
0.21–0.40 = fair, 0.41–0.60 = moderate, 0.61–0.80 = good, 
and 0.81–1.00 = excellent. P value < 0.05 was considered 
statistically significant.

RESULTS

Quantitative Image Analysis
Image noise in VMIs increased with decreasing energy 

levels (Fig. 1A); however, even 40 keV image noise (5.5 
± 1.4) which was the highest of all the energy levels 
tested was significantly lower than image noise (5.8 ± 
1.2) of conventional CT images (p = 0.03) (Fig. 1B). In 
VMIs, attenuation in the GM, the WM, and the brain tumor 
increased as the energy level decreased (Fig. 2A). Similarly, 
all CNRs and contrast between GM-WM, tumor-WM, and 
tumor-GM of VMIs increased as the energy level decreased 
(Fig. 2B, C). CNRs of the 40-keV images were the highest 
among VMIs at all energy levels tested.

CT attenuation of GM, WM, and tumor at 40 keV was 
significantly higher than that of conventional CT images  
(p < 0.001, p = 0.001, and p < 0.001, respectively). Contrast 
and CNR between tumor and WM at 40 keV were significantly 
higher than those of conventional CT images (p < 0.001) 
(Fig. 3); however, there was no significant difference in 

Fig. 1. Image noise according to keV or kVp.
Among all virtual monochromatic images, image noise was the highest in 40-keV images of (A), but it was lower than that of conventional CT 
images (B). It consists of box representing values of the 1st and the 3rd quartile, separation line inside box representing median value, and two 
whiskers representing minimum and maximum values. HU = Hounsfield unit
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Fig. 3. The contrast and CNR between tumor-WM and those between tumor-GM at 40 keV and 120 kVp. 
The contrast (A) and CNR (B) between tumor-WM at 40 keV were significantly higher than those of conventional CT images (p < 0.001, p < 0.001). 
However, the contrast (C) and CNR (D) between tumor-GM at 40 keV were not significantly higher than those of conventional CT images (p = 0.47, p = 
0.31). It consists of a box representing the values of the 1st and the 3rd quartile, the separation line inside the box representing the median value, and 
two whiskers representing minimum and maximum values. CNR = contrast-to-noise ratio, GM = grey matter, HU = Hounsfield unit, WM = white matter
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55

50

45

40

35

30

25

20

CT
 n

um
be

r 
(H

U
)

40    60   80   100  120  140  160  180

Energy (keV)

WM
GM
Brain tumor

A

25

20

15

10

5

0

-5

Co
nt

ra
st

 (
H

U
)

40    60   80   100  120  140  160  180

Energy (keV)

Grey-white
White-tumor
Grey-tumor

B

5

4

3

2

1

0

-1

CN
R

40    60   80   100  120  140  160  180

Energy (keV)

Grey-white
White-tumor
Grey-tumor

C



955

Usefulness of Dual-Layer Computed Tomography for Brain Tumor

https://doi.org/10.3348/kjr.2020.0677kjronline.org

contrast or CNR between tumor and GM in 40-keV and 
conventional CT images (p = 0.47 and p = 0.31). Details of 
the quantitative image analysis are shown in Table 1.

Qualitative Image Analysis
Table 2 shows the results of the qualitative image 

analysis. The values assigned to contrast, margin, and 
diagnostic confidence of tumor detection were significantly 
higher for 40-keV images than for conventional CT images 
(p < 0.001, p < 0.001, and p = 0.002, respectively). 
In contrast, values assigned to noise and artifact were 
significantly higher in conventional CT images than in 40-
keV images (p = 0.02 and p < 0.001, respectively). The 
interobserver agreement on noise, contrast, margin, artifact, 
and diagnostic confidence of tumor were found to range 
between moderate and excellent (kappa = 0.423, 0.877, 
0.725, 0.735, and 0.697, respectively). Representative 
cases are shown in Figures 4 and 5.

DISCUSSION

In our analysis of unenhanced head CT images of patients 

with brain tumors, we showed that optimal VMIs with 
maximum CNR were obtained at 40 keV. Furthermore, both 
contrast and CNR between the tumor and WM in the 40 
keV images were significantly higher than those in the 
conventional CT images (p < 0.001). Conversely, there were 
no significant differences in contrast and CNRGM-tumor between 
the 40 keV and conventional CT images. To the best of our 
knowledge, this is the first study to analyze optimal VMI 
energy levels in DL-DECT images of brain tumors in non-
contrast head CT.

Our study suggests that low-energy (40 keV) images 
might be well-suited to delineate tumors in the WM because 
both contrast and CNRWM-tumor were superior in these low 
keV images. This observed superior tissue contrast at lower 
energy images may be due to the increased photoelectric 
effect [13,17,18]. The rate of photoelectric absorption in 
GM is higher than that in WM because WM contains 8% 
more carbon and 8% less oxygen than GM for myelinization, 
resulting in a lower effective atomic number of WM 
compared to that of GM [19]. Additionally, as the energy 
level decreases in the VMIs, noise increases [7], but we 
found that image noise in the VMIs at all energy levels 
tested was significantly lower than that of conventional CT 
images. These observations are comparable to those from 
previous reports of lower noise in VMIs compared with that 
in conventional images in DL-DECT [20,21].

