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Abstract: Melanoma or malignant melanoma is a type of skin cancer that develops when melanocyte
cells, damaged by excessive exposure to harmful UV radiations, start to grow out of control.
Though less common than some other kinds of skin cancers, it is more dangerous because it rapidly
metastasizes if not diagnosed and treated at an early stage. The distinction between benign and
melanocytic lesions could at times be perplexing, but the manifestations of the disease could fairly
be distinguished by a skilled study of its histopathological and clinical features. In recent years,
deep convolutional neural networks (DCNNs) have succeeded in achieving more encouraging results
yet faster and computationally effective systems for detection of the fatal disease are the need of the
hour. This paper presents a deep learning-based ‘You Only Look Once (YOLO)’ algorithm, which is
based on the application of DCNNs to detect melanoma from dermoscopic and digital images and
offer faster and more precise output as compared to conventional CNNs. In terms with the location of
the identified object in the cell, this network predicts the bounding box of the detected object and the
class confidence score. The highlight of the paper, however, lies in its infusion of certain resourceful
concepts like two phase segmentation done by a combination of the graph theory using minimal
spanning tree concept and L-type fuzzy number based approximations and mathematical extraction
of the actual affected area of the lesion region during feature extraction process. Experimented on
a total of 20250 images from three publicly accessible datasets—PH2, International Symposium
on Biomedical Imaging (ISBI) 2017 and The International Skin Imaging Collaboration (ISIC) 2019,
encouraging results have been obtained. It achieved a Jac score of 79.84% on ISIC 2019 dataset and
86.99% and 88.64% on ISBI 2017 and PH2 datasets, respectively. Upon comparison of the pre-defined
parameters with recent works in this area yielded comparatively superior output in most cases.
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1. Introduction

Though the past two decades have seen promising possibilities in the treatment effectiveness
and patient quality of life, cancer treatment continues to be a challenge for researchers worldwide.
The incidence of skin cancer is higher than that of all other cancers combined. According to reports
of the World Health Organization (WHO), skin cancer accounts for one third of all types of cancers
happening worldwide with its influence only on an increase with time [1].The three most commonly
reported skin cancers are basal cell carcinoma (BCC), squamous cell carcinoma (SCC) and malignant
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melanoma (MM), of which BCC and SCC account for non-melanocytic cancer [2].The vast majority of
skin cancers are non-melanocytic. Melanoma, though less common, is the most fatal of skin cancers
and is the cause of maximum number of skin cancer deaths. Melanin, produced by melanocytes, is a
prominent skin constituent. This pigment is present in varying degrees depending upon a population’s
historical exposure to the sun and is the determinant of an individual’s skin, hair and eye color.
Eumelanin and pheomelanin are the two key chemical forms in which melanin exists. Eumelanin,
being a dark pigment is a more effective photo protective factor as compared to pheomelanin which is a
light colored pigment. The level of pheomelanin in light and dark skinned people is almost similar but
owing to the abundance of epidermal eumelanin in heavily pigmented people, they are less susceptible
to the damage caused by the UV rays from the sun or other tanning devices and as such less at risk of
developing skin cancer [3]. Melanoma affects both sexes though male patients tend to have a higher
mortality rate. Recent studies imply that not only UV-A, but also UV-B radiations may account for skin
cancer [4,5]. In addition to radiations, skin cancer can be attributed to other factors like a history of
cancerous genes in the family, hair color of patients, increased number of benign melanocytic nevi and
dysplastic nevi. As believed, melanoma progression originates in the skin epidermis during the radial
growth phase and invades into the dermis during the vertical growth phase when prognosis of the
cancer becomes increasingly poor. Melanoma may initiate from an existing mole that changes its size,
shape, color or feel over time or from a newly formed mole which appears to be abnormal, black or
‘ugly’. These moles quickly and widely metastasize from skin tissues to various parts of the body
including bones and cerebrum. The five-year survival ratio of melanoma cases which have reached an
advanced stage is below 15% even till date, while early diagnosis elevates the survival rate to 95%—a
clear indication of the fact that the survival rate is directly proportional to the timely detection and
treatment of the disease [6,7]. American Cancer Society’s annual report for 2019 estimates around
96,480 new cases of melanoma and might prove to be fatal for 7230 patients [8].Thereby, it becomes
absolutely imperative to detect melanoma at its earliest possible stage which again is a daunting task
because of its varied complexities of nature and intense rapidity in spreading as compared to other
forms of skin cancer.

The methods for gauging skin growth to suspect a prospective melanoma has evolved over the
years. Before the dawn of the 20th century, melanomas were normally identified solely by naked
eye based on the mole’s characteristic features as its size, bleeding or ulceration. In anticipation of
suspicious lesions, the lesion was subject to an invasive method, biopsy, for further analysis. Early
prognosis, however, was a farfetched dream during those years because one had to rely solely on
manual observation owing to absence of advanced technological hardware and software imaging
tools. As years passed, non-invasive techniques like dermoscopy or epiluminescence microscopy
came to the fore that implemented more economical equipment with superior accuracy [9]. It works
on the principle of transillumination of the lesion area and the analysis of its subtle features by
intense magnification. This technique too has its limitations as the accuracy of melanoma diagnosis is
estimated to be only about 75–84% [10]. Identification of skin lesion images calls for efficient feature
extraction and classifiers and precise color capture. In recent context, accurate melanoma diagnosis
has found its way through molecular dermatopathology which calls for a consultation between a
pathologist and a dermatologist. With recent advances in the field of immunopathology, the diagnosis
method made a distinguished shift from descriptive morphology to molecular histopathology [11].
Though most dermatopathologists are in agreement on histological diagnosis of melanocytic lesions
by subjecting them to conventional microscopic analysis, certain melanocytic neoplasms termed
atypical melanocytic proliferations call for expert consultation before they can be classified as benign
or malignant. This also necessitates the evaluation of the histopathological characteristics with that of
clinical and microscopic data. Improper application of molecular diagnosis for the identification of
benignity or malignancy could as well be misleading and prone to loss of its utmost utility [12,13].
Gradually with the progress in technology and impact of machine learning on medical science computer
aided diagnostics made its way in increasing the speed and accuracy of diagnosis. Numerous systems
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and algorithms like seven-point checklist, ABCD (Asymmetry, Border irregularity, Color variation
and Diameter) rule and the Menzies method have since been proposed and put into effect which have
added dimension to the efficiency of the diagnostic system by overcoming the issues of traditional
dermoscopy techniques [14–17]. Though the Computer Aided Diagnostic systems have now been
integrated with smart phones, the early systems operated on desktops or workstations which enabled
physicians and researchers to detect cancerous lesions not perceptible to the human eye [18,19].

While the paper relies on conventional techniques of computer aided melanoma detection,
its uniqueness lies in the fusion of new dimensions with the largely accepted pre-existing methods
of cancer detection. With the growing utility of machine learning in medical science and to address
the disputes on skepticism and unpredictability in science and engineering, fuzzy set theory plays
an essential role in image segmentation problem. Motivated by this uncertainty theory, we were
eager to discern whether we could possibly relate the fuzzy parameters in case of image segmentation
whenever we desired the best fitted region. We undertook to find answers to questions like how
feasible would it be to modify or cut the actual examined portion from a large image using pixel values?
How could we relate matrix representation of a graph with the pixel values of the original image and
perform the iteration such that we may extract the maximal affected region? The paper deploys a graph
theory-based segmentation method namely minimal weight computational algorithm that can point
out the affected area from the total image roughly. This algorithm is fully based on matrix construction
and computes the minimal pixel weight one by one for the whole figure. Additionally, we set one
threshold value in case of minimal weight logically which can select the cancer affected area roughly
from the total image. Again, we introduced L-Function fuzzy number for second iteration for which the
image segmentation method becomes more accurate as compared to the first approximation. Here we
have taken the L-Function fuzzy number with dynamic threshold value to tackle the ambiguous
portion and developed defuzzification method of L-Function fuzzy number for the crispification
of fuzzy number. Due to the ramification and vagueness of detached things and doubt of human
thinking, Zadeh (1965) portrayed this remarkable concept of fuzzy set theory in 1965, which has been
successfully and rigorously applied on different fields of science and engineering. In course of time
several researchers developed [20–27] lots of interesting results on uncertainty arena.

