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Abstract: The energy storage capacity of batteries and supercapacitors has seen rising demand
and problems as large-scale energy storage systems and electric gadgets have become more widely
adopted. With the development of nano-scale materials, the electrodes of these devices have changed
dramatically. Heterostructure materials have gained increased interest as next-generation materials
due to their unique interfaces, resilient structures and synergistic effects, providing the capacity to
improve energy/power outputs and battery longevity. This review focuses on the role of MgO in
heterostructured magnetic and energy storage devices and their applications and synthetic strategies.
The role of metal oxides in manufacturing heterostructures has received much attention, especially
MgO. Heterostructures have stronger interactions between tightly packed interfaces and perform
better than single structures. Due to their typical physical and chemical properties, MgO heterostruc-
tures have made a breakthrough in energy storage. In perpendicularly magnetized heterostructures,
the MgO’s thickness significantly affects the magnetic properties, which is good news for the next
generation of high-speed magnetic storage devices.

Keywords: MgO; heterostructures; magnetic storage; energy storage

1. Introduction

The overconsumption of fossil fuels drives us to create and use more renewable energy
in our daily lives. Various electrochemical energy storage systems, such as lithium-ion
batteries, sodium-ion batteries and potassium-ion batteries (KIBs), have been created in
the last two decades to store and utilize this energy at any time. The performance of
these devices mainly depends on the materials used to make the electrodes. Graphite,
hard carbon, metal oxides, sulfides and carbides, among other unique materials, have
shown remarkable electrochemical performance when used as electrodes in energy storage
devices [1], as shown in (Figure 1).

Like a coin with two faces, each material has its drawbacks that limit its ability to
perform at its peak. The scientific community has studied high-performance electrode
materials’ properties and design principles, including structural design, growth on a free-
standing substrate and protective layer coating, which considerably enhances the energy
storage capacity of new materials. Creating high-performance electrodes by building
heterostructures is a new concept that has just been introduced and is now undergoing
successful development. Most heterostructure electrodes outperform their parts in re-
versible capacity and cycle stability and some even surpass the theoretical capacity limit,
proving the superiority of this concept. Looking back at the history of condensed matter
physics, we see that the notion of the heterostructure was not originally presented in the
context of energy storage. W. Shockley initially offered this idea for wide-gap semiconduc-
tor emitter applications in semiconductor physics [2–4]. Different semiconductors with
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identical crystal structures, atomic spacing and thermal expansion coefficients make up the
heterostructure. A heterostructure’s chemical composition and charge distribution can alter
across this interface due to the multiple band structures, predominant carrier concentration
differential and Fermi-level differences in the band structure [5].
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Figure 1. Schematic illustration of MgO heterostructure applications, properties and fabrication.

Heterostructures are semiconductor structures that have a one-of-a-kind natural or-
ganization. A heterostructure is an essential structure made up of a mixture of two dif-
ferent semiconductor materials as shown in (Figure 2). The materials have inconsistent
bandgaps [6,7].

It has three types: the type-I heterostructure (straddling gap), the type-II heterostruc-
ture (staggered gap) and the type-III heterostructure (broken gap) [8,9]. The staggering
band structure of type-II heterostructures causes the photo-excited carriers to be effectively
separated into different monolayers, lowering the recombination rate [10,11]. Heterostruc-
tures can be made of several materials with a tight interface, and the properties of these
structures can be changed by altering their physicochemical properties. Heterostructures
are classified based on the material configuration and interface, as follows: (1) spheric,
(2) cylindrical, (3) planar and (4) cubic. Because nanomaterials exhibit unusual properties
at the 0D level, they have become a promising area of research. In nanoscale structures,
such as nanoclusters and nano dispersions, central shelled structures, quantum wells, and
quantum nodes are the most common 0D heterostructures [12,13].
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TMD layer. (c) Two different forms of TMDs build lateral heterostructure. (d) Vertical hetero-
structure is constructed using two kinds of TMDs [14]. 
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Figure 2. The preparation of lateral and vertical heterostructures is depicted in a schematic diagram.
(a) The first TMD layer on the base. (b) The construction of a second TMD layer using a first TMD
layer. (c) Two different forms of TMDs build lateral heterostructure. (d) Vertical heterostructure is
constructed using two kinds of TMDs [14].

2. Metal Oxide

Metal oxides are a class of materials that are formed when the elements of metal and
oxygen interact. Some nanomaterials have been found to act as solid catalysts, and their
catalytic activity increases when they are reduced to nanoscale sizes. When empty voids or
pores are introduced into metal oxide structures, the materials become even more beneficial
for use in various applications. Their applications allow them to be combined with other
materials, enabling them to take advantage of each other’s properties. Metal oxide porosity
can be classified as microporous, mesoporous, or macroporous if the pore sizes are 2 nm,
2–50 nm or greater than 50 nm, respectively [15,16]. The band gap energies of different metal
oxides are MoO2 (1.74 eV), MoO3 (2.94 eV), ZnO (3.2 eV), CuO (1.7 eV), TiO2 (3.2 eV) and
Fe2O3 (2.14 eV). Their optical and electronic properties make them useful as 2D materials in
photodetectors as well as in high-temperature electronic devices. They are used for a variety
of applications, including the oxidation of toxic pollutants as well as the photocatalytic
degradation of dyes in waste water. Their increased surface area and reactive sites create
sufficient heat energy and chemical agents to degrade pollutants [17]. The use of metal
oxide nanostructures, such as cerium oxide, zinc oxide, iron oxide, tin oxide, zirconium
oxide, titanium oxide, and magnesium oxide in biocompatible coatings and catalysts, has
been shown to have potential applications in a wide range of industries [18].

Magnesium oxide (MgO) is a well-known insulator with a wide bandgap of 7.8 eV. It
is appealing for use in insulation applications due to its low heat capacity and high melting
point [19]. Magnesium oxide nanostructures have also been used as protective layers for
dielectrics in AC circuits due to their anti-sputtering properties, high transmittance and
secondary electron emission coefficient [20].

3. Magnesium Oxide
3.1. Basic

Magnesium oxide, commonly known as periclase [21], is a hygroscopic white solid
mineral derived from the Greek term “periklao”, meaning “around” and “to cut”. Mag-
nesium oxide has the empirical formula MgO and its lattice is made up of magnesium
ions and oxygen ions linked by an ionic bond. Magnesium oxide is produced through
the calcination of magnesium hydroxide Mg(OH)2 or magnesium carbonate MgCO3. The
surface area and pore size of the formed magnesium oxide as well as the final reactivity are
all affected by the thermal treatment used during the calcination process. The calcining of
magnesium oxide occurs between 700 and 1000 degrees Celsius, forming caustic calcined
magnesium oxide between 1000 and 1500 degrees where lower chemical activity magne-
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sium oxide is formed, and above 1500 degrees where refractory magnesium oxide with
reduced chemical activity is formed. This refractory magnesium oxide is used primarily for
electrical and refractory applications [22].

Magnesium oxide has many uses; it is used in catalysts and to remediate toxic waste,
and is added to refractory products, paint and superconductor materials. Magnesium
oxide is an insulator; however, one-dimensional magnesium oxide nanostructures can
exhibit violet blue and blue-green phosphorescence [23–30] and are used in miniaturized
optical devices. The effects of dopants on the PL properties of one-dimensional MgO
nanostructures have been reported [25,26].

3.2. MgO Properties

Magnesium oxide has physical qualities that make it a viable choice for a variety
of applications [22]. It comes in a variety of colors including white, brown and black
(depending on the presence of iron or another foreign element). When considering the
outermost layers of magnesium oxide, it becomes clear that it has the simplest oxide
structure known as the rock-salt structure. It has a density of 3.579 g per cubic centimeter
and a Mohs hardness of 5 on the scale. At 100 ◦C, the thermal conductivity of sintered
magnesium oxide is 36 W/m2 (mK). Magnesium oxide has extremely high melting and
boiling points due to its refractory qualities (melting point 2800 ◦C and boiling point
3600 ◦C). The purity of magnesium oxide determines the value of electrical resistance.
Electrical resistivity values for high purity magnesia can approach 1016 Ωm. Specific
resistance is mostly determined by chemical purity, although at higher temperatures such
as 2000 ◦C and above, the purity of magnesia has no bearing on electrical resistivity values.
Magnesium oxide has a dielectric constant ranging from 3.2 to 9.8 at 25 ◦C and 1 MHz and
dielectric loss values for the same conditions are approximately 10−4 [22].

Magnesium oxide has a variety of uses in many different industries. Fireproofing
elements in construction materials are valued for their resistance to heat [27]. Corrosion is
also not an option in sectors like nuclear, chemical and superalloys [28]. Magnesium oxide
is used as an antacid, laxative and magnesium supplement. It is also used to treat heartburn
and sour stomach, as well as for insulators [31], fertilizers [32], water treatment [33] and
protective coatings [34]. There is currently a movement to utilize nanoscale fillers [35].
Nanotechnology is defined as creating functional structures in the range of 0.1–100 nm
using various physical or chemical methods [36]. That is true for magnesium oxide as well.
The sol–gel method [31] or the hydrothermal method [32] can be utilized to make nanoscale
magnesium oxide. MgO is a potential electrical insulator for high-voltage applications
such as insulation. The large band gap (7.8 eV) and high-volume resistivity (1017 W/m)
contribute to its suitability. Nanoscale oxides have the highest volume resistivity value [33].
NanoAmor produces magnesium oxide powder with an average diameter of 20 nm, a
specific surface area of more than 60 m2/g and a density of 0.3 g/cm3.

Magnesium oxide nanoparticles are non-toxic, relatively inexpensive, and easy to
manufacture. They usually have a particle size of 5–100 nanometers and a surface area of
25–50 m2/g. Despite their tiny size, metal oxide nanoparticles have higher melting and
boiling points than bulk metal oxides [34]. Magnesium oxide, a compound with a cubic
structure, has an empirical formula of MgO and a lattice arrangement of Mg2+ ions and O2−

ions in ionic bonding [37]. While magnesium oxide nanoparticles are only slightly soluble
in water at 20 degrees Celsius, they can be used to create products with properties such
as dust repellence, wear-resistance and fire-resistance, along with high intensity, hardness
and thermal insulation [38].

3.3. Fabrication Techniques
3.3.1. Chemical Vapor Deposition

Chemical vapor deposition (CVD) synthesis is a bottom-up approach to preparing
vertical 2D heterostructures that can also be used to grow planar multi-junction heterostruc-
tures. Various techniques have been developed for growing vertically stacked heterostruc-
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tures with atomically sharp interfaces and clean surfaces, as well as for fabricating planar
heterostructures with controllable properties [39]. The magnesium oxide nanowires were
principally synthesized through a method called chemical vapor deposition (CVD) and
pulsed laser deposition (PLD). The CVD method is used to produce complex oxides for a
variety of applications. While physical vapor deposition techniques allow for more flexibil-
ity in composition changes and are compatible with future device fabrication technologies,
they are limited by the control of the composition, which is a major challenge in CVD.
In response to these concerns, a liquid injection delivery scheme has been proposed [40].
The technique can be used to grow oxides at the nanometer scale and has been applied
to epitaxially grow a variety of complex functional oxides including ferroelectrics and
multiferroics [41,42].

3.3.2. Magnetron Sputtering

One of the most common methods is magnetron sputtering. Magnets are used to trap
secondary electrons, keeping them close to the target and increasing the plasma ionization
rate, allowing for faster deposition rates. Using a magnetron sputtering system, one can
coat large substrates with thin films made of materials such as gold and aluminum that
have excellent adhesion on the support surface and uniform coverage of steps and small
features (Figure 3b) [43].

3.3.3. Atomic Layer Deposition (ALD)

The atomic layer deposition process is used in conjunction with template-assisted pro-
cedures to build metal oxide heterostructures. The precursors are pulsed and chemisorbed
on the patterned substrate during the ALD process, which takes place in a reactor. The pre-
cursor material can take the shape of a liquid, solid or gas. The structure and morphology of
the produced materials are influenced by the composition and chemistry of the vapor phase.
The deposition temperature influences the material adherence and growth [44]. Xue et al.
reported the fabrication of MgO/InP heterostructures by means of atomic layer deposition.
The findings suggest that MgO/InP heterojunctions could be useful for electrical devices
based on InP substrates. The calculated band gap of MgO is large enough to reduce the
leakage current across the gap (Figure 3c) [45].

3.3.4. Hydrothermal/Solvothermal Synthesis

One of the most explored methods is hydrothermal synthesis, which allows for the
creation of a wide range of metal oxide heterojunctions. The chemical reactions and
solubility changes of compounds in aqueous solution that occur above ambient temperature
and pressure are the basis for this process. The synthesis technique is carried out in an
autoclave, which allows for the precise control of the solution content, reaction temperature
and time [46]. The solvothermal approach has similarities with hydrothermal synthesis,
except that the solvent used to prepare the precursors is not aqueous. Shiming et al.
used a simple two-step solvothermal approach to successfully construct heterostructured
TiO2/MgO NWAs with lengths of 32 m on FTO glass. The development of a novel self-
powered UVPD based on the photoelectrochemical cell using heterostructured TiO2/MgO
nanowires was reported. By combining the heterostructured nanowire arrays with an
electrolyte, the device shows a greater open-circuit voltage and photocurrent density than
devices made of pure TiO2 nanowires, which is attributed to less charge recombination at
the TiO2/MgO nanowire/electrolyte interfaces (Figure 3d) [47].
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4. Magnetic Storage Applications
4.1. Magnetic Storage Devices Using MgO in Heterostructures

Many academics have been interested in the Dzyaloshinskii Moriya Interaction (DMI)
in recent years, because magnetism and chirality play a significant role in generating
magnetic skyrmions and chiral domain barriers, which may be utilized to increase data
storage [15,53]. Various MgO heterostructures their synthetic routes applications are shown
in Table 1. The effective control of domain-wall motion can be achieved in advanced storage
class memory devices by adjusting the thickness of the MgO. The magnetization and
domain-wall motion in upright magnetized Ta/Pt/Co/MgO/Pt heterojunctions depend
on the MgO’s thickness [54].
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Table 1. Various heterostructures of MgO: synthetic strategies and applications.

Sr No Material Developing Method Application Reference

1 Ta/Pt/Co/MgO/Pt magnetron sputtering tuning of DMI [55]

2 Pt/CoFeB/MgO magnetron sputtering magnetization switching [56]

3 X/CoFeB/MgO magnetron sputtering [57]

4 Au Embedded
ZnO/heterostructure

hydrothermal and citrate
reduction methods photocatalytic activity [58]

5 Au modified SrTiO3/TiO2
hydrothermal

post-photoreduction method photocatalytic activity [59]

6 steel mesh embedded MgO
nanowires conventional evaporation high-emission

current density [60]

7 Fe4N/MgO exchange correlation potential switching magnetic anisotropy [61]

8 Ta/FeCo/MgO first-principles density
functional

strain control on
magnetocrystalline anisotropy [62]

9 Hf/CoFeB/MgO magnetron sputtering spin-orbit torques [63]

10 Au/FeCo/MgO magnetron sputtering VCMA behavior [64]

11 Ru/Co2FeA/MgO deposition method voltage control on
switching fields [65]

12 CoFeB/MgO magnetron sputtering reduce the switching energy [66]

13 CoFeB/MgO physical vapor deposition electric field-induced
switching with energies [67]

14 Cr/Fe/MgO electron beam evaporation coefficient of the electric
field effect [68]

15 MgO/NCS-CC between
MgO and NiCo2S4

electrodeposition
hydrothermal and annealing

oxygen evolution
reaction activity [69]

16 Ta/CoFeB/Mgo annealing negative influence on the
crystallization of CoFe [70]

17 VTe2@MgO CVD and vapor-phase electrocatalytic activity for
LiPS regulation [71]

18 tungsten doped single
crystal Fe/MgO

radio frequency and direct
current sputtering PMA and voltage effect [72]

19 Fe/MgAl2O4(001) electron beam evaporation
perpendicular magnetic tunnel

junctions and theoretical
predictions.

[73]

20 β-Ga2O3/MgO thermal evaporation phototransistor with
ultrahigh sensitivity [74]

The obtained values, comprising two sets of specimens with opposing magnetic fields,
show that as the MgO content increases, the equilibrium magnetic and repulsive fields
decrease. However, adding an Mg layer minimizes saturation magnetization and coercive
field. As shown in Figure 4b–e, the greatest diversity of loop sizes is seen in the loops
with the thinnest magnesia and those without magnesia. Figure 4a shows cross-sectional
images of the velocity field in a cylindrical domain with and without MgO. The velocity
gradients are nearly quadratic, with the lowest gradients occurring at Hx non-zero. A
comparable polynomial dependency of Hx on -ν can be seen when Hz is reversed, with
the bare minimum occurring at the Hx inverse value. The black and red data points show
that the MgO thickness exceeded a critical thickness, resulting in the DMI falling. The
experimental findings of samples with Mg insertion layers indicated this the reduction in
DMI is due to excessive oxidation. The diameter of the MgO layer grows as it becomes
thicker. It is also possible that the DMI values for materials containing Mg will reveal that
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adjusting DMI results from an interfacial effect. Monoatomic Mg can be inserted into the
MgO layer for tuning DMI and obtaining a high value of 2.32 mJ/m2 [55].
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with perpendicular magnetic fields were observed. Hysteresis loops for samples (d) without and
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The L spin–orbit coupling that occurs in ultrathin magnetic heterostructures offers
a new approach to electrically regulating magnetic moments. In a ferromagnet, the con-
struction of a Neel-type domain wall may be driven by the spin Hall effect. Magnetic scale
length and the evolution of magnetic storages devices are shown in (Figure 5).

It has been claimed that the Dzyaloshinskii–Moriya interaction plays a significant role
in its formation. When the layer of metal next to a magnetic one is altered, the magnitude
and indication of the domain wall motion (DMI) in that magnetic layer can be altered.
When we tried using underlayers made of various materials (X = Hf, Ta, TaN and W),
we discovered that the domain wall goes either with or against the transfer of electrons
depending on the kind of component that was utilized. When the same underlayer material
is used for the top and bottom layers, it was discovered that the sign of the persistence
for the bulk spin–orbit coupling is still identical. However, when a different material is
used, the sign of the bulk spin–orbit coupling constant changes. In (Figure 6a), a domain
wall is shown as moving toward the positive X direction; this is true not just for Hf and Ta
underlayer films, but also for thin TaN underlayer films. The domain wall in these films
always travels in the same direction as the electron flow. For thicker TaN underlayer films
and all W underlayer films, the movement of the domain wall is in the opposite direction of
the flow of electrons [57]. The Dzyaloshinskii–Moriya interaction is seen here as a function
of the magnitude of the voltage pulse in Figure 6b,c.
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Due to the complexity of determining the structural symmetry of the interfaces, treat-
ing the origin of the DMI at the interface is more challenging. On the other hand, it was
reported that DMI’s sign changes depending on how the films are stacked [76,77], which is
under the use of the three-site indirect exchange [78]. Recent experiments [79] have shown
that the DMI does not change even when a nearby non-magnetic layer (Pt or Ta) has the
opposite sign of the spin–orbit coupling constant.

4.2. Magnetic Anisotropy of MgO Heterostructure

Strain significantly impacts the MCA value and causes the easy magnetic axis switch
of the rotational coupling between states that are occupied with dx2-y2 and ones that are
vacant with dxy. Investigating the energy and k-resolved dispersion of orbital features of the
minority-spin band produced from Fe at the FeCo/MgO interface contributes considerably
to PMA at zero strain. Research on the energy and k-resolved dispersion of the orbital
character and strain-induced alterations of spin–orbit-related d-states may reveal the nature
of the strain effect [62]. Magnetization shifting may be generated by spin-polarized current
by the use of the spin-transfer torque (STT-RAM) [80] or by an electric field employing the
magneto-electric effect (MeRAM) in magnetic tunnel junctions (MTJ) along with substantial
perpendicular magneto-crystalline anisotropy (PMA) for use in applications involving
high-density nonvolatile random access memory (RAM) [81–83]. An MTJ comprises thin
ferromagnetic (FM) films sandwiched between a magnesium oxide barrier and heavy metal
electrodes. The component layers are subjected to significant strain due to large lattice
mismatches. The spin–orbit coupling (SOC) connects the spin degree of freedom to lattice
distortion. As a result, the strain can significantly alter the system’s magneto-crystalline
anisotropy (MCA) and other magnetic properties. The epitaxial strain strongly affects the
magnetic correlation length [84] and PMA of magnetic oxides [85]. Recent tests have also
shown that epitaxial strain in thin layers of magnetic oxides and semiconductors produced
on diverse substrates may rotate the easy magnetic axis [86–88]. Strain and compositional
deformation were researched on MCA in thin-film and bulk Fe/Co alloys [89,90]. MCA is
significantly reduced when the FM layer is subjected to expansive strain. Furthermore, at a
critical strain value, the easy magnetic axis switches from perpendicular to in-plane [62].
The use of a slab supercell approach along (001) having three monolayers (MLs) of bcc
Ta, three MLs of B2-type Fe/Co, seven MLs of rock salt MgO and a 15 Å thick vacuum
region separating the periodic slabs simulates the epitaxial growth of the Ta/Fe/Co/MgO
junction, as shown in Figure 7a [62].

In magnetic tunnel junctions (MTJ), a rare-earth-free ferromagnetic nitride can be used
to create a high-spin polarization and curie temperature [91–95]. It was discovered that an
epitaxial Fe4N film on a MgO substrate exhibited magnetic anisotropy in the same plane
as the film. Epitaxial growth is possible with the Fe4N (001) films formed on MgO (001)
substrates. Fe4N has a lattice constant of 3.795 Å with a cubic anti-perovskite structure [92].
In the over-oxidized Fe4N/MgO interface, an additional O atom is placed in the interfacial
Fe4N layer. In the under-oxidized Fe4N/MgO structure, oxygen vacancies appear in the
Fe-N interfacial region due to its high regularity, which is similar to the Fe/MgO structural
research (Figure 8a,b) [96–98]. Interstitial redox and applied electric modulation can alter
the magnetism of Fe4N/MgO heterostructures by changing the magnetic anisotropy, which
depends on charge-mediated Fe d-orbital rearrangement (Figure 8c).
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As shown in Figure 8d, Fe4N, the magnetic anisotropy of Fe I and Fe II atoms, has
different response characteristics with the Fe II atom’s magnetic anisotropy being more
easily affected by environmental factors. An electric field can induce magnetic anisotropy,
making it easier to develop energy-efficient information storage. The Fe4N I-layer and
V-layers and the Fe I and Fe II atoms have opposite MAE, whereas the Fe4N III-layer has
the same sign of MAE, because of which the MAE of the interfacial Fe4N layer is so tiny.
The magnetic moment of Fe I and Fe II atoms changes when the N atom influences the
indirect exchange interaction between Fe atoms [61].
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Figure 8. (a) A series of Fe4N/MgO heterostructures were fabricated with varied interfacial con-
ditions. I–V are the layer numbers of Fe4N. Binding energies and magnetic anisotropy energy of
Fe4N/MgO heterostructures with varying interfacial conditions. (b) Layer-resolved magneto-acoustic
emission (MAE) of Fe4N/MgO heterostructures with varying interfacial conditions. (c) The MAE
of Fe (I) and Fe (II) atoms in Fe4N I-, III-, and V-layers of the pure Fe4N/MgO heterostructure is
presented. In the inset, we can see the structure of bulk Fe4N. (d) Charge density differences in
Fe4N/MgO heterostructures with varying interfacial conditions can be visualized by computing the
isosurface value of 0.15 e/ Å3. The magnetic moments of certain Fe atoms are highlighted in the
figure [61].

4.3. Perpendicular Magnetic Anisotropy

The current spin injectors (GaMnN) [99,100], GaCrN [101], Fe3O4 [102,103], and
CoFe [104,105] without in-plane magnetization anisotropy cannot be used in area dis-
persion topologies such as 3D displays for deployments of spin-LEDs and spin lasers as
shown in Figure 9a. This is because, in addition to creating light that is spirally oriented
from the quantum-well (QW) LED surface, the spin injector’s magnetization must be
kept perpendicular to the surface regarding optical directions [106]. If the spin injector’s
magnetization is in-plane, we will need an external magnetic field of several Tesla to ro-
tate it perpendicular to the formed layers. From tests and first-principles calculations,
Gao and co-workers have shown that Au/Co/MgO/GaN heterostructures exhibit a high
perpendicular magnetic anisotropy. The Au/Co/MgO heterostructures were epitaxially
produced on GaN/sapphire substrates using molecular beam epitaxy (MBE). The presence
of a substantial perpendicular magnetic anisotropy in a 4.6 nm thick Co on MgO/GaN
is discovered. After examining two control samples, it was discovered that most of the
PMA in the Au/Co/MgO/GaN heterostructure is caused by the Co/MgO interface. Ac-
cording to first-principles calculations on the Co (4 ML)/MgO structure, the MgO (111)
surface can boost the PMA value by roughly 40% when compared to the pure 4 ML thick
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Co hcp lm [107]. Figure 9c shows the p-orbitals and d-orbital-resolved Ki values for the
Fe/W/MgO, Fe/Re/MgO, Fe/Pt/MgO and Fe/Bi/MgO systems. One interfacial Fe atom
on Fe/MgO on each side contact was substituted through X resulting in the Fe/X/MgO
model. As a result, our model includes two symmetric X/MgO contacts [108] (Figure 9b).
To check the quality of the layer’s in situ reflections, high energy electron diffraction
(RHEED) measurements were performed with the incoming electron beam accelerated at
30 kV. In addition, Safdar et al.’s first-principles calculations were used to investigate inter-
facial perpendicular magnetic anisotropy and cleavage in Fe/X/MgO structures, wherein
X corresponds to one layer of lanthanides. Her findings indicate that W, Re and Pt are
promising heavy elements for improving perpendicular magnetic anisotropy in Fe/MgO.
The enhanced KI values for these elements are 2.43 mJ/m2, 2.37 mJ/m2 and 9.74 mJ/m2,
respectively. This work shows that by adding heavy components at the Fe/MgO inter-
face, interfacial engineering is viable for improving interfacial perpendicular magnetic
anisotropy [108].
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4.4. Anisotropy Voltage Control

In magnetic heterojunctions, regulating magnetic anisotropy by applying voltage
(VCMA) is critical for creating energy-efficient digital equipment with absurdly low energy
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usage, such as MRAMs [109,110]. Magneto-tunnel junctions (MTJs) are essential com-
ponents of high-performance spintronic devices [111]. Voltage-controlled magnetization
switching in MTJs has tremendously benefited the VCMA technique [66,67,83,112–120]. The
low power consumption of state-of-the-art CoFeB/MgO MTJs is achieved by controlling
their magnetization with a low-voltage magnetic field [66,67]. The CFA/MgO connec-
tion induces a substantial perpendicular magnetic anisotropy (PMA) in the Ru/Co2FeAl
(CFA)/MgO magnetic heterojunctions [121–123]. First-principles calculations suggest that
the CFA/MgO structure could exhibit a very high VCMA effect of up to 1000 fJ/Vm [124].
Boron dispersion in Ta/CoFeB/MgO compounds may result in unanticipated reactions
and/or inter-layer diffusion [125,126]. This is significant for both the electrode surface
PMA and VCMA effects. The interfacial atomic structures of growing extremely thin
CFA/MgO (001) heterostructures have recently been studied. Tunnel couplings with the
Ru/CFA/MgO structure were created and magnetized perpendicularly. Such junctions in
the CFA layer demonstrated good voltage control on switching fields. The CFA film has a
VCMA coefficient of 108 fJ/Vm at ambient temperature and 4 K [65].

Figure 10a depicts the entire stack structure of intended p-MTJs. In addition to each
layer’s deposition state, the voltage orientation is also recorded. When AC voltage is
applied between the top and bottom layers, the excellent orientation of the voltage source
is determined. The reference layer’s usage of CoFeB/Ta bilayers is intended to boost
the MR ratio by enhancing comprehensible tunneling over the MgO block: tunneling
resistance (R) vs. the out-of-plane magnetic field (H) for a designed p-MTJ with a 100 nm
dimension. A direct-current (dc) voltage of 1 mV was employed to assess the resistance.
The resistance-area product of the sample was 175 Ω µm2. A TMR ratio of 65% was attained.
At TMR, significant cycles were adjusted relative to the magnetic field at voltage levels of
800 mV, 1 mV and 800 mV. The structure in Figure 10b depicts an orthogonally magnetized
MTJ with the Ru/CFA/MgO/CoFeB structure. The normalized TMR curves are plotted
against the applied magnetic field under an in-plane magnetic field at various voltages
(the positive field area is displayed in this figure). The CFA magnetizations are a typical
normalized in-plane component. The darkened region may be used to determine the PMA
energy density. The magnetic anisotropy Kut for the CFA film relates to the electric field
(Figure 10c). The MTJs were alternatively exposed to 1 V bias voltages 300 times. The
drawings show the magnetic arrangement when a voltage is provided to the MTJ. The
inset shows the magnification used for 50 measurements. When a voltage is applied, a
significant change occurs in the CFA layer’s switching field (Hs). The voltage dependence
of the Hs relaxation rate for the CFA layer from the P-phase to the AP-phase magnetization
states changes. Increasing the voltage from the negative to positive bias direction decreases
coercivity [65].

4.5. Spin–Orbit Effects in MgO Heterostructures

Compared to conventional spin–transfer torque, current-induced spin-orbit torques
(SOT) have also been used recently in order to alter the magnetization of an extremely thin
ferromagnetic (FM) in a way that is effective in terms of energy use [63]. The current is
routed through a double layer comprising an FM and a substance by strong spin–orbit
coupling (SOC) such as a heavy metal (HM) [127–129] and a topological insulator in a
SOT device [130,131]. Different factors, including the edge value spin Hall direction of
the origin of the SOT signal [129] and the type of oxide capping the bilayer [132,133],
determine the amount of SOT for a given system. For the following reasons, Pt/CoFeB
is a viable contender for implementations using optoelectronic systems. It can be quickly
grown on substrates such as Si or AlOx, and its magnetic properties can be tuned by al-
loying the CoFeB layer [134]. Pt is a highly conductive material that reduces joule heating
and power consumption [135]. Due to its substantial spin divergence in combination
with utilizing crystal-like MgO, a CoFeB compound is a broadly used FM in spintronic
expedients [136]. CoFeB/MgO-based tunnel junctions have achieved tunnel-based sen-
sor values of up to 600 percent at room temperature [137] (Figure 11a). Applying Pt
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(5 nm)/Ti(tTi)/CoFeB(1 nm)/MgO Hall bar nanostructures, the influence of interfacial
change following Ti inclusion on SOT-induced magnetic permeability transitions was ex-
amined. We may draw two conclusions from the SOT-induced switching data. One is that
all samples, regardless of tTi, have the same switching polarity. Under a positive magnetic
field, a positive (negative) current promotes magnetization in the downward (upward)
direction. The crucial switching current (1/IC) and the SOT switching quality, which is
expressed by the crucial applied voltage normalized by the anisotropy field (JC/Bk)−1,
is a temperature-dependent function of time tTi, as shown in Figure 11(ai,aii). When the
magnetic permeability is in resonance, a spin current is injected from the CoFeB coating
into the Pt layer, resulting in a rise in the effective damping constant effect in the CoFeB
layer and a transverse electric voltage resulting from the inverse spin Hall effect (VISHE) in
the Pt layer. The spin current causes the former to be injected into the Pt layer, whereas the
latter is caused by the total spin current lost in the CoFeB layer. The normalized VISHE Pt
thickness is dependent on the sample resistance and ∆αeff respectively, as shown schemati-
cally in Figure 10b. When an AC is applied to a sample, the ∆BDL and ∆BFL are measured,
and oscillations in magnetization are observed. The second-harmonic Hall voltages for
Pt/Ti(tTi)/CoFeB/MgO testers by several tTi values are shown in Vx

2ω and Vy
2ω. The

plots above show the results of the Pt/CoFeB/MgO sample Vx
2ω (solid symbols) and Vy

2ω

(open symbols), namely, XMCD, integrated spectra and current-induced switching curves.
A Pt/CoFeB/MgO structure has been used to make domain barriers, DC rotational devices,
and skyrmion vibrational strategies, as shown in Figure 11(bi–biii) [56,138–140].
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5. Energy Storage Applications
5.1. Energy Storage Devices

The excessive usage of fossil fuels necessitates the development and emergence of
renewable fuels into everyday life. Battery technology has improved over the past two
decades, allowing for the development of batteries (e.g., lithium-ion batteries, sodium-ion
batteries, and potassium-ion batteries (KIBs)), super capacitors, and lithium sulfur batteries
to store and use electricity at any time. The electrode materials significantly influence the
energy storage capability of these devices. Graphite, hard carbon, metal oxides, sulfides and
carbides have all been investigated as potential energy storage materials with intriguing
electrochemical performance when used as an electrode [1]. The heterostructure is formu-
lated on the basis of a combination of various semiconductor materials with comparable
crystal shapes, atomic distances and thermal expansion coefficients. The differing band
structures, variations in predominant conductivity and Fermi level differences can cause
heterostructures to develop interfaces between different layers. This is because the chemical
composition and charge distribution vary across these interfaces [5].

5.2. Heterostructures’ Energy Storage Mechanisms

The benefit of heterostructure is more than merely integrating different materials with
varying strengths. In general, the microstructure of heterointerfaces is strongly related to the
distinctive advantages of the heterostructure. When two building blocks come into contact,
band alignments occur spontaneously at heterointerfaces, causing charge redistribution
around the interfaces (Figure 12) unless the Fermi energies of certain elements become
balanced. As a result, the holes plus electrons are divided via an ultimately charged
area due to the built-in potential around the heterointerface. Because of this built-in
potential, the heterostructures stimulate forward bias and practically insulate against
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reverse discrimination. The predominant differences in carrier density and the resultant
electric field also impact charge redistribution behavior (BIEF). Carriers should go from
the building block with the highest majority carrier concentration to the one with the
lowest. The formed BIEF will act as an anti-force, preventing transport spread; as a
result, band topologies, carrier densities and BIEF intensity influence the final state of
charge redistribution. During the alignment process, both bands with adjacent essential
components would be curved with a particular offset, and the entire bending would
then be determined as the ability. The distribution of the charge can be controlled by the
configuration of energy bands surrounding heterointerfaces, which are categorized as a
straddling gap (type-I), staggered gap (type-II) and broken gap (type-III). In the type-I
alignment, photon-generated carriers gather in a similar building block, decreasing its
bandgap [2].
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Wang and coworkers found that they could develop constant VTe2 shells over MgO
particulate centers by adapting CVD synthetic conditions, resulting in a VTe2@ MgO
heterostructure that could be used to regulate LiPS. The metal VTe2@MgO created using
the in situ vapor-phase processes is advantageous for synergizing the double functions of
VTe2 and MgO because it has a clean and unbroken interface. The resulting S/VTe2@MgO
positive electrode shows long-standing cycling capability with a performance degradation
of just 0.055 percent each cycle across a thousand processes at 1.0 C. Even containing a
sulfur dose of 6.0 mg/cm2, the positive electrode still offers attractive electrochemical
performance that matches the best high-loading LiS systems.

The researchers developed a straightforward and scalable CVD technique for fabri-
cating VTe2@MgO heterostructures that function as sulfur-hosting promoters within the
LiS battery domain. At various annealing temperatures, metallic VTe2 shells may envelop
MgO cores, producing VTe2@MgO heterostructures that allow effective LiPS control to
increase the sulfur reaction kinetics. The CVD synthesis permits the ascendable creation
of VTe2 materials, in which a white MgO powder turns black when grown, revealing
uniform VTe2 growth on the surface of MgO. Four-probe measurements were performed to
assess the conductivity of VTe2@MgO prepared at various heat levels to reveal the metallic
nature of as-grown VTe2. The heterostructure produced at 650 ◦C has the greatest electrical
conductivity (2.6 S m−1 1).

SEM, TEM, Raman spectroscopy and XPS confirm the successful VTe2 synthesis on
MgO (Figure 13a–n). Sulfur redox kinetics were analyzed by CV profiles of sulfur cathodes
in various electrolytes. The asymmetric cell containing CP-VTe2@MgO was also prepared
and tested in 0.2 M Li2S6 electrolyte at 50 mV/s. Identical cell patterns with or without
0.2 M Li2S6 electrolyte at a 0.5 mV/s scan rate were recorded for comparison. Plots were
made showing the CV peak current vs. scan rate square root and the Li+ diffusing energy
profile on the VTe2 (011) facet. A diagram of the polysulfide regulating process was created
using a VTe2@MgO heterostructured promotor. Galvanostatic charge/discharge patterns
at speeds ranging from 0.2 to 3.0 C. S/VTe2@MgO cathode cycling performance were
observed at 1.0 C. A comparison was made of the areal capacities of high-loading cathodes
between our study and other sulfur hosts previously described (Figure 14a–g). As a result,
S/VTe2@MgO cathodes exhibit favorable electrochemistry with a low-capacity decline of
0.055% per cycle over 1000 cycles at 1.0 C. Furthermore, a sulfur loading of 6.0 mg cm−2

was found to yield a high-loading S/VTe2@MgO cathode with a theoretical areal capacity
of 5.9 mAh cm−2 in their study. Their findings reveal the spotless and precise preparation
of heterojunction mediators with unusual electrocatalytic activity, opening the way for
developing multifunctional materials [71].
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6. Conclusions and Prospects

Various heterostructures exhibit beneficial relationships between two or more building
elements, making them work better. To achieve multifunctionality, each component plays
a role that helps the whole. MgO is a promising candidate for multifunctional devices,
as it has unique properties that enable it to perform new functions. Furthermore, MgO’s
unique electronic and magnetic properties result from complicated interactions among
its electron orbitals, crystal lattice vibrations and electron spins. When MgO is combined
with ferroelectric materials to form multiferroic heterostructures, magneto/electrostrictive
interactions, exchange interactions and spin–orbital coupling emerge. These properties
result in novel physical properties. Interfacial engineering becomes crucial in MgO-based
heterostructures, including charge transfer, magnetic anisotropy, oxygen vacancy and
strain effects. These novel physical properties could be helpful in nan-electronic, spintronic,
optoelectronic and energy storage devices.

Nonetheless, understanding the nature of heterostructures is still in its early stages.
One question scientists are still debating is whether heterostructures can be used to store
more energy. Future research should focus on determining which mechanism dominates the
energy storage process, how charge redistribution and BIEF affect the overall energy storage
performance, and what is the best setting for achieving optimal heterostructure energy
storage results. Additional solid mechanism research and experimental investigations
should be conducted for a more accurate understanding. Machine learning is being used to
screen materials and predict their performance, and COMSOL Multiphysics modeling can
help to understand the electromagnetic charge distribution in electrodes.

Meanwhile, newer material characterization techniques such as in situ characteri-
zation techniques, nuclear magnetic resonance and cryogenic electron microscopy have
been investigated and employed in research on energy storage mechanisms. These new
theoretical calculation approaches and characterization methodologies might be valuable
tools for researchers working on improved heterostructure electrode mechanisms. Besides
their fundamental nature and properties, the impact of structural factors on electron/ion
transfer kinetics and energy storage performance (such as heterointerface locations and
sizes, chemical bonds or van der Waal’s force coupling forces, and transition layer thickness
between building blocks) is underdeveloped. Researchers building high-performance
heterostructures can benefit from a better knowledge of these structural elements and their
underlying nature.
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