The DL-DECT system simultaneously collects both low- 
and high-energy data for a given anatomical region using 
two detector layers. Thus, VMI reconstruction can reduce 
beam-hardening artifacts and anti-correlated noise in 
photoelectric and Compton scatter images. As a result, in 
low keV images, noise also lowers conventionally, and image 
quality is considered to be improved. This is an important 
advantage of DL-DECT imaging, which is not available with 
rapid-switching DECT or dual-source DECT imaging [21].

Notably, dual-energy CT might not be as effective in 
delineating GM tumors as it is for WM tumors because 
contrast and CNR between the GM and tumor in low 
keV images were not significantly higher than those 
in conventional images. This is because GM consists 
predominantly of neuronal cell bodies and dendrites and 
contains less myelin sheath than WM. The low keV increased 
CT attenuation not only in the tumor but also in the GM, 
thus reducing contrast and CNR. Additionally, even though 
noise in the 40-keV images was lower in the quantitative 
analysis (p = 0.03), the qualitative analysis showed 
that both noise and artifact in 40-keV images worsened 

Table 1. Quantitative Image Analysis

40-keV 
Images

Conventional 
Images

P

CT attenuation of tumor (HU) 46.4 ± 8.4 34.6 ± 5.4 < 0.001
CT attenuation of WM (HU) 29.2 ± 4.9 26.2 ± 2.8  0.001
CT attenuation of GM (HU) 45.6 ± 5.4 34.4 ± 1.9 < 0.001
Image noise (HU) 5.5 ± 1.4 5.8 ± 1.2  0.03
Contrast of tumor-WM (HU) 17.3 ± 9.0 8.4 ± 5.5 < 0.001
Contrast of tumor-GM (HU) 0.8 ± 7.6 0.2 ± 5.4 0.47
CNR of tumor-WM 3.4 ± 1.9 1.5 ± 1.0 < 0.001
CNR of tumor-GM 0.2 ± 1.4 0.1 ± 0.9 0.31

Data are shown as mean ± standard deviation. CNR = contrast-to-
noise ratio, GM = grey matter, HU = Hounsfield unit, WM = white 
matter

Table 2. Qualitative Image Analysis

40-keV 
Images

Conventional 
Images

P

Noise 2 (2–2) 2 (2–2.25) 0.02
Contrast 4 (3–4) 3 (3–3.25) < 0.001
Margin 3 (3–4) 3 (2–3) < 0.001
Artifact 2 (1–2) 3 (3–3) < 0.001
Diagnostic confidence
  of brain tumor detection

4 (3–4) 3 (3–3)  0.002

All parameters were measured on a 4-point scale, with 1 indicating 
lowest quality and 4 indicating highest quality. Data are shown as 
median (25–75th percentile).
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Fig. 4. Images of an 85-year-old woman with diffuse large B-cell lymphoma. The optimized energy level was defined as that resulting 
in images with the highest contrast-to-noise ratio between tumor (arrows) and white matter (virtual monochromatic images at 40 keV). The 
contrast of the 40-keV images appeared to be visually superior.
A. 40 keV image. B. 120 kVp image. C. 200 keV image.

A

B

C
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compared with those in conventional CT images (p = 0.02 
and p < 0.001). Taken together, these observations imply 
that utilizing low-energy VMIs may not be very effective for 
tumors located in the GM. 

Our study has some limitations. First, the number of 
cases in this study was small and we could not evaluate the 
diagnostic performance of VMIs and conventional images for 
brain tumors that are difficult to visualize on unenhanced 
CT (e.g., small tumors and low-grade gliomas). Our results 
need to be validated in larger scale studies. Second, we 
were unable to compare the image quality with small intra-
axial tumors confined to the cerebral cortex or extra-
axial tumors such as meningiomas. Future studies should 
address these aspects as well. Third, we evaluated the 
contrast between tumor and normal GM or WM and did not 
evaluate the contrast between peritumoral low attenuation 
and GM or WM in this study. It might be possible that the 
decreased CT numbers of WM in low keV images result in 
decreased contrast between peritumoral low attenuation 
and WM, especially for high-grade gliomas. Further studies 
are needed to determine the optimal keV to evaluate the 
extent of tumor invasion. Fourth, we defined optimal keV as 
that which yielded the highest CNR between the tumor and 
the brain parenchyma; however, other reports have stated 
that high-energy monochromatic (190 keV) images may be 
more reliable than standard 120 kV images for detecting 
intracranial hemorrhages [22]. While we show that high keV 
images have lower contrast between the WM and tumor, 

it may also reduce noise and artifacts. Nonetheless, we 
cannot rule out the possibility that, compared with low keV 
images, high keV images would be well-suited to delineate 
tumors at the brain surface and at the cranial base. Further 
investigations will be necessary to address these aspects.

In conclusion, in non-contrast head CT for patients 
with brain tumors, 40 keV VMIs from DL-DECT images 
offer superior tumor contrast and diagnostic confidence 
for detecting brain tumors than conventional CT images, 
especially in WM brain tumors.
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