Researchers, off late, have expressed immense interest in experimenting with sundry image
segmentation processes. However, combination of the graph theory using minimal spanning
tree concept and L-type fuzzy number-based approximations is something that has probably been
incorporated for the first time in any research work for lesion segmentation. In addition, our focus
throughout the work has been to integrate as many distinctive and effective ways to detect melanoma
at its earliest possible stage of which one is the derivation of the center point of the segmented area for
effective understanding of the lesion’s asymmetric pattern and border irregularity. Another one of its
kind of feature that forms a part of this paper is that it has endeavored to mathematically demonstrate
the particularly affected region by calculation of the specific lesion area during feature extraction which
has been carried out using the conventional ABCD clinical guide of melanoma diagnosis. Lastly is our
choice of open source deep learning-based convolutional neural networkYOLOv3 as a classifier whose
architecture is more akin to that of a fully convolutional neural network (FCNN) and is capable of
subjugating other top detection methods [28].This classifier extensively speeds up the classification
process giving minimum room for errors as compared to other CNNs. The integration of these features
within the work scope has significantly assisted in expediting the detection process of melanomatic
lesions, which is the fundamental objective of the paper. The entire work has been conceptualized
in three sections—proposed methodology, result analysis and conclusion—with each section dealing
specifically and elaborately on the focused subject.
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2. Preliminaries

2.1. Definition of Interval Number

An interval number X is denoted by [XL, XR] and defined as X = [XL, XR] =

{x : XL ≤ x ≤ XR, x ∈ R}, where R is the set of real numbers and XL and XR generally denotes the
left and right range of the interval, respectively.

Lemma

The interval [XL, XR] can also be represented as P(α) = (XL)
1−α(XR)

α for α ∈ [0, 1].

2.2. Definition of Fuzzy Set

Let Ã be a set such that Ã =
{(

a,αÃ(β)
)

: aεA,αÃ(β)ε[0, 1]
}

which is normally denoted by this

ordered pair
(
a,αÃ(β)

)
, here a is a member of the set A and 0 ≤ αÃ(β) ≤ 1, then set Ã is called a

fuzzy set.

2.3. Definition of Fuzzy Number

Let Ã ∈ F(R) be called a fuzzy number where R denotes the set of real numbers if

• Ã is normal. That is, x0 ∈ R exists such that µÃ(x0) = 1.

• For all α ∈ (0, 1], Aα is a closed interval.

2.4. Definition of Triangular Fuzzy Number

A triangular fuzzy number Ã = (s1, s2, s3) should satisfy the following conditions:

• µÃ(x) is a continuous function which is in the interval [0,1].

• µÃ(x) is a strictly increasing and continuous function on the interval [s1, s2].

• µÃ(x) is a strictly decreasing and continuous function on the interval [s2, s3].

2.5. Definition of Linear Triangular Fuzzy Number (TFN)

A linear triangular fuzzy number (see Figure 1) can be written as ÃTFN = (s1, s2, s3) whose
membership function is defined as follows:

µÃTFN
(x) =


x−s1
s2−s1

ifs1 ≤ x ≤ s2

1 ifx = s2
s3−x
s3−s2

ifs2 ≤ x ≤ s3

0 Elsewhere

(1)
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μÃTFN(x) =

{
 
 

 
 
x − s1
s2 − s1

ifs1 ≤ x ≤ s2

1 ifx = s2
s3 − x

s3 − s2
ifs2 ≤ x ≤ s3

0 Elsewhere

 (1) 

 

Figure 1. Graphical representation of linear triangular fuzzy number. 

2.6. Definition of 𝛼-cut Form of Linear TFN 

α-cut or parametric form of TFN is defined as 
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2.6. Definition of α-cut Form of Linear TFN

α-cut or parametric form of TFN is defined as

Aα =
{
x ∈ X

∣∣∣∣µÃTFN
(x) ≥ α

}
=

{
AL(α) = s1 + α(s2 − s1) for α ∈ [0, 1]
AR(α) = s3 −α(s3 − s2) for α ∈ [0, 1]

(2)

where AL(α) is the increasing function with respect to α and, AR(α) is the decreasing function with
respect to α.

3. Implementation of YOLOv3 Classifier

As mentioned earlier early detection of melanoma plays a vital role in decreasing the mortality
rate. Though neural networks like Support Vector Machine, k-nearest neighbor (kNN), decision trees
have proved to be efficient classifiers, we in our work have opted for the use of You Only Look Once
(YOLO) whose system is organized like a regular CNN, containing convolutional and max-pooling
layers and further two completely associated CNN layers. It uses a regression-based algorithm which
scans the entire image and makes presumptions to identify, localize and classify objects inside the
image (see Figure 2). It is easier to optimize than most classifier algorithms, as it depends on one that
utilizes just a single neural network to run sundry components involved in the task. Not only does
it yield results at a faster pace (45 frames per second) and have superior accuracy as compared to
classification-based algorithms like R-CNN (47 s per individual test image), but it can also be used for
real time object detection. Object detection implies determination of positions on the image where
certain objects are placed and categorizing of those objects. Here, detection of objects on a particular
image is done by YOLOv3 from image pixels to bounding box coordinates and class probabilities,
summarizing the detecting process into a single regression problem. The input image is positioned
as per S × S grid of cells. For each entity that is available on the image, one grid cell is liable for its
prediction. That is where the center of the object falls into.
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Figure 2. A sample representation (image IMD002) of skin lesion location detection by YOLO. (a) S × S
grid input, (b) bounding boxes are generated with confidence score, (c) class probability mapping,
(d) final lesion location detection.

Every framework cell predicts ‘B’ jumping boxes just as ‘C’ class probabilities. The bouncing box
forecast has 5 segments: (x, y, w, h, confidence). In this way there are S × S × B × 5 outputs associated
with bounding box predictions. The coordinates (x, y) denote the center of the box, relative to the grid
cell location, w and h represent the width and height of the bounding box (see Figure 3).

The confidence score refers to the existence or absence of an object within the bounding box.
The confidence score can be defined as Pr(Object) × IOU(pred, truth). In case of absence of any
object within the cell, the confidence score should be zero. In other cases, it would be equivalent
to the intersection over union (IOU) between the ground truth and the predicted box. Computing
intersection over union, which is nothing but a ratio, can therefore be determined via: IOU = Overlap
Area/Union Area.
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Figure 3. Bounding box in YOLOv3 for image IMD002.

Here, in the numerator, overlapping region between the anticipated bounding box and the
ground-truth bounding box is calculated and the denominator denotes the union area, which is the
area comprising of both the ground-truth bounding box and the predicted bounding box. Division of
the overlap area by the union area is the resultant final score—the intersection over union (IOU).

It is additionally important to anticipate the class probabilities, Pr(Class(i) | Object). If no entity
is available on the grid cell, the loss function will not penalize it for an off-base class prediction.
The network functions by predicting only one set of probabilities in each cell irrespective of the count
of boxes B. That creates S × S × C class probabilities. Adding the class predictions to the resultant
vector, we get an S × S × (B × 5 + C) tensor as output.

4. Proposed Methodology

4.1. Training YOLOv3 with PH2, ISBI 2017 and ISIC 2019 Dataset

Skin cancer detection having emerged as a poignant area of research in medical imaging, training
the system with the appropriate datasets of relevant images has always proved to be a perplexing
task. The classifier was trained with a holdout dataset and the research was conducted with a total of
20,250 images of melanoma and non-melanomatic lesions available from the three publicly accessible
holdout datasets—PH2, ISBI 2017 and ISIC 2019. The testing data of melanoma and non-melanomatic
images alone accounts for 2530 images. The dataset PH2 (Table 1) comes with a total of 200 images,
comprises of 80 atypical nevi, 80 normal nevi and 40 instances of melanoma. The ISBI 2017 (Table 2)
comprises of 2750 images where 2000 images are for training, 600 for testing and 150 for validation.
The ISIC 2019 dataset originally consists of a total of 25,331 images (Table 3), which is broadly classified
into categories of 4522 melanomatic and 20,809 non-melanomatic images. Since we already had
1626 non-melanomatic images to work on from ISBI 2017 dataset and a mere 374 images of melanoma,
we restricted our selection of images (Table 4) in ISIC 2019 dataset to all the available 4522 melanoma
images in the dataset and randomly chosen 12,778 non-melanomatic images which brought our
tally to 17,300 images. Owing to the limited selection of images in each case of melanomatic and
non-melanomatic lesions, we categorized our selection of each section (melanoma’s 4522 images and
non-melanoma’s 12,778 images) as 80% for training, 10% for testing and another 10% for validation
(in approximation). The classifier, thereby, was trained with 13,840 training images, 1730 testing and
another 1730 validation images from the ISIC 2019 dataset. Table 5 projects the proposed work’s
distribution of selected melanomatic and non-melanomatic images taken from the three datasets for
training, validation and testing. These dermoscopic images of 24-bit RGB come with a resolution
ranging between 540 × 722 and 4499 × 6748.
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Table 1. Distribution of PH2 dataset.

Datasets Test Data Total

Label B M AT

PH2 80 40 80 200

B—benign, M—melanoma, AT—atypical nevus.

Table 2. Distribution of ISBI 2017 dataset.

Datasets Training Data Validation Data Test Data Total

Label B M SK B M SK B M SK

ISBI 2017 1372 374 254 78 30 42 393 117 90 2750

B—benign, M—melanoma, SK—seborrheic keratosis.

Table 3. Distribution of ISIC 2019 dataset.

Dataset NV M BKL BCC SCC VL DF AK Total

ISIC 2019 12,875 4522 2624 3323 628 253 239 867 25,331

NV—melanocytic nevus, M—melanoma, BKL—benign keratosis, BCC—basal cell carcinoma, SCC—squamous cell
carcinoma, VL—vascular lesion, DF—dermatofibroma, AK—actinic keratosis.

Table 4. Distribution of selected images from the ISIC 2019 dataset used in the proposed work.

Datasets Training Data Validation Data Test Data Total

Label M NM M NM M NM

ISIC 2019 3622 10,218 450 1280 450 1280 17,300

M—melanoma, NM—non-melanoma.

Table 5. Distribution of selected images from PH2, ISBI 2017 and ISIC 2019 datasets used in the
proposed work.

Datasets Training Data Validation Data Test Data Total

Label M NM M NM M NM

PH2 * * * * 40 160 200

ISBI 2017 374 1626 30 120 117 483 2750

ISIC 2019 3622 10,218 450 1280 450 1280 17,300

Total 3996 11,844 480 1400 607 1923 20,250

M—melanoma, NM—non-melanoma, * there are no data in this field.

All images belonging to these three datasets with varied resolutions were first resized to 512 × 512
resolutions before making them undergo training with YOLOv3.After conversion, YOLOv3 was trained
with the resized dataset images. YOLOv3 has been trained on the following parameters: batch size = 64,
subdivisions = 16, momentum = 0.9, decay = 0.0005, learning rate = 0.001. YOLOv3 was trained
through 70,000 epochs. Based on the results, a conclusion was drawn that the weights saved at the
10,000th epoch proved to be the most efficient detector of location of a lesion within the image.

4.2. Pre-Processing

Since diagnosis of skin cancer with the naked eye can be perplexing, medical professionals often
resort to dermoscopy, which nonetheless, is an expensive option. Recent researches have made way for
economical substitutes of dermatoscopy, without compromising on the image quality. Here, we employ
the ‘tape dermatoscopy’ method introduced by Blum [29] for recording images. The simple yet effective
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method uses a transparent adhesive over the suspected lesion after application of an immersion fluid
over the region. The camera is then placed at an angle of about 45◦ maintaining a distance of 75 to
85 mm from the surface of the affected skin. Ensuring adequate presence of light, the images of regions
bearing suspicious cancerous lesions are then captured for analysis. For quality output, it is advisable
to capture the images without zooming in. We used camera with 18mm DX lens, shutter speed of
1/30 ISO-900 and a focal length of 3.5.Upon capturing the image, the focal length and distance of the
object from the camera is preserved for further calculations. The main intent behind pre-processing
of the captured images is the elimination of noise, undesired artefacts and image augmentation by
adjusting the contrast. Here, we have resorted to three significant steps for pre-processing of the
derived image. In the first step, we use DullRazor algorithm for removal of hair from over the lesion
area. This algorithm first identifies the hair locations with the assistance of a grey morphological
closing operation and then verifies the same by distinguishing the identified pixels based on the
length and thickness of the detected shape. These pixels are then replaced using bilinear interpolation
method and then smoothened with an adaptive median filter. In the next step, image augmentation is
performed through histogram equalization. The final stage of image pre-processing involves lesion
area detection with the use of YOLOv3′s exclusive feature IOU. The above chronological outputs have
been elaborated here under (see Figure 4).
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algorithm, (c) enhanced image.

4.3. Segmentation

After complete pre-processing of the image, the boundary of the affected area is identified by
the process of segmentation. Image segmentation is done for dissection of the primary affected
area with high correlation and Region of Interest (RoI). The conventional state-of-art skin lesion
segmentation methods like thresholding, region enhancing and clustering did not quite succeed in
resolving the complex issues concerning melanoma detection and fell apart mainly owing to their time
and computational complexity. As time progressed, these conventional methods were gradually taken
over by several well-known methods namely automated computer aided method, k-mean algorithm,
convolution, saliency and deconvolution networks [30–36] and segmentation algorithms like edge
detection, thresholding and active contour methods. In recent times, active contour algorithms based
on parametric or geometric curve tracking methods have gained immense popularity notwithstanding
its mathematical complexity in solving partial differential equations for curve evolution [37–45].

In this work, we seek to put forth a graph-based segmentation algorithm to detect the boundary
values of the affected area. For low computational burden, here we select 4 × 4 order sub matrices of
the pre-processed image and create a graph of the adjacency matrix using one graph rule as implied
figuratively (see Figure 5).
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Figure 5. Example of a 4 × 4 sub matrix and its graphical representation.

4.3.1. Iteration-I

This phase involves a graph-based model for deriving minimal weight based on threshold value
for detection of affected area. To find the minimal weight of the graph we follow the below algorithm:

1. Construct an adjacent matrix.
2. Discard all self loops from the graph and take one minimum edge in place of multi edge expressions.
3. Find one minimum weight from the 1st row and place one connection. In case of a tie, take any

one connection arbitrarily.
4. Find one minimum weight from 1st and previously selected vertex row and add it into one.

In case of a tie take any one connection arbitrarily, ensuring that it will not form any circuit.
5. Continue this process until all the vertices are covered but does not form any circuit such that it

will generate a spanning tree.
6. Then calculate weight

W = (
3∑

j=1

e j) (3)

which is the minimum weight.
After computing W of a sub matrix, we consider threshold T and check the inequality W ≤ T (for

all sub matrixes). If the inequality holds, we select the corresponding matrix that will be one desired
affected zone of the total image. Thus, we generate the segmented area of any image using this method.

4.3.2. Iteration-II

After finding the affected zone roughly we proceed to further accurate the image segmentation.
The iteration-I threshold value is selected hypothetically and is observed that certain non-affected
zones are still included within the segmented part. To reduce it we set another threshold value less
than T which indicates the fully affected zone. Still the question arises, how much affected zone
lies in between iteration-I and iteration-II threshold value? Dilemma remains as to what should be
the actual threshold value such that we can take maximum affected zone and discard the maximum
non-affected area. In order to overcome this apprehension, we introduced the concept of L-Function
fuzzy number (see Figure 6) here to tackle the uncertainty and also developed a de-fuzzification
method of L-Function fuzzy number for crispification. This de-fuzzified result actually indicates the
threshold value of iteration-II.

• A fuzzy number Ã is said to be an L-R type fuzzy number if and only if

µÃ(x) =

 L (m−x)
α , for x ≤ m, α > 0

R (x−m)
β , for x ≥ m, β > 0

(4)

where, L is for left and R for right reference. M is the mean value of Ã. α,β are called left and
right spreads, respectively.
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• A fuzzy number Ã is said to be an L-type fuzzy number if and only if

L(x;α,β) =


1 , x > α

(x−α)
β−α , α ≤ x < β

0, x ≥ β

(5)
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In case of iteration II, we consider the pixel weights of all the sub matrices of the segmented figure.
Now, we have a few finite pixel weights and then we select the median weight among all the weights
to consider the maximum weight. Next we set the maximum weight in place of β and put the median
weight in place of α in this L-type fuzzy number figure. We then proceed to use the de-fuzzification
result of the proposed L-type fuzzy number to evaluate the dynamic threshold value of the pixel of the
image segmentation computation (see Figure 7). This iteration enables us to select the actual affected
zone in a prominent way. L-Function fuzzy number-based segmentation method for second iteration
will fetch us more prominent result than the first iteration (see Figure 8).

De-fuzzification of L-typed fuzzy number (area approximation technique): A linear L-type
fuzzy number ÃFN can be converted into a crisp number using the area approximation method.
The mathematical formulation is,

D = AL(α) + AR(α) (6)

where,

AL(α) = Area of left Zone(Rectangular shape according to Figure 7a) = 1.α = α

AR(α) = Area of Right Zone(Triangular area according to Figure 7b) =
1
2
(β−α).1 =

(β−α)

2
Thus,

De f uzzi f icationvalue D = AL(α) + AR(α) =
(β+ α)

2
(7)
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4.4. Feature Extraction

Since early detection of lesion is a crucial step in the field of skin cancer treatment, right feature
extraction can be a vital tool for exploration and analysis of the image. Dermoscopy plays a vital
role in examination and inspection of superficial skin lesions significantly improving the sensitivity
and specificity of experts for diagnosis of melanoma. A widely accepted rule for feature extraction
is the ABCD rule of clinical diagnosis [46,47]. It defines the basis for diagnosis of disease and is a
rather safe method as it can be easily detected visually without performing any penetration in the
body. This rule fittingly addresses the fundamental question in dermoscopy of whether a melanocytic
skin lesion is benign, suspicious (borderline) or malignant. The rule was first introduced in 1985 as
the ABCD rule by Stolz and then expanded in 2004 to the ABCDE rule, encompassing several clinical
features of melanoma, including Asymmetry, Border irregularity, Color variation, Diameter greater
than 6mm and Evolving (a new or changing lesion) [48–50]. In its initial stage, detection of melanoma
is challenging owing to its small size and symmetry in shape and color. Though the dermoscopic
features of melanoma vary widely, the major features of melanoma may include blue-white veil,
irregular dots or blotches, atypical pigment network, regression or crystalline structures. As the
tumor progresses with time, it begins to acquire more visible dermoscopic features like asymmetry
in lesion shape and structure, presence of more than two colors that could be analyzed by ABCD
rule [51–53]. Apart from the ABCDE rule, other recognized methods and algorithms like Pattern
analysis, CASH (Color, Architecture, Symmetry, and Homogeneity) Algorithm, Glasgow seven point
checklist, Menzies’ method have also been in vogue from time to time, of which pattern analysis is
as old and as widely adopted as the ABCD rule. While the CASH set of laws recognizes the Color,
Architectural disorder, Symmetry and Homogeneity/Heterogeneity mole formations, the Glasgow
seven-factor checklist implements analysis on three key features (trade in length of lesion, irregular
pigmentation and abnormal border) and four minor capabilities (inflammation, itching sensation,
diameter greater than 7 mm and discharge of lesions) [54–56]. The mole categorization is done based
on pattern, symmetry and one color by Menzies technique. However, owing to the complexities of
these methods and simplicity of implementation of the ABCD rule, the latter is the most acknowledged
among all computerized methods for ruling out melanoma.

Considering the above dermoscopic features of melanomatic cells, for its clinical diagnosis we
resort to the ABCD method of feature extraction post segmentation. In the next step we match
the derived segmented area to ensure whether it satisfies the parameters of a melanomatic lesion.
Additionally, we have attempted to extract the area of the actual affected region for precise detection of
the lesion.

4.4.1. Asymmetry and Border

Most melanomas, unlike a round to oval symmetrical common mole, are asymmetrical. If one
somehow managed to draw a line through the center of the lesion, the two parts will not match.
In addition, melanomic borders tend to be rough and may have notched or jagged edges while basic
moles have even boundaries. For detection of the asymmetric shape and border irregularity of the lesion,
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we have first calculated the center coordinate (x0, y0) of the segmented area (see Figure 9). Next we
draw multiple straight lines at any angle between 0◦ to 180◦ through the center coordinate which
invariably dissects the boundary of the lesion at least two points (xk1, yk1)&(xk2, yk2). Let the distance
of (xk1, yk1)&(xk2, yk2) from (x0, y0) be dk1&dk2, respectively. Now if in case dk1 , dk2, in maximum
cases we can safely deduce that the shape of the lesion is asymmetrical and border is irregular.
The mathematical illustrations for center point calculation, asymmetry and border detection are
elaborated as follows:
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Here, we proposed a new method for center calculation of the examined image. To compute the
center of the segmented image we consider the co-ordinates of all points within the segmented portion.
Let us assume that, (x1, y1), (x2, y2), (x3, y3), . . . . . . , (xn, yn) are the components of the examined image
and we want to calculate the center coordinate (x0, y0) using the concept of resultant computational
method. Let, x0 be the x-coordinate of the center and it will be calculated from the all examined
xi components where i ∈ N and simultaneously y0 be the y-coordinate of the center and it will be
calculated from the all examined yi components. Computation of x0 is given below.

If we consider any two points (x1, y1) and (x2, y2) then the coordinate of the resultant will be( x1+x2
2 , y1+y2

2

)
. Considering this point and another point (x3, y3), if we compute the mid-point then

we get the coordinate of the new resultant as
( x1+x2

2 +x3
2 ,

y1+y2
2 +y3

2

)
. Proceeding in this way, the next step

is described as follows,

For x1, x2, x3&x4 =
x1 + x2 + 2x3 + 4x4

8
&y1, y2, y3&y4 =

y1 + y2 + 2y3 + 4y4

8
(8)

For x1, x2, x3, x4&x5 =
x1 + x2 + 2x3 + 4x4 + 8x5

16
=

x1 + 20x2 + 21x3 + 22x4 + 23x5

24
(9)

and y1, y2, y3, y4&y5 =
y1 + y2 + 2y3 + 4y4 + 8y5

16
=

y1 + 20y2 + 21y3 + 22y4 + 23y5

24
(10)

Again,

For x1, x2, x3, x4, x5&x6 =
x1 + 20x2 + 21x3 + 22x4 + 23x5 + 24x6

25 (11)

and y1, y2, y3, y4, y5&y6 =
y1 + 20y2 + 21y3 + 22y4 + 23y5 + 24y6

25 (12)

Continue the above process up to finite n step, we get the final co-ordinate of the resultant as,

x0 =
x1 + 20x2 + 21x3 + 22x4 + 23x5 + 24x6 + . . . . . .+ 2n−2xn

2n−1
(13)

Following in this way y0 =
y1 + 20y2 + 21y3 + 22y4 + 23y5 + . . . . . .+ 2n−2yn

2n−1
(14)
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Thus, we get the center coordinate x0,y0 as, x1+20x2+21x3+22x4+23x5+24x6+......+2n−2xn
2n−1 ,

y1+20 y2+21 y3+22 y4+23 y5+24 y6+......+2n−2 yn
2n−1

 (15)

Here, we examined the asymmetry and border computation using the concept of straight line
rotation through a fixed angle. We know that, the equation of any straight line can be written in
the form y = mx + c, where m denotes the gradient and c denotes the intercept on y-axis. First,
we consider a straight line passes through the center point i.e., (x0, y0), then the equation can be written
as y0 = mx0 + c or c = y0 −mx0. Again, the equation of the straight line can be written as

y = mx + y0 −mx0 = m(x− x0) + y0 (16)

Now, we calculate m w.r.t. y = y0.
Let the line make an angle α with the line y = y0, the above equation can be written as

y = tanα(x− x0) + y0 where 0 ≤ α ≤ 180
◦

.
For example; if α = 5

◦

then the equation of the line will be

y = 0.0874(x− x0) + y0 (17)

Now substituting the boundary points of the segmented area on the above equation one by one,
we will get at least two points in which it will satisfy the equation of the straight line. Let the coordinate
of the points be expressed as (xki, yki)

∣∣∣i = 1, 2, 3, . . .N .
Suppose (xk1, yk1)&(xk2, yk2) are the two solution points of a line then we calculate the distance

dk1&dk2, respectively from the center point (x0, y0).
Therefore, the distance will be as follows;

dk1 =

√
(x0 − xk1)

2 + (y0 − yk1)
2 (18)

dk2 =

√
(x0 − xk2)

2 + (y0 − yk2)
2 (19)

After computing the distance, if we observe that dki , dkj in finite cases ki, k j
∣∣∣i, j ∈ N , then logically

it indicates that the segmented portion is asymmetrical and irregular (see Figure 10).
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Figure 10. Illustration of multiple lines drawn through the center point of the segmented lesion.
All cases of dki , dkj suggest irregular border of the lesion and thereby confirm its asymmetric nature.

4.4.2. Color

Multiple colors of a lesion could be a warning sign. While benign moles are generally of a singular
brown shade, a melanoma may have various shades of brown, tan or dark. As it grows, the red,
white or blue colors may also come into view. In order to match the color of a given lesion with the
dataset, our color set includes red, white, dark brown, light brown, black and blue-gray. Sometimes,
though, melanomas may lack any pigmentation at all.

To find the multiple colors variations of a lesion we follow the below algorithm.
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1. Calculate the shape (M×N) of the segmented image X1 and every pixel is checked. Simultaneously
an image F1 (M × N) is generated where fi, j is considered a pixel value at the location (i,j).

2. Extra border padding in plotting matrix F1, for calculation.
3. Calculate RGB value of each pixel xi, j and convert it to corresponding HSV
4. if HSV value of xi, j ranges from 30,62,77 to 30,68,57 then fi, j = 1 // for light brown
5. if HSV value of xi, j ranges from 30,67,51 to 30,67,28 then fi, j = 2 // for dark brown
6. if HSV value of xi, j ranges from 30,67,22 to 30,67,11 then fi, j = 3 // for tan black
7. if HSV value of xi, j ranges from 60,2,17 to 30,0,10 then fi, j = 4 // for blue gray
8. if HSV value of xi, j ranges from 0,100,46 to 0,87,70 then fi, j = 5 // for red
9. if HSV value of xi, j ranges from 0,0,94 to 0,0,98 then fi, j = 6 // for white
10. if fi, j > 0 and lies in the border line then plot that pixel with color according to clusters.

11. else if ( fi, j ≤
fi, j−1+ fi, j+1+ fi−1, j+ fi+1, j

4 ) then continue // plus (+) operation (see Figure 11a).
12. else plotting the pixel with different colors for different clusters as per Figure 11b.
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Figure 11. A sample representation of (a) plus operation and (b) mapping of all color variations within
the segmented lesion.

4.4.3. Diameter

Diameter computation is one of the most crucial topics in image segmentation. In case of a
suspicious melanomatic lesion, the ‘diameter greater than 6 mm’ feature implies the size of the
lesion. For calculation of the diameter of a suspicious lesion, we determine the maximum distance
between two pixel values positioned on the border of the lesion and determine the area of the actual
affected region. The determination of area is crucial to decipher the actual affected region; since it
is not feasible to apprehend the readings of the diameter and the area in pixel value, we rescale the
derived figures in terms of millimeter. Here, we compute each distance of the coordinate points
(x1, y1), (x2, y2), (x3, y3), . . . . . . , (xn, yn) and then compute maximum distance between them. We also
incorporated the idea of focal length here to compute the actual length of the segmented image. Further,
we will calculate the area of the affected portion using the concept of polyhedron area computation.
This noble thought will help the researchers to calculate the extreme distance and actual area of the
affected part. The complete derivation of the diameter and the area (see Figure 12) are as follows:

d1 = max


√
(xn − x1)

2 + (yn − y1)
2,

√
(xn−1 − x1)

2 + (yn−1 − y1)
2

. . . ,
√
(x2 − x1)

2 + (y2 − y1)
2,

√
(x1 − x1)

2 + (y1 − y1)
2

 (20)

d2 = max


√
(xn − x2)

2 + (yn − y2)
2,

√
(xn−1 − x2)

2 + (yn−1 − y2)
2

, . . . ,
√
(x2 − x2)

2 + (y2 − y2)
2

 (21)
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Continue the above process until n
2 times (if n is even) else n+1

2 times.

d n
2
= max

{√
(xn − x n

2
)2 + (yn − y n

2
)2, . . . ,

√
(x1 − x n

2
)2 + (y1 − y n

2
)2

}
(22)

Let, d = max
{
d1, d2, d3, . . . . . . , d n

2

}
and dr = d

∣∣∣1 ≤ r ≤ n
2 .

Find the max dr position. Let (xt, yt)and(xr, yr) be the extreme points.

The extreme distance is
√
(xt − xr)

2 + (yt − yr)
2unit where 1 ≤ r ≤ n

2 and 1 ≤ t ≤ n.

The actual length L = d× f
u+ f mm where u denotes the distance of the object from the camera and

f is the focal length of the camera.
Evaluating the total number of coordinates spread over the entire segmented region, we derive

the area of the desired portion:

∆ =
1
2

(∣∣∣∣∣∣ x1 x2

y1 y2

∣∣∣∣∣∣+
∣∣∣∣∣∣ x2 x3

y2 y3

∣∣∣∣∣∣+
∣∣∣∣∣∣ x3 x4

y3 y4

∣∣∣∣∣∣+
∣∣∣∣∣∣ x4 x5

y4 y5

∣∣∣∣∣∣+ . . . . . .+

∣∣∣∣∣∣ xn x1

yn y1

∣∣∣∣∣∣
)

(23)

=
1
2

∣∣∣∣∣∣∣
n−1∑
i=1

xiyi+1 + xny1 −

n−1∑
i=1

xi+1yi − x1yn

∣∣∣∣∣∣∣ (24)

Actual Area A = ∆
(

f
u+ f

)2
mm2 where u denotes the distance of the object from the camera and f

is the focal length of the camera.
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Figure 12. Outcome of diameter and area of the segmented lesion.

In Figure 12, the measurements have been generated in ‘units’ rather than the actual metrics
because u and f are unknown.

5. Parameters for Performance Evaluation

The methodology adopted for location detection of the lesion by means of YOLOv3 was assessed
in two phases. To begin with, the lesion location recognition performance of trained YOLOv3 in
skin lesion images, was assessed by inciting IOU metric. The recognized location was asserted if the
IOU score was more noteworthy than 80%. Secondly, the performance was tested on the predefined
parameters to additionally evaluate our technique: sensitivity (Sen), specificity (Spe), the dice coefficient
(Dic), the Jaccard index (Jac) and accuracy (Acc). Here, Sen indicates the measure of accurately
segmented lesion, Spe is the properly segmented ratio of non-lesion areas, Dic is used to quantify
segmented lesions and explain ground truth connection and Jac is viewed as an assessment metric
for the convergence proportion between the achieved segmentation results and ground truths masks.
Finally, accuracy shows the overall pixel-wise segmentation performance. The formula for calculation
of the above-mentioned evaluation metrics are as follows.

IOU =
Area of Overlap
Area of Union

(25)
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Sen =
TP

TP + FN
(26)

Spe =
TN

TN + FP
(27)

Dic =
2× TP

(2× TP) + FP + FN
(28)

Jac =
TP

TP + FN + FP
(29)

Acc =
TP + TN

TP + TN + FN + FP
(30)

The TP, TN, FP, FN represents true positive, true negative, false positive and false negative,
respectively. The lesion pixels in the image are considered as true positive (TP) if they are
detected/segmented correctly, else they are regarded as false negatives (FN). As for non-lesion
pixels, in the images they are considered as true negative (TN) if they are predicted as non-lesion pixel,
else they are regarded as false positive (FP).

6. Result Analysis

This section rests on the performance analysis of the complete working method projected through
this paper and is recorded on the basis of four significant parameters—lesion location detection capacity,
segmentation performance, feature extraction accurateness and computational time. Here three different
publicly available datasets PH2, ISBI 2017 and ISIC 2019 are used in the detection and segmentation
purpose. The whole operations and computations were completed on a PC with i7 processor, 32
GBRAM with 4 GB GPU and Ubuntu 18.04 operating system. The entire system was developed by
Python and OpenCv image processing framework.

The recognition execution was determined considering three metrics—sensitivity, specificity and
IOU to detect correct lesion in correct order. The PH2 dataset gave a 97.5% sensitivity, 98.5% specificity
and 95 IOU in the detection phase. While sensitivity of the proposed system on the ISBI 2017 dataset
was 98.47% with specificity of 97.51 % and IOU as 92, the scores in case of ISIC 2019 were 97.77, 97.65
and 90 in order. Table 6 refers to the recognition execution of the model on three datasets.

Table 6. Skin lesion location detection performance (%) analysis of YOLOv3.

Datasets Sensitivity Specificity IOU

PH2 97.5 98.75 95
ISBI 2017 98.47 97.51 92
ISIC 2019 97.77 97.65 90

After assessment of the identification of the lesion location, the segmentation execution of our
technique was evaluated on two datasets on the basis of accuracy, sensitivity, specificity, Jac and Dic
metrics. Our segmentation method involves two stages—the first being graph-based i.e., iteration I
(see Table 7) and the second deals with L-Function fuzzy number in iteration II (see Table 8).
The inclusion of the second step is to ensure better segmentation over rest of the methods available
in recent times. Table 8 outlines the segmentation performance of the projected pipeline technique.
Figures 13 and 14 are illustrative of the instances of the segmentation outputs and feature extraction
outcomes of the proposed model.
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Figure 13. (a) Input images (IMD285, ISIC_0013617 and ISIC_0059197), (b) output image after hair
removal and enhancement, (c) location detection by YOLOv3, (d) segmented image after iteration I,
(e) segmented image after iteration II (final segmented output).

Table 7. Segmentation performance (%) of iteration I.

Datasets Acc Sen Spe Jac Dic

PH2 96 95 96.25 82.60 90.47
ISBI 2017 95.67 88.89 97.31 80.00 88.89
ISIC 2019 92.94 88.88 94.37 76.62 86.76
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Table 8. Segmentation performance (%) of iteration II.

Datasets Acc Sen Spe Jac Dic

PH2 97.50 97.50 97.50 88.64 93.97
ISBI 2017 97.33 91.45 98.76 86.99 93.04
ISIC 2019 93.98 91.55 94.84 79.84 88.79
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not be calculated from images obtained from datasets. Through Figure 15, however, we are able to 

Figure 14. (a) Center point detection of the final segmented output, (b) asymmetry and border
irregularity detection by calculating dki and dkj, (c) the color variation detection and segregation on
lesion images. (d) The derived measurement of diameter and area of the segmented lesion projected
in ‘units’.

In addition to conducting the study on images gathered from the datasets, we also have repeated
the analysis on image captured in real time in order to overcome the dilemma of producing the
measurements in their appropriate forms. As can be observed in the earlier images (see Figure 14),
the measurements have merely been projected as ‘unit’. This is because the actual measurement could
not be fathomed as focal length of the camera and the distance of the object from the camera could not
be calculated from images obtained from datasets. Through Figure 15, however, we are able to project
the units of the border and diameter of the real time captured mole authentically which also is a proof
of the efficiency of the proposed method.
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Figure 15. (a) Input captured image from camera, (b) output image after hair removal, (c) enhanced
image, (d) location detection by YOLOv3, (e) segmented image after iteration I, (f) segmented image
after iteration II (final segmented output), (g) center point detection of the final segmented output,
(h) asymmetry and border irregularity detection by calculating dki and dkj, (i) the color variation
detection and segregation on lesion images. (j) Here the focal length of the camera f and the distance
of the object from the camera u is automatically calculated whose values are 3.5 mm and 80 mm,
respectively and thereby the diameter and area are also expressed in terms of millimeters.

7. Discussion

In recent years, notable contributions have been made by scholars for redefining the segmentation
process. Our work was assessed on three well-established publicly available datasets PH2, ISBI 2017
Skin Lesion Challenge (SLC) and ISIC 2019 (SLC). We evaluated our proposed segmentation
method against segmentation frameworks based on deep convolutional neural network (DCNN) [57],
approaches with U-nets followed by histogram equalization and C-means clustering [58], segmentation
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done by crowdsourcing from ISIC 2017 challenge results [59], simultaneous segmentation and
classification using bootstrapping deep convolutional neural network model [60], segmentation
using contrast stretching and mean deviation [61] and semantic segmentation method for automatic
segmentation [62]. In addition, we also drew inspiration from few of the most successful lesion
segmentation methods introduced in the recent years like segmentation by means of FCN networks,
multi stage fully convolution network (FCN) with parallel integration (mFCN-PI) [63,64], FrCN method
involving simultaneous segmentation and classification, a fully-convolutional residual networks
(FCRN), which was an amendment and extension of FCN architecture [65–67], a deep fully
convolutional-deconvolutional neural network (CDNN) performing automatic segmentation [68] and
lastly with the semi automatic Grab cut algorithm [69]. Tables 9 and 10 project a comparative study
with the aforementioned works based on datasets available from PH2 and ISBI 2017, respectively.
Table 11 includes the segmentation performance results of the proposed method on selected images
from ISIC 2019. All performances were measured on the pre-defined parameters of accuracy, sensitivity,
specificity, Jac and Dic, which in turn were assessed by calculation of TP, TN, FP, FN cases (Figure 16)
in instance of each dataset.

Table 9. The comparative study of the proposed segmentation performance (%) on PH2 dataset.

References Year Dataset Acc Sen Spe Jac Dic

Bi et al. (ResNets) [63] 2017 PH2 94.24 94.89 93.98 83.99 90.66
Bi et al. [64] 2019 PH2 95.03 96.23 94.52 85.9 92.1

Saba etal. [57] 2019 PH2 95.41 - - - -
Unver etal. [69] 2019 PH2 92.99 83.63 94.02 79.54 88.13

Xie et al. [60] 2020 PH2 96.5 96.7 94.6 89.4 94.2
Hasan et al. [62] 2020 PH2 98.7 92.9 96.9 - -

Proposed Method 2020 PH2 97.5 97.5 97.5 88.64 93.97

Table 10. The comparative study of the proposed segmentation performance (%) on ISBI 2017 dataset.

References Year Dataset Acc Sen Spe Jac Dic

Yuan et al. (CDNN) [68]
Lin et al. (U-Net) [58]
Bi et al.(ResNets) [63]

Li et al. [65]
Al-Masni et al. [66]

Bi et al. [64]
Soudani et al. [59]

Unver etal. [69]
Xie et al. [60]

Akram et al. [61]
Hasan et al. [62]

Al-Masni et al. [67]

2017
2017
2017
2018
2018
2019
2019
2019
2020
2020
2020
2020

ISBI 2017
ISBI 2017
ISBI 2017
ISBI 2017
ISBI 2017
ISBI 2017
ISBI 2017
ISBI 2017
ISBI 2017
ISBI 2017
ISBI 2017
ISBI 2017

93.4
-

93.4
93.2
94.03
94.08
94.95
93.39
94.7
95.9
95.3
81.57

82.5
-

80.2
82

85.4
86.2
85.87
90.82
87.4

-
87.5

75.67

97.5
-

98.5
97.8

96.69
96.17
95.66
92.68
96.8

-
95.5

80.62

76.5
62.00

76
76.2
77.11
77.73
78.92
74.81
80.4

-
-
-

84.9
77.00
84.4
84.7

87.08
85.66
88.12
84.26
87.8

-
-
-

Proposed Method 2020 ISBI 2017 97.33 91.45 98.76 86.99 93.04

Table 11. The outcome of the proposed segmentation performance (%) on ISIC 2019 dataset.

References Year Dataset Acc Sen Spe Jac Dic

Proposed
Method 2020 ISIC 2019 93.98 91.55 94.84 79.84 88.79
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Figure 16. True positive (TP), true negative (TN), false positive (FP), false negative (FN) analysis of the
proposed segmentation method.

As can be perceived from the tabular data, all the above researches accomplished substantially
credible results in lesion segmentation by improvising on existing segmentation methods. Comparing the
proposed method’s outcome with these contemporary segmentation approaches evidently demonstrates
that the former’s performance has an edge over all the existing deep-learning methods available.
Adjudging the method’s performance on PH2 dataset, it outperformed the best contributions in
sensitivity and specificity scoring 97.5% in each. It also substantially outscored the rest in terms
of Jac and Dice score with 88.64% and 93.97% falling behind but only to the inspiring work of Xie
who achieved a staggering score of 89.4% and 94.2% in the said parameters. It also achieved second
best accuracy with 97.5% behind Hasan’s 98.7%. In addition, the segmentation results evaluated on
ISBI 2017 dataset illustrates the proposed method outdoes the rest by a significant margin, including
the ones that attained the top three positions in the ISIC 2017 Skin Lesion Challenge, on all parameters
with 97.33% accuracy and a Jac score of 86.99%. We attribute the method’s efficiency to the infusion of
L-Function fuzzy number in the segmentation method.

Proposed recognition result is compared with different methods of different classifiers like Tree,
SVM, KNN and YOLOv3. The different parameters are set to draw comparison between the existing
deep-learning models and our proposed method using You Only Look Once (YOLO). Comparison
is done on the basis of sensitivity, specificity, precision, accuracy and AUC. Time (in second) is also
used as a comparison metric to validate the speed of our method. Tables 12–14 draw the comparisons
between said classifiers on images belonging to PH2, ISBI 2017 and ISIC 2019 datasets.

Table 12. Comparative study between proposed classifier and well-known classifiers on PH2 dataset.

Classifier Method Acc (%) Sen (%) Spec (%) Prec AUC Time (in sec)

TREE
CT 75 75 75 42.85 0.83 17.11
ST 76.5 77.5 76.25 44.92 0.89 4.61

SVM

LSVM 97 95 97.5 90.47 0.99 7.24
CSVM 96.5 90 98.12 92.30 0.96 9.43
QSVM 97.5 95 98.12 92.68 0.98 5.81

MGSVM 92 90 92.5 75 0.96 5.11

KNN

FKNN 98 95 98.75 95 0.97 4.94
MKNN 96.5 92.5 97.5 90.24 0.98 3.96
Cosine 96 92.5 96.87 88.09 0.99 4.65
Cubic 98 95 98.75 95 0.98 5.78

WKNN 94 97.5 93.12 78 0.99 4.15

YOLO Proposed
Method 99 97.5 99.37 97.5 0.99 2.63
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Table 13. Comparative study between proposed classifier and well-known classifiers on ISIB
2017 dataset.

Classifier Method Acc (%) Sen (%) Spec (%) Prec AUC Time (in sec)

TREE
CT 92.83 90.60 93.37 76.81 0.96 8.12
ST 88.00 88.89 87.78 63.80 0.92 12.67

SVM

LSVM 96.67 93.16 97.52 90.08 0.95 11.42
CSVM 86.83 85.47 87.16 61.73 0.92 140.54
QSVM 97.50 94.87 98.14 92.50 0.97 21.47

MGSVM 96.67 94.87 97.10 88.80 0.98 13.45

KNN

FKNN 94.00 92.31 94.41 80.00 0.90 9.04
MKNN 97.83 94.02 98.76 94.83 0.96 10.01
Cosine 97.50 93.16 98.55 93.97 0.97 10.78
Cubic 97.50 94.02 98.34 93.22 0.97 102.01

WKNN 98.50 96.58 98.96 95.76 0.98 12.75

YOLO Proposed
Method 99.00 97.44 99.38 97.44 0.99 7.14

Table 14. Comparative study between proposed classifier and well-known classifiers on ISIC
2019 dataset.

Classifier Method Acc (%) Sen (%) Spec (%) Prec AUC Time (in sec)

TREE
CT 91.68 90.67 92.03 80.00 0.95 15.21
ST 86.94 89.11 86.17 69.38 0.93 21.88

SVM

LSVM 93.47 92.00 93.98 84.32 0.95 19.39
CSVM 88.09 88.44 87.97 72.10 0.93 246.98
QSVM 93.06 91.56 93.59 83.40 0.98 37.01

MGSVM 94.86 91.78 95.94 88.82 0.96 26.32

KNN

FKNN 93.82 83.11 97.58 92.35 0.92 18.15
MKNN 90.69 86.00 92.34 79.79 0.96 17.47
Cosine 92.02 93.11 91.64 79.66 0.99 19.19
Cubic 94.74 88.00 97.11 91.45 0.97 176.45

WKNN 95.84 93.56 96.64 90.73 0.99 22.39

YOLO Proposed
Method 97.11 94.22 98.13 94.64 0.99 12.40

The comparisons clearly depict that the proposed classification method has an edge over all other
existing methods of different classifier. Not only does the classifier projects superior output spanning
all parameters when contrasted with other efficient classifiers, also the time for detection of melanoma
is minimized in case of the proposed method. The analysis of TP, TN, FP and FN derived from the
classifier’s performance on the three datasets is projected through Figure 17.
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Choosing YOLO as a classifier decreases the detection time and increases the efficiency of skin
lesion detection. Use of preprocessing models where automatic hair removal is followed by image
enhancement and proper segmentation methods contributed to better accuracy of the proposed method.
Proper validation of ABCD features of melanoma by proposed method also add to better result.

8. Conclusions

For decades, melanoma incidence has progressively risen and is projected to continue to rise
across the world. Melanoma mortality trends are variable and as with incidence, are influenced
by geography, ethnicity, age and sex. Attempts to improve the diagnostic accuracy of melanoma
diagnosis have spurred the development of innovative ideas to cope up with the fatality of the disease.
Research into the causes, prevention and treatment of melanoma is being carried out in medical centers
throughout the world. In this article, an efficient mathematical modeling is presented for the purpose
of segmentation and feature extraction. The studies have been executed on three distinguished datasets
PH2, ISBI 2017 and ISIC 2019.In addition, test results ranging over a multitude of parameters assert
that the proposed technique using YOLOv3 accomplished promising outcomes when contrasted with
other deep learning-based methodologies. Here, we have examined the computational strides to
consequently analyze cancer by utilization of various digital and dermatological images from the
aforementioned datasets. The two-phase process combining graph theory and fuzzy number-based
approximation heightened segmentation results which in turn positively affect the recognition process
classification accuracy. The proposed features in this work have rendered a considerable amount
of efficiency to the overall methodology of cancer detection though much remains to be explored,
analyzed and accomplished in this area of human health. Future prospects may involve training of
the system with wider range of datasets bearing multiple lesions and lesion classification through
improved CAD methods or clinical testing.

Author Contributions: The work being executed under multiple authorship, derived it’s conceptualization from
the rigorous research carried out by S.B. under the supervision of R.B. and A.D. A.C. partly contributed to
designing the work’s methodology in coordination with Banerjee who performed proper investigation and formal
analysis of data. The much needed software assistance, data curation and availability of resources were ensured by
S.K.S. Based on the validation of data from all co-authors, S.B. penned the original draft which he further reviewed
and edited for worthy visualization. All authors have read and agreed to the published version of the manuscript.
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Conflicts of Interest: The authors declare no conflict of interest.

References

1. Feng, J.; Isern, N.G.; Burton, S.D.; Hu, J.Z. Studies of secondary melanoma on C57BL/6J mouse liver using
1H NMR metabolomics. Metabolites 2013, 3, 1011–1035. [CrossRef] [PubMed]

2. Abuzaghleh, O.; Faezipour, M.; Barkana, B.D. SKINcure: An Innovative Smartphone-Based Application to
Assist in Melanoma Early Detection and Prevention. Signal Image Process. Int. J. 2014, 15, 1–13. [CrossRef]

3. Orazio, D.J.; Jarrett, S.; Amaro-Ortiz, A.; Scott, T. UV Radiation and the Skin. Int. J. Mol. Sci. 2013,
14, 12222–12248. [CrossRef] [PubMed]

4. Karimkhani, C.; Green, A.; Nijsten, T.; Weinstock, M.; Dellavalle, R.; Naghavi, M.; Fitzmaurice, C. The global
burden of melanoma: Results from the Global Burden of Disease Study 2015. Br. J. Dermatol. 2017,
177, 134–140. [CrossRef]

5. Gandhi, S.A.; Kampp, J. Skin Cancer Epidemiology, Detection, and Management. Med. Clin. N. Am. 2015,
99, 1323–1335. [CrossRef]

6. Giotis, I.; Molders, N.; Land, S.; Biehl, M.; Jonkman, M.F.; Petkov, N. MED-NODE: A computer-assisted
melanoma diagnosis system using non-dermoscopic images. Expert Syst. Appl. 2015, 42, 6578–6585.
[CrossRef]

7. Abbas, Q.; Celebi, M.E.; García, I.F. Hair removal methods: A comparative study for dermoscopy images.
Biomed. Signal Process. Control 2011, 6, 395–404. [CrossRef]

http://dx.doi.org/10.3390/metabo3041011
http://www.ncbi.nlm.nih.gov/pubmed/24958263
http://dx.doi.org/10.5121/sipij.2014.5601
http://dx.doi.org/10.3390/ijms140612222
http://www.ncbi.nlm.nih.gov/pubmed/23749111
http://dx.doi.org/10.1111/bjd.15510
http://dx.doi.org/10.1016/j.mcna.2015.06.002
http://dx.doi.org/10.1016/j.eswa.2015.04.034
http://dx.doi.org/10.1016/j.bspc.2011.01.003


Diagnostics 2020, 10, 577 24 of 26

8. Jemal, A.; Siegel, R.; Ward, E.; Hao, Y.; Xu, J.; Thun, M.J. Cancer statistics, 2019. CA Cancer J. Clin. 2019,
69, 7–34.

9. Mayer, J.E.; Swetter, S.M.; Fu, T.; Geller, A.C. Screening, early detection, education, and trends for melanoma:
Current status (2007–2013) and future directions Part II. Screening, education, and future directions. J. Am.
Acad. Dermatol. 2014, 71, e1–e611.

10. Rigel, D.S.; Russak, J.; Friedman, R. The evolution of melanoma diagnosis: 25 years beyond the ABCDs.
CA Cancer J. Clin. 2010, 60, 301–316. [CrossRef]

11. Lodha, S.; Saggar, S.; Celebi, J.T.; Silvers, D.N. Discordance in the histopathologic diagnosis of difficult
melanocytic neoplasms in the clinical setting. J. Cutan. Pathol. 2008, 35, 349–352. [CrossRef]

12. Brochez, L.; Verhaeghe, E.; Grosshans, E. Inter-observer variation in the histopathological diagnosis of
clinically suspicious pigmented skin lesions. J. Pathol. 2002, 196, 459–466. [CrossRef]

13. Dadzie, O.E.; Goerig, J.; Bhawan, J. Incidental microscopic foci of nevic aggregates in skin. Am. J. Dermatopathol.
2008, 30, 45–50. [CrossRef] [PubMed]

14. Togawa, Y. Dermoscopy for the Diagnosis of Melanoma: An Overview. Austin J. Dermatol. 2017, 4, 1080.
15. Kroemer, S.; Frühauf, J.; Campbell, T.M.; Massone, C.; Schwantzer, G.; Soyer, H.P.; Hofmann-Wellenhof, R.

Mobile teledermatology for skin tumour screening: Diagnostic accuracy of clinical and dermoscopic image
tele-evaluation using cellular phones. Br. J. Dermatol. 2011, 164, 973–979. [CrossRef]

16. Harrington, E.; Clyne, B.; Wesseling, N.; Sandhu, H.; Armstrong, L.; Bennett, H.; Fahey, T. Diagnosing
malignant melanoma in ambulatory care: A systematic review of clinical prediction rules. BMJ Open 2017,
7, e014096. [CrossRef]

17. Robinson, J.K.; Turrisi, R. Skills training to learn discrimination of ABCDE criteria by those at risk of
developing melanoma. Arch. Dermatol. 2006, 142, 447–452. [CrossRef] [PubMed]

18. Karargyris, A.; Karargyris, O.; Pantelopoulos, A. DERMA/Care: An advanced image-processing mobile
application for monitoring skin cancer. In Proceedings of the 24th International Conference on Tools with
Artificial Intelligence, Athens, Greece, 7–9 November 2012; Volume 2, pp. 1–7.

19. Do, T.T.; Zhou, Y.; Zheng, H.; Cheung, N.M.; Koh, D. Early melanoma diagnosis with mobile imaging.
In Proceedings of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology
Society, Chicago, IL, USA, 26–30 August 2014; pp. 6752–6757.

20. Yen, K.K.; Ghoshray, S.; Roig, G. A linear regression model using triangular fuzzy number coefficients.
Fuzzy Sets Syst. 1999, 106, 166–167. [CrossRef]

21. Chakraborty, A.; Mondal, S.P.; Ahmadian, A.; Senu, N.; Dey, D.; Alam, S.; Salahshour, S. The Pentagonal
Fuzzy Number: Its Different Representations, Properties, Ranking, Defuzzification and Application in Game
Problem. Symmetry 2019, 11, 248. [CrossRef]

22. Chakraborty, A.; Maity, S.; Jain, S.; Mondal, S.P.; Alam, S. Hexagonal Fuzzy Number and its Distinctive
Representation, Ranking, Defuzzification Technique and Application in Production Inventory Management
Problem. Granul. Comput. 2020. [CrossRef]

23. Atanassov, K. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [CrossRef]
24. Chakraborty, A.; Mondal, S.P.; Ahmadian, A.; Senu, N.; Alam, S.; Salahshour, S. Different Forms of Triangular

Neutrosophic Numbers, De-Neutrosophication Techniques, and their Applications. Symmetry 2018, 10, 327.
[CrossRef]

25. Chakraborty, A.; Mondal, S.; Broumi, S. De-neutrosophication technique of pentagonal neutrosophic number
and application in minimal spanning tree. Neutrosophic Sets Syst. 2019, 29, 1–18.

26. Chakraborty, A. A New Score Function of Pentagonal Neutrosophic Number and its Application in
Networking Problem. Int. J. NeutrosophicSci. 2020, 1, 35–46.

27. Mahata, A.; Mondal, S.P.; Alam, S.; Chakraborty, A.; Goswami, A.; Dey, S. Mathematical model for diabetes
in fuzzy environment and stability analysis. J. Intell. Fuzzy Syst. 2018, 36, 2923–2932. [CrossRef]

28. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
29. Andreas, B.; Giacomel, J. Tape dermatoscopy: Constructing a low-cost dermatoscope using a mobile phone,

immersion fluid and transparent adhesive tape. Derm. Pr. Concept 2015, 5, 87–93.
30. Ganster, H.; Pinz, P.; Rohrer, R.; Wildling, E.; Binder, M.; Kittler, H. Automated melanoma recognition.

IEEE Trans. Med. Imaging 2001, 20, 233–239. [CrossRef]
31. Celebi, M.E.; Iyatomi, H.; Schaefer, G.; Stoecker, W.V. Lesion border detection in dermoscopy images.

Comput. Med. Imaging Graph. 2009, 33, 148–153. [CrossRef]

http://dx.doi.org/10.3322/caac.20074
http://dx.doi.org/10.1111/j.1600-0560.2007.00970.x
http://dx.doi.org/10.1002/path.1061
http://dx.doi.org/10.1097/DAD.0b013e31815f9854
http://www.ncbi.nlm.nih.gov/pubmed/18212544
http://dx.doi.org/10.1111/j.1365-2133.2011.10208.x
http://dx.doi.org/10.1136/bmjopen-2016-014096
http://dx.doi.org/10.1001/archderm.142.4.447
http://www.ncbi.nlm.nih.gov/pubmed/16618863
http://dx.doi.org/10.1016/S0165-0114(97)00269-8
http://dx.doi.org/10.3390/sym11020248
http://dx.doi.org/10.1007/s41066-020-00212-8
http://dx.doi.org/10.1016/S0165-0114(86)80034-3
http://dx.doi.org/10.3390/sym10080327
http://dx.doi.org/10.3233/JIFS-171571
http://dx.doi.org/10.1109/42.918473
http://dx.doi.org/10.1016/j.compmedimag.2008.11.002


Diagnostics 2020, 10, 577 25 of 26

32. Korotkov, K.; Garcia, R. Computerized analysis of pigmented skin lesions: A review. Artif. Intell. Med. 2012,
56, 69–90. [CrossRef]

33. Filho, M.; Ma, Z.; Tavares, J.M.R.S. A Review of the Quantification and Classification of Pigmented Skin
Lesions: From Dedicated to Hand-Held Devices. J. Med. Syst. 2015, 39, 177. [CrossRef] [PubMed]

34. Oliveira, R.B.; Filho, M.E.; Ma, Z.; Papa, J.P.; Pereira, A.S.; Tavares, J.M.R. Withdrawn: Computational
methods for the image segmentation of pigmented skin lesions: A Review. Comput. Methods Programs Biomed.
2016, 131, 127–141. [CrossRef] [PubMed]

35. Ashour, A.S.; Hawas, A.R.; Guo, Y.; Wahba, M.A. A novel optimized neutrosophic k-means using genetic
algorithm for skin lesion detection in dermoscopy images. Signal Image Video Process. 2018, 12, 1311–1318.
[CrossRef]

36. Pathan, S.; Prabhu, K.G.; Siddalingaswamy, P. Techniques and algorithms for computer aided diagnosis of
pigmented skin lesions—A review. Biomed. Signal Process. Control 2018, 39, 237–262. [CrossRef]

37. Rodriguez-Ruiz, A.; Mordang, J.J.; Karssemeijer, N.; Sechopoulos, I.; Mann, R.M. Can radiologists improve
their breast cancer detection in mammography when using a deep learning-based computer system as
decision support? In Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference
Series; International Society for Optics and Photonics: Bellingham, WA, USA, 2018.

38. Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; Van Der Laak, J.A.;
Van Ginneken, B.; Sánchez, C.I. A survey on deep learning in medical image analysis. Med. Image
Anal. 2017, 42, 60–88. [CrossRef]

39. Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for
image segmentation. arXiv 2015, arXiv:1511.00561. [CrossRef]

40. Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmentation
with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal.
Mach. Intell. 2018, 40, 834–848. [CrossRef]

41. García-García, A.; Orts-Escolano, S.; Oprea, S.; Villena-Martínez, V.; García-Rodríguez, J. A review on deep
learning techniques applied to semantic segmentation. arXiv 2017, arXiv:1704.06857.

42. Yu, Z.; Jiang, X.; Zhou, F.; Qin, J.; Ni, D.; Chen, S.; Lei, B.; Wang, T. Melanoma Recognition in Dermoscopy
Images via Aggregated Deep Convolutional Features. IEEE Trans. Biomed. Eng. 2018, 66, 1006–1016.
[CrossRef]

43. Codella, N.C.; Gutman, D.; Celebi, M.E.; Helba, B.; Marchetti, M.A.; Dusza, S.W.; Kalloo, A.; Liopyris, K.;
Mishra, N.; Kittler, H.; et al. Skin lesion analysis toward melanoma detection: A challenge at the 2017
international symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration
(ISIC). In Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018),
Washington, DC, USA, 4–7 April 2018.

44. Yuan, Y.; Chao, M.; Lo, Y.-C. Automatic Skin Lesion Segmentation Using Deep Fully Convolutional Networks
with Jaccard Distance. IEEE Trans. Med. Imaging 2017, 36, 1876–1886. [CrossRef]

45. Li, H.; He, X.; Zhou, F.; Yu, Z.; Ni, D.; Chen, S.; Wang, T.; Lei, B. Dense Deconvolutional Network for Skin
Lesion Segmentation. IEEE J. Biomed. Health Inform. 2018, 23, 527–537. [CrossRef] [PubMed]

46. Roesch, A.; Berking, C. Melanoma. In Braun-Falco’s Dermatology; Springer: Berlin, Germany, 2020; pp. 1–17.
47. Wolf, I.H.; Smolle, J.; Soyer, H.P.; Kerl, H. Sensitivity in the clinical diagnosis of malignant melanoma.

Melanoma Res. 1998, 8, 425–429. [CrossRef] [PubMed]
48. Friedman, R.J.; Rigel, D.S.; Kopf, A.W. Early Detection of Malignant Melanoma: The Role of Physician

Examination and Self-Examination of the Skin. CA Cancer J. Clin. 1985, 35, 130–151. [CrossRef] [PubMed]
49. She, Z.; Liu, Y.; Damatoa, A. Combination of features from skin pattern and ABCD analysis for lesion

classification. Skin Res. Technol. 2007, 13, 25–33. [CrossRef]
50. Yagerman, S.E.; Chen, L.; Jaimes, N.; Dusza, S.W.; Halpern, A.C.; Marghoob, A. “Do UC the melanoma?”

Recognising the importance of different lesions displaying unevenness or having a history of change for
early melanoma detection. Aust. J. Dermatol. 2014, 55, 119–124. [CrossRef]

51. Kim, J.K.; Nelson, K.C. Dermoscopicfeatures of common nevi: A review. G. Ital. Dermatol. Venereol. 2012,
147, 141–148.

52. Saida, T.; Koga, H.; Uhara, H. Key points in dermoscopic differentiation between early acral melanoma and
acral nevus. J. Dermatol. 2011, 38, 25–34. [CrossRef]

http://dx.doi.org/10.1016/j.artmed.2012.08.002
http://dx.doi.org/10.1007/s10916-015-0354-8
http://www.ncbi.nlm.nih.gov/pubmed/26411929
http://dx.doi.org/10.1016/j.cmpb.2016.03.032
http://www.ncbi.nlm.nih.gov/pubmed/27265054
http://dx.doi.org/10.1007/s11760-018-1284-y
http://dx.doi.org/10.1016/j.bspc.2017.07.010
http://dx.doi.org/10.1016/j.media.2017.07.005
http://dx.doi.org/10.1109/TPAMI.2016.2644615
http://dx.doi.org/10.1109/TPAMI.2017.2699184
http://dx.doi.org/10.1109/TBME.2018.2866166
http://dx.doi.org/10.1109/TMI.2017.2695227
http://dx.doi.org/10.1109/JBHI.2018.2859898
http://www.ncbi.nlm.nih.gov/pubmed/30047917
http://dx.doi.org/10.1097/00008390-199810000-00007
http://www.ncbi.nlm.nih.gov/pubmed/9835456
http://dx.doi.org/10.3322/canjclin.35.3.130
http://www.ncbi.nlm.nih.gov/pubmed/3921200
http://dx.doi.org/10.1111/j.1600-0846.2007.00181.x
http://dx.doi.org/10.1111/ajd.12143
http://dx.doi.org/10.1111/j.1346-8138.2010.01174.x


Diagnostics 2020, 10, 577 26 of 26

53. Kolