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Abstract: Polyelectrolytes are polymers with repeating units of ionizable groups coupled with counte-
rions. Recently, polyelectrolytes have drawn significant attention as highly promising macromolecular
materials with potential for applications in almost every sector of our daily lives. Dyes are another
class of chemical compounds that can interact with substrates and subsequently impart color through
the selective absorption of electromagnetic radiation in the visible range. This overview begins with
an introduction to polyelectrolytes and dyes with their respective definitions, classifications (based
on origin, molecular architecture, etc.), and applications in diverse fields. Thereafter, it explores
the different possible interactions between polyelectrolytes and dyes, which is the main focus of
this study. The various mechanisms involved in dye–polyelectrolyte interactions and the factors
that influence them are also surveyed. Finally, these discussions are summarized, and their future
perspectives are presented.

Keywords: polyelectrolytes; dye; interaction parameters; polymer; polymer–dye interactions

1. Introduction

Dye-associated polyelectrolytes have found numerous applications from biology to
textile industry. In the case where a dye is cytotoxic, it can be wrapped by polyelec-
trolytes to increase its biocompatibility and subsequently be delivered to biological cells [1].
Dyes entrapped within polyelectrolyte complexes are also used for pH sensing [2]. Dye–
polymer interactions have revolutionized textile industry [3]. Edible dyes along with
bio-polyelectrolytes have been widely used in food manufacturing [4]. The use of dyes
along with proteins has also found widespread application in biological studies. Recently,
dyes encapsulated within polymer nanoparticles have been used for inkjet printing [5].
Polyelectrolyte membranes have also been widely used for the separation of dyes from
wastewater by manipulating polyelectrolyte–dye interactions [6]. In all these cases, the
materials are designed by exploring the molecular interactions between dyes and polyelec-
trolytes. Thus, understanding these interactions is a prerequisite to design such materials
with the desired properties. Several research groups have attempted to explore these
interactions case by case. For example, the influence of the charge densities and molecular
structures of dyes on the interactions between poly(dimethylaminoethyl methacrylate)
and dis-azo dyes have been explored by Dragan et al. [7]. Mamchits et al. explored the
role of polyelectrolytes in the aggregation behavior of cyanine dye [8]. Recently, Ketema
et al. reviewed the intermolecular forces between dyes and polyesters [9]. However, these
studies were specifically focused on certain dye–polyelectrolyte systems. Thus, a review
that analyzes the interactions between dyes and polyelectrolytes and covers virtually all the
possible dye–polyelectrolyte cases is required to provide a better understanding in this area.
Furthermore, the consistency in the number of scholarly works published in the recent past,
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as presented in Figure 1, projects the ongoing progress and the future perspectives of this
field. This observation also reveals that the progress is not precipitously growing. Hence,
this overview, which summarizes the potentials of polyelectrolyte/dye systems in the light
of molecular interactions, can be foreseen to enrich the information available and provide
an easy-to-access resource.

Figure 1. Number of publications per year in the area of polyelectrolyte–dye systems showing the
consistency in scholarly interests. Data were obtained from ‘Scopus’ using the keywords ‘polyelec-
trolytes’, ‘dyes’, and ‘interactions’.

1.1. Polyelectrolytes

Polyelectrolytes (PEs) form an interesting class of macromolecules that dissociate
in polar solvents to produce a large number of charged groups and their corresponding
counterions [10]. The smaller counter ions neutralize the repeating charged groups and
preserve the electro-neutrality. In an uncharged state, the behavior of PEs resembles
that of normal macromolecules; however, the dissociation of the ionic groups, even to
a small extent, may lead to dramatic changes in their physico-chemical properties [11].
Thus, polyelectrolytes can exhibit both the properties of polymers and electrolytes, which
is advantageous towards their interactions with various types of dye molecules. Such
polymer behavior can be modulated by the partial or complete dissociation of the ionic
groups, which subsequently alters the electrostatic interactions leading to deviations in
their polymeric properties [12]. The physical properties of PEs, such as viscosity, diffusion
coefficient, solubility, pH, ionization constant, and ionic strength, can be modified by the
introduction of ionic moieties into the polyelectrolyte environment [13].

Due to their excellent water stability and ability to interact with oppositely charged
macromolecules and surfaces, polyelectrolytes have been extensively used in various fields,
from materials science and colloids to biophysics. Their predominant applications include
usage in optoelectronic devices [14], solar cells [15], rheology modifiers [16,17], adsor-
bents [18], coatings [19,20], biomedical implants [21], colloidal stabilizers [22], suspending
agents [23], and for drug delivery and pharmaceutical uses.

Polyelectrolytes can be classified into different categories depending upon their ori-
gin, charge, pH dependence, morphology, position of ionizable sites, and composition
(Table 1). Some natural polyelectrolytes include carbohydrates, alginates, chitosan, car-
rageenan, pectin, and nucleic acids, while synthetic polyelectrolytes, such as poly(acrylic
acid), poly(vinyl amine), poly(vinylsulfonic acid), and polyvinylpyridine, are also common.

Among the anionic polyelectrolytes, carboxylate –COO−, phosphonate (−PO3H−,−PO2−
3 ),

and sulfonate (−SO−3 ) are the most common functional groups, whereas cationic polyelec-
trolytes are mostly comprised of the primary, secondary, and quaternary amino (-NH2,
=NH, and =N+=) groups. The types of ionic groups, their counter ions, and the structures
of the repeating units determine the properties of polyelectrolytes, such as their solubility in
water and other polar and hydrogen-bonding liquids (alcohols, etc.), electrical conductivity,
and rheology. Unlike nonionic polymers, these properties strongly depend on the pH,
solvent permittivity, and ion content [24].



Polymers 2022, 14, 598 3 of 17

Table 1. Classification of polyelectrolytes based on different criterion.

Criterion Classification Examples

Origin
Natural Protein

Semi-synthetic Xanthan Gum
Synthetic Poly(styrene sulfonic) acid

Charge
Polycation

N-[(2-hydroxy-3-
trimethylammonium)propyl] chitosan

chloride (HTCC)
Polyanion Poly(sodium styrene sulfonate)

Polyampholyte Protein

pH dependence Strong: pH-independent charge Poly(vinyl sulfate)
Weak: pH-dependent charge Poly(ethyleneimine)

Morphology Rigid rod Poly(2,2’-disulfonyl-4,4’-benzidine
terephthalamide) (PBDT)

Spherical Globular proteins

Position of ion sites
Linear

Integral (Ions on the backbone) Poly(2,20-disulfonyl-4,40-benzidine
terephthalamide

Pendant (Ions at the periphery or
sidechain)

Poly(2-methacryloyloxyethyl 4-vinyl
pyridinium bromide)

Branched/crosslinked
Poly(4-styrenesulfonic acid-co-maleic

acid) (PSS-co-MA) co polyethylene
glycol (PEG)

Composition Homopolymer
Copolymer

The electrostatic interactions (attraction/repulsion) between charges present on the
monomeric units of polyelectrolytes lead these macromolecules to be rich in a variety
of physicochemical properties. For instance, in the absence of added salts (ions), the
electrostatic repulsion between the same charges of monomer units of a macromolecule can
result in significant chain elongation, which can vary almost linearly with the degree of
polymerization [25]. Due to the strong influence of the degree of polymerization on chain
morphology transition (coiling to elongation), which results in an increase in chain size, the
crossover to the semi-dilute polyelectrolyte solution regime can be achieved at much low
polymer concentrations than in the case of nonionizable polymers [26].

1.2. Applications

As mentioned earlier, polyelectrolytes have found innumerable applications across
various fields. These vast applications are concisely presented by considering the following
generalized sectors.

1.2.1. Polyelectrolytes for Optoelectronic Sensing Devices

π-conjugated polyelectrolytes, viz., polyaniline, polypyrrole, and polythiophene, with
highly enhanced lifetimes and ultrafast cycle switching speeds (100 ms) were developed by
Lu et al., and made electrochromic devices and actuators demonstrate drastically enhanced
performance, cyclability, speed, and extended stability [14]. Large area light-emitting
diodes (LEDs) developed with the conjugated polyelectrolyte poly(p-phenylene vinylene)
were shown to exhibit electroluminescence in the green-yellow part of the visible spec-
trum [27]. The property of electroluminescence has enabled the use of polyelectrolytes
in different LEDs. Poly(1,4-phenylene-ethinylenecarboxylate) complexed with dihexade-
cyldimethylammonium has been reported to exhibit blue luminescence [28]. Another
blue light-emitting device based on a rigid-rod polyelectrolyte, namely, sulfonated poly(p-
phenylene), which has both the luminescent and ionic properties, was reported with a low
onset voltage (3.3 V) and external quantum efficacy up to 0.8% [29]. An LED based on
poly(3-n-butyl-p-pyridylvinylene) and poly(p -phenylenevinylene) was found to largely
increase the quantum efficacy of the device with a reduced operating voltage and prolonged
lifetime [30]. A unique property of polyelectrolytes is their ability to self-assemble under
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a favorable ionic environment. Studies have found that the self-assembly of a negatively
charged polyelectrolyte, poly(3-α-carboxylmethylthiophene), in the presence of a posi-
tively charged polyelectrolyte, poly(dihexyldipropargyl ammonium bromide), resulted in
a multilayered heterostructure with enhanced photovoltaic effects [31].

1.2.2. Polyelectrolytes in Multilayered Heterostructures

Multilayered polyelectrolyte films have been developed on surfaces by absorbing
cationic and anionic polyelectrolytes alternatively, one layer at a time [32]. This tech-
nique, referred to as the layer-by-layer (LBL) technique, has led to the frequent usage
of polyelectrolytes in several semiconductors and LEDs [33]. The fluorescence emission
from polyelectrolytes can be effectively quenched by electron acceptors, leading to wa-
ter soluble photo- and electroluminescent polyelectrolytes. For example, poly(2,5-bis(3-
sulfonatopropoxy)-1,4-phenylene-alt-1,4-phenylene) with a poly(ethyleneimine) (PEI) poly-
cation and poly(2,5-bis(2-(N,N,N-triethylammonium)-1-oxapropyl)-1,4-phenylenealt-2,5-
thienylene) dibromide with poly(acrylic acid) (PAA), which both demonstrated enhanced
fluorescence quenching as reported by Rubner and coworkers, were prepared via the
LBL technique [34–36]. Based on the efficiency of polyelectrolytes in the development of
multilayer heterostructures, these have been widely utilized to fabricate solar cells and
photodetectors [15,37,38].

1.2.3. Polyelectrolytes as Rheology Modifiers

Polyelectrolytes contain a large number of ions in their backbone, arousing electrostatic
repulsion that can lead to two opposite consequences on their viscosity: (i) an increase in
viscosity triggered by chain elongation and (ii) a decrease in viscosity caused by suppressed
intermolecular interactions [39]. Upon the increase in the concentration of added salt (ions),
the gradual transition from an elongated to a random coil conformation (decrease in viscos-
ity) is favored due to the effective screening of the ionic charges of the monomeric units via
counterion condensation. This also decreases the intermolecular electrostatic repulsion, i.e.,
the intermolecular attraction increases, which thereby raises their solution viscosity [40].
Polyelectrolytes have been hydrophobically modified to provide an improved thicken-
ing effect and for building intense three-dimensional networks [41]. Such modifications
which involve the insertion of a few hydrophobic groups (<2 mol%) into the hydrophilic
backbone, resulting in unique rheological properties compared to the unmodified counter-
parts [42,43]. The modified polyelectrolytes with tailored rheological properties have found
various uses in the design of cosmetics, paints, and coatings [44]. Polyelectrolytes based on
polyurathanes, hydroxyethylcellulose, and alkali swellable acrylates have demonstrated
promising results in improving the performance and binding ability of water-borne coat-
ings [45]. Polyacrylamides have also been hydrophobically modified to demonstrate a high
viscosity yield under highly saline conditions, and have shown promising applications in
oil field recovery [40,46].

1.3. Dyes

The usage of color initiated at the dawn of time with the purpose of making art look
beautiful; presently, it has achieved numerous applications. Dyes are the main constituents
of color. Dyes are colored substances that can bind to the substrates to which they are
applied. They are used to impart colors to fabrics, food stuffs, textiles, and other objects
for their beautification and distinction [47]. They are often organic compounds and are
soluble in water. Plants are usually the source of natural dyes, such as their roots, leaves,
barks, fruits, wood, etc. Some common examples of natural dyes are jack fruits, turmeric,
onion, henna (Lawsonia inermis), indigo, etc. Synthetic dyes can be derived from petroleum
products, after cracking crude oil. Mauveine or aniline purple was the first synthetic
dye, discovered by Perkin on 26 August 1856. The way that the colors of dyes correlate
with their structures can be explained by different theories. The compounds containing
chromophores are called chromogens. The intensity of color increases with the number of
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chromophores or the degree of conjugation [48]. The presence of certain functional groups
facilitates the fixation of chromogens to the fabrics to be dyed. The groups that favor the
permanent fixation of chromogens to the materials to be dyed are called auxochromes.
Some examples of auxochromes include -OH, -NH2, -NR2, -SO3H, etc. Dyes are broadly
used in the fields of industrial and personal care products, disease diagnosis, drug delivery,
wastewater treatment, and pharmaceutical products, which are very useful in our daily
life although some of them may also have side effects. Thus, it is very necessary to study
these molecules and their interactions with other molecules, which may be electrostatic,
hydrophilic/hydrophobic, H-bonding, covalent, non-bonding, etc. The nature and strength
of these interactions are dependent on the properties of the dyes and their molecular
structures. The interactions between surfactant-dyes or polyelectrolyte-dyes can be hy-
drophobic or hydrophilic in nature, where molecules pull due to low alliance with water;
these interactions can also be electrostatic, where two particles attract or repel due to the
presence of charges on the molecules [49,50]. The interaction of anionic dyes, e.g., tartrazine
and cationic surfactants (dodecyltrimethylammonium bromide, cetyltrimrthylammonium
bromide, etc.), were investigated using tensiometric techniques [51]. Hydrophobic inter-
actions occur between nonpolar molecules, e.g., the interactions between hydrocarbon
chains, and they cannot be solubilized in water. On the other hand, hydrophilic interactions
occur between polar molecules, which can be solubilized in water or other polar solvents.
Similarly, H-bonding occurs between two electronegative elements using an H-atom as a
bridge. Schematic presentations of these various molecular interactions between dyes and
polyelectrolytes are shown in Figure 2. Molecular interactions are the driving force behind
the complexation between dye and polyelectrolytes, and the thermodynamic parameters
related to this interaction can evaluate the stability of such metachromatic complexes [52,53]
The mixing of polyelectrolytes with dyes can change the solution properties, such as surface
tension, viscosity, conductivity, critical micellization concentration (cmc), the nature of spec-
tra, phase behavior, and solution rheology [54]. A red shift of the monomer band of dye
can be observed after interaction with cationic dyes. In a study, cationic dyes (rhodamine
6G, proflavine, acridine orange), upon interacting with anionic polyelectrolytes (sodium
dextran sulfate, polyvinyl sulfate), formed a dye–polyelectrolyte complex that could be
used for contaminant removal from sludges [55]. The intensity changes of fluorescent dyes,
which can be recorded using any spectrofluorometer, are often monitored to determine the
interactions between dye and polyelectrolytes [56].

1.3.1. Classification of Dyes

As per the theoretical models and the knowledge on the electronic origins of color,
dyes are categorized into four major classes based on their types of chromogens, namely,
(a) donor-acceptor, (b) cyanine, (c) polyene, and (d) n→ π transition [57]. There are various
other ways that dyes are often classified [58]. Depending on their source of origin, dyes fall
into two categories: natural or synthetic.

Based on their various industrial uses, dyes can be described as acid dyes, azoic dyes,
basic dyes, direct dyes, dispersed dyes, reactive dyes, solvent dyes, sulfur dyes, vat dyes,
and mordant dyes. A variety of dyes can be classified according to their chemical composi-
tions or the nature of their nuclear structure, including acridine dyes, anthraquinone dyes,
triarylmethane dyes, azo dyes, cyanine dyes, diazonium dyes, nitro dyes, nitroso dyes,
phthalocyanine dyes, aniline dyes, eurhodin dyes, safranine dyes, xanthen.

Depending on other miscellaneous factors, additional classifiable dyes are fluorescent
dyes, oxidation dyes, fuel dyes, leather dyes, optical brighteners, leuco dyes, sublimation
dyes, smoke dyes, inkjet dyes, and solvent dyes. A summary of the different classifications
of dyes is presented in Figure 3.



Polymers 2022, 14, 598 6 of 17

Figure 2. Schematic presentations of various molecular interactions between dyes and the func-
tional/ionizable moieties of a polyelectrolyte chain.

Figure 3. A summary of the classification of dyes based on different factors.
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1.3.2. Applications of Dyes

Color originates from the spectrum of photons interacting with the spectral sensitivities
of the light receptors in the eye. As mentioned earlier, dyes can be used in different sectors,
including medicine, industrial areas, cosmetics, chemical analysis, dyestuffs, the food
industry, textiles, dying, etc. Cyanine dyes are used as synthetic drugs in various ways, e.g.,
as cell growth inhibitors, photoreceptors, photorefractive materials, fluorescent sensors,
etc. [59]. Reactive dying increases the fiber retention of dye. These dyes can also be
used as fluorescent probes for living cells [60]. Depending upon the composition of the
dye molecules, the coloring of hair can be temporary or permanent [61]. However, it
should be noted that in all these applications, the interactions between dyes and substrates
are inevitable. The following sections address these various interactions, restricted to
polyelectrolyte–dye systems.

2. Polyelectrolyte–Dye Interactions

Polyelectrolytes and dyes comprise two of the most important classes of chemical
compounds with the most versatile application in industrial chemistry. The interactions
between polyelectrolytes and dye lead to formation of polyelectrolyte–dye complexes with
modified physical and chemical properties. In the following sections, the applications of
some materials prepared by the interactions between polyelectrolytes and cationic dyes, as
well as polyelectrolytes and anionic dyes, are presented.

2.1. Polyelectrolyte–Dye Interactions and Their Applications
2.1.1. Polyelectrolytes and Anionic Dyes

Dye removal remains one of the most challenging aspects of industrial waste man-
agement. The strong interactions between polyelectrolytes and dyes were pushed further
by Cai et al. to develop a chitosan-based cationic polyelectrolyte microsphere (CCQM)
for the ultra-efficient removal of Congo red (1500 mg g−1) and methyl orange (MO,
179.4 mg g−1) [62]. Based on the strong polyelectrolyte–dye interactions, hydrogels fabri-
cated using poly([2-(acryloyloxy)ethyl] trimethylammonium chloride) and poly(ClAETA)
with cellulose nanofibrillation (CNF) had an efficiency of 96% in the removal of methyl
orange dye, which remains a major industrial contaminant [63]. Schwarze et al. developed
polyelectrolytic emulsions based on quaternary ammonium surfactants and demonstrated
a dye removal efficiency of 90% for methyl orange [64]. The dye–polyelectrolytic com-
plex aggregates have an important role in determining the spectral behavior of the dye.
It was observed that methyl orange demonstrated an absorption maximum at 368 nm
in poly(l-ornithine) (PLO), compared to 462 nm in poly(vinyl benzyl triethylammonium
chloride) (PVBTEA). This observation was attributed to the formation of larger aggre-
gates in PLO compared to PVBTEA, which promoted electrolytic dye stacking via ion-pair
formation [65].

Microgels are three-dimensional cross-linked structures of polymer colloidal particles
with an adjustable size and strong response to environmental stimuli, such as pH, ionic
strength, temperature, light, and ultrasound [66]. Self-assembled microgels comprised
of poly(N-isopropylacrylamide-co-2-(dimethylamino) ethyl methacrylate) and sodium
alginate (SA) have demonstrated a highly pH-sensitive response [66]. Methyl blue is an
anionic hydrophilic dye molecule which has been reported to be adsorbed onto microgel
core star ionic covalent organic polymers, polymers, fibrous materials, and cross-linked
polymer particles with cavity and ammonium functionalization [62,67–69]. A quartz
crystal microbalance (QCM) investigation of the interaction between anionic dyes and
the SA/microgel multilayers in the aqueous phase revealed an enhanced electrostatic
attraction between the dyes and the microgels deposited on the QCM sensor surface
compared to that with SA in the multilayers, which caused the release of microgels from
the self-assembled structure and a mass loss ratio of 27.6% [66]. This study showed a
promising application of the QCM-based sensors in the detection of dye contaminants
in wastewater. In another report, a linear polysaccharide chitosan (CTS) composed of
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β-(1-4)-linked D-glucosamine (deacetylated unit) and N-acetyl-D-glucosamine (acetylated
unit), was chemically modified to form a cationic polyelectrolyte, viz., N-[(2-hydroxy-3-
trimethylammonium)propyl]chitosan chloride (HTCC) [70]. A comparative investigation
of the interaction of three anionic dyes, viz., Reactive Black 5, Reactive Blue 19, and Reactive
Red 195, with HTCC and organoclay-modified montmorillonite (OMMT) demonstrated a
high efficiency of dye exclusion (>91%) compared to sole polyelectrolyte and organoclay
adsorbents. The study further showed that structurally distinct anionic dyes localized
at separate sites within the hybrid organoclay adsorbents, enabling the simultaneous
adsorption of different dyes with improved efficiency [70]. Thus, the materials designed
via the interactions between polyelectrolytes and cationic dyes have exhibited success in
various fields.

2.1.2. Polyelectrolytes and Cationic Dyes

Cationic dyes dissociate into positively charged ions and negative counterions in aque-
ous solutions and have been extensively explored to study their interaction with anionic
polyelectrolytes. The strength of this interaction can be measured by the magnitude of
metachromasy induced in its spectroscopic profile. Metachromasy, or the blue shift in the
absorption spectrum, is one of the most common methods for spectroscopic detection of
polyelectrolyte–dye interactions. Higher metachromic effects imply a stronger degree of in-
teraction. Toluidine blue (7-amino-8-methylphenothiazin-3-ylidene)-dimethylammonium
chloride) and methylene blue (3,7-bis(dimethylamino)-phenothiazin-5-ium chloride) both
form a strong 2:1 dye–polyelectrolyte complex with polyacrylic acid polymer (PAA), ex-
hibiting large hypsochromic shifts of 57 nm and 67 nm, respectively, in their UV-vis
profiles. Consequently, due to the more hydrophobic nature of methylene blue, it formed a
more stable complex with PAA compared to toluidine blue: the stability constants were
5332 dm−3/mol and 4358 dm−3/mol for methylene blue and toluidine blue complexes,
respectively, at 298 K [71]. The interaction of toluidine blue with poly(potassium vinyl
sulphate) (PPVS) resulted in observed metachromacy at 105 nm with a distinct color change
of the blue uncomplexed form with a maximum absorption at 635 nm to a red-violet tolui-
dine blue–PPVS complex with maximum absorption at 530 nm [72]. The metachromatic
action of cationic dyes is particularly helpful in determining the charges of biopolymers
and proteins [73]. The specific interaction of the polymerized cationic dye azure A and
the biological polyelectrolyte DNA was utilized to detect and discriminate DNA dam-
age [74]. The electrostatic forces and the difference in the negative charges on the repetitive
polysaccharide units of sodium heparin and sodium alginate led to different degrees of
metachromasy induced in the cationic dyes azure B and toluidine blue [75,76]. While azure
B bonded more strongly with sodium alginate, a more favorable interaction was observed
between toluidine blue and sodium heparin. The interactions between poly(2-acrylamide-
2-methyl-1-propanesulfonic acid) (PAMPS) and poly(diallyl dimethyl ammonium) chloride
(PDDA) and the highly versatile cationic dyes methylene blue (MB) and methyl orange
(MO) have been employed for the purification of colored wastewater by the polymer-
enhanced ultrafiltration (PEUF) technique [6]. The maximum removal efficiency under
optimal conditions (pH 6.0, initial MB and MO concentrations of 3.5 mg L−1 and 80 mg L−1,
respectively) was reported to be 98% and 90% for MB and MO, respectively, together with
an ultrafiltration membrane (molecular weight cut off value: 10 kDa). Polystyrene sulfonate
(PSS) adsorbed on laterite soil (polymer modified laterite, PML) showed efficiency in the
removal of methyl blue (83%) and crystal violet (92%) [77].

Dye removal remains one of the most challenging aspects of industrial waste manage-
ment. The strong interactions between polyelectrolytes and dyes were pushed further by Cai
et al. to develop a chitosan-based cationic polyelectrolyte microscope (CCQM) for the ultra-
efficient removal of Congo red (1500 mg g−1) and methyl orange (MO, 179.4 mg g−1) [78].
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3. The Two Basic Mechanisms of Polyelectrolyte–Dye Interactions

Interestingly, the myriad of polyelectrolyte–dye interactions has been found to follow
either of two basic mechanisms of interaction: the charged patch interaction (Figure 4a)
and the polymer bridging interaction (Figure 4b) [79,80].

Figure 4. Schematic representation of (a) the charged patch interaction, where oppositely charged
coagulant molecules bind electrostatically to polyelectrolytes at specific charged patches, and (b) the
polymer bridging interaction, where the polymeric chain from one polyelectrolyte is extended to
adsorb onto another polymer, resulting in a bridging interaction.

3.1. Charged Patch Interaction

This mechanism broadly refers to the formation of a ‘charged patch’ due to the elec-
trostatic interaction between relatively low molecular weight polyelectrolytes adsorbed
on oppositely charged surfaces (Figure 4a). The patch is electrostatically attracted to the
bare regions of other oppositely charged particles (coagulant molecules), which favors
flocculation. The flocculation of polyelectrolytes is aided by their adsorption onto the
porous surfaces, such as organoclay [70]. The interaction of dye molecules with the ad-
sorbed polyelectrolyte has been found to be more efficient than with pure electrolytes.
Depending on the interaction mechanisms, the polymeric adsorption may be physical or
chemical. While physical absorption involves relatively weak bonds, e.g., van der Waal
interactions, chemisorption includes stronger covalent bonding between the polyelectrolyte
and substrate [81].

3.2. Polymer Bridging

Polymer bridging refers to the mechanism whereby a polyelectrolyte is adsorbed si-
multaneously on more than one polymeric surface (Figure 4b) [82]. High molecular weight
polyelectrolytes with linear chains commonly based on polyacrylamide are reported to be
ideal candidates for this kind of interaction [83]. However, the high charge density associ-
ated with high molecular weight polyelectrolytes has a contrasting effect on flocculation,
due to the electrostatic repulsion between like charges. Still, such materials are used for
interaction with dye molecules to remove them during wastewater treatment [3,84].
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4. Parameters That Influence Polyelectrolyte–Dye Interactions
4.1. Polyelectrolyte Concentration

The stoichiometric ratio of the polycations and polyanions of polyelectrolytes plays an
important role in maneuvering the mechanistic pathways of their interaction with dyes [85].
Azure B (AB) formed a 1:1 complex with sodium heparin, i.e., the binding of the dye
cation at all potential anionic sites led to the formation of a ‘card-pack’ stacking of the dye
monomers on the surface of the polyelectrolyte. However, in the case of NaAlg, binding at
alternate site resulted in 2:1 stoichiometry [75]. A similar 1:1 complex of N,N′- diethylpseu-
doisocyanine chloride (PIC) with polymethacrylate, poly(styrenesu1fonate), and DNA
(native and denatured) did not exhibit any blue shift or metachromasia in the absorption
spectra, while polyacrylate and poly(viny1sulfate) formed compounds with polyanion/dye
stoichiometry of 2:1, forming staggered aggregates which exhibited a sharp and red-shifted
J-band in the UV-vis spectra [86]. On the other hand, the incubation of carboxyfluoroscein
(CF) on a model with 24 hyaluronan/polylysine (HA/PLL) multilayers resulted in 13 mM
of CF loaded in the multilayer, compared to 0.5 mM in tris(hydroxymethyl)aminomethane
(TRIS) buffer [87]. Emission studies revealed that the interaction of the CF molecules
with the free amino groups of PLL along with the CF –CF self-interaction contributed to
the cooperative binding and polyadsorption of the dye molecule. With an increased dye
concentration at low PAA concentrations (up to 0.4 mM), the attachment of dye molecules
remained unfavorable. Whereas, for the same PAA concentrations (up to 0.4 mM), CV was
favorably adsorbed onto the monomer units of PAA. Increasing the polymer concentration
beyond the threshold resulted in the sharp attachment of the dye molecules to the poly-
mer [88]. The dye safranin T (ST) was found to bind to the polymer PANH4 to a greater
extent than eriochrome blue black dye (EBBT). ST is less bulky, which favors its preferential
attachment to the polymer and efficiency compared EBBR when the feed concentrations of
both the dyes were the same.

4.2. Dye Concentration

A spectroscopic study on the electrostatic interactions (binding) of the cationic dyes
rhodamine 6G (R6G), acridine orange (AO), bisindolenylpentamethine (Cy5), and 1,1′-
diethyl-2,2′-cyanine (PIC) to the anionic polyelectrolyte polystyrene sulfonate (PSS) showed
that Cy5 bonded to PSS with a 10 nm hypochromic shift in the absorption spectrum, pro-
vided the dye/polyelectrolyte ratio was less than 0.1 [89]. The charges on PSS facilitate
the polarization of the π electronic charges, resulting in dye–electrolyte bonding. A higher
dye/polyelectrolyte ratio resulted in the formation of H aggregates and, consequently,
the rejection of the dye. On the other hand, the adsorption of the non-fluorescent dye
1,1′-diethyl-2,2′-cyanine (PIC) on polystyrene sulfonate (PSS) resulted in weak fluores-
cence emission due to the formation of J-aggregates of the PIC complex at the optimal
dye/polymer ratio of 0.55. An increased concentration of dye resulted in the destruction of
the J-aggregates [89].

4.3. pH of Reaction Media

pH is one of the most important factors governing the binding of dyes with polyelec-
trolytes. In a study of poly(acrylic acid) (PAA) with the cationic dyes methylene blue (MB)
and toluidine blue (TB), it was found that the spectrum of methylene blue was indifferent
to pH below the pKa of the polyelectrolyte (4.65). The reason for this is the predominant
acidic nature of poly(acrylic acid) at a low pH (2–3.65), which forbids preferential binding
with the cationic dye due to electrostatic repulsion [71]. At a pH above 4.42 (pH > pKa),
the monomeric absorption band of the methylene blue decreased with the corresponding
growth of a metachromatic band showing the binding of the cationic dye molecules with
the anionic polyelectrolyte. Interestingly, at a high pH (>10.86), the monomeric band
absorption reappeared. The authors concluded that the dye–polyelectrolyte binding was
weakened at a higher pH due to the complete binding of the dye to the oppositely charged
polyelectrolytic surface, resulting in free monomers. A similar trend in the absorption
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profile of methylene blue was observed with polyacrylamide and sodium polyacrylate [90].
Higher pH may lead to the hydrolysis of cationic polyelectrolytes, lowering the charge
density and thereby weakening the dye–polyelectrolyte interaction [72]. Studies on crystal
violet and the polyelectrolyte poly(acrylic acid) (PAA) show that crystal violet (CV) com-
pletely binds with PAA above pH 3. The dissociation of the dye and the –COOH groups of
PAA is prevented in highly acidic conditions (pH < 3), leading to lower dye retention [88].
While non-electrostatic effects dominate the binding of dyes to PANH4, at a higher pH
or in an alkaline medium, the same is triggered by electrostatic effects due to the higher
dissociation of PANH4. The decrease in the binding of the EBBR dye in an alkaline medium
is propelled by the repulsion between hydroxide and the carboxylic groups. However,
the attachment of safranin T (ST) is favored at a pH beyond 5. This observation may be
attributed to the competition between H+ and ST to be affixed to the polymer, which arises
due to their protonation, thereby favoring the dye attachment [88].

4.4. Influence of Electrolytes

The introduction of electrolytes or, in other words, the variation of ionic strength brings
about a profound conformational change in the dye–polyelectrolyte interaction. A fluores-
cence investigation of the interaction between sodium copoly(ethy1 acrylate-acrylic acid)
and the fluorescent dye 6-p-toluidinonaphthalene-2-sulfonate (TNS) showed that in the
absence of salt/electrolytes, no emission spectra was observed, indicating that the TNS
dye was completely quenched. The authors remarked that the polyelectrolyte assumed
a linear conformation, and the hydrophobic interaction between the polyelectrolyte and
the TNS molecules was overridden by the strong electrostatic repulsion exerted by the
sulphonate head groups of the TNS molecule and the negatively charged carboxylic sites
on the polyelectrolyte. The addition of salt caused the shielding of the counterion around
the polyelectrolyte, which screened the aforementioned electrostatic repulsion between
the dye and polyelectrolyte molecules, leading to a profound interaction and consequent
increase in emission maxima [91]. Nandini et al. observed a similar phenomenon while
studying the effect of salt concentration on the binding of methyl orange with cationic poly-
electrolytes [90]. The complex interactions between dyes and polyelectrolytes (polyions)
in multilayers are more prominent in polymer solutions over the polymer adsorption
process, resulting in efficient dye extractions (Figure 5). A comparative study of the effect of
electrolyte (NaCl, Na2SO4, MgSO4, and MgCl2) concentrations on the dye loading capacity
of a poly(styrenesulfonate) multilayer revealed that an intermediate salt concentration
facilitated the significant removal (as high as 60% NaCl) of the dye from the polyelectrolyte
surface, with maximum extraction occurring at Debye length 2 Å [82]. At lower or higher
salt concentrations, the dye loading was found to be relatively less. MgCl2, Na2SO4, and
MgSO4 showed approximately 30%, 25%, and 20% dye extraction, respectively. At low
salt concentrations, an increase in the persistent length of the polyelectrolyte led to a lesser
extent of interaction between the charged dye molecule and the polyions, while at higher
salt concentrations, the electrostatic interactions were diminished. The absorbance profile of
poly(styrenesulfonate) showed a slight increase in the 1:1 and 2:2 salts, while a decreasing
trend was reported with an increased 2:1 salt concentration. This intriguing result was
attributed to the ‘charge reversal’ on the polymer or surface facilitated by the ions from
salt [92].



Polymers 2022, 14, 598 12 of 17

Figure 5. Fraction of dye removed from a surface dipped in 0.1 M poly(ethylenimine) for 30 min,
submerged in 0.2 M poly(styrenesulfonate) for 20 minutes, immersed in 1 mM Ingrain Blue 1 (dye)
for 20 min, then re-immersed in the original 0.2 M poly(styrenesulfonate) solution for 20 min versus
the ionic strength of MgCl2(∇), Na2SO4(∆), and MgSO4(♦). Reproduced with permission from [92].
Copyright 1998 American Chemical Society.

4.5. The Role of Surfactants

The addition of surfactants in dye–polyelectrolyte systems can lead to competitive
binding of the surfactant with the polyelectrolyte, thereby releasing the dye molecule. This
technique is used extensively to recover dye from wastewater [93]. The polyelectrolyte– sur-
factant interaction is governed by the flexibility of the polyelectrolyte, its charge density, the
extent of hydrophobicity imparted by the nonpolar part of the polyelectrolyte, and the sur-
face area of the polar head groups of the polyelectrolyte [94]. Increasing the concentration
of the surfactant sodium lauryl sulphate (SLS) caused the reversal of metachromacy or a red
shift in the absorption maxima in methyl orange–polyelectrolyte mixtures using poly(N-
methy-4-vinylpyridinium iodide) (PM4VPI), poly(vinylbenzyltriphenyl phosphonium chlo-
ride) (PVBTPPC) and poly(N-methy-4- vinylpyridinium iodide) (PM2VPI), indicating the
release of MO with absorption of monomeric dye reappearing at an SLS concentration of
10−4 M [90]. A similar action of the surfactants SDS and sodium dodecylbenzenesulfonate
(SDBS) was also observed in a complex of the anionic polyelectrolyte sodium heparinate
(NaHep) and the cationic dye azure AB [76]. Alternatively, a methyl orange–sulfonated
polystyrene (SPS) interaction was used as a spectroscopic probe to monitor the competitive
binding and stability of the cetyltrimethylammonium bromide (CTAB)–SPS complex [95].
In another report, a complex of the cationic polyelectrolyte poly(3-(4-methyl-30-thienyloxy)
propyltrimethylammonium and the anionic dye 8-hydroxy-1,3,6-pyrenetrisulfonic acid
trisodium salt (HPTS) was utilised to sense the anionic surfactants sodium dodecylben-
zenesulfonate (SDBS) and sodium dodecyl sulphate (SDS) via colorimetry and fuorescence
spectroscopy [96].

The polyelectrolyte–dye interaction in the presence of surfactants is particularly im-
portant in the extraction of water-insoluble dyes, which are one of the major contrib-
utors to water pollution. The solubilization of the water-insoluble dyes o-(2-amino-1-
naphthylazo)toluene (OY) and 1-pyrenecarbaldehyde (PyA) in mixed solutions of an
anionic polyelectrolyte, viz., poly(styrenesulfonic acid), and cationic surfactants, viz., do-
decyltrimethylammonium bromide (DTAB) and tetradecyltrimethylammonium bromide
(TTAB), were investigated in [97]. Sodium dextran sulfate (DxS) exhibited pronounced
binding of the surfactant ions, while the attachment to poly(styrenesulfonic acid) was
diminished. The DxS/surfactant complexes exhibited a higher solubilization capacity per
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bound surfactant ion than the polystyrene/surfactant complexes for both o-(2-amino-1-
naphthylazo) toluene (OY) and 1-pyrenecarbaldehyde (PyA) [97].

A polyelectrolyte enhanced ultrafiltration (PEUF) investigation on the retention of
methyl orange in the presence of cetyltrimethyl ammonium chloride (CTAB) monomers
showed a high degree of dye rejection by the polyelectrolyte polyethylene glycol (PEG) [98].
The enhanced rejection experienced by the MO dye was reported to be due to the develop-
ment of H aggregates in the aqueous media.

5. Conclusions and Future Perspective

Polyelectrolytes are composed of a π-conjugated backbone with repeating ionic units,
at the periphery or on the body, attached to counterions. The dissociation of the ionic
units in aqueous solution gives rise to ionic conductance and solubility, which shows
promise in highly versatile applications. The tunable features of polyelectrolytes, such as
absorption, photoluminescence, and semi-conductor properties, have led to their multi-
dimensional applications, from biosensors to optoelectronic devices. The interaction with
dye is particularly interesting in view of the dye extraction process, which is one of the major
challenges imposed by the textile industry. Each year, non-biodegradable dyes are released
in enormous quantities by the textile industries as industrial effluent into water bodies,
threatening the aquatic fauna. The polyelectrolyte–dye interaction has shown considerable
promise in the dye extraction process; hence, it opens a new pathway to address this major
pollution threat. This review provided an overview of the polyelectrolyte–dye interaction
and its major applications. More research is warranted in this field for the optimal use of
the potential of polyelectrolytes. The interaction of synthetic polyelectrolytes with different
dyes should be further studied for developing designer complexes with applications in the
commercial drug development field and optoelectronics.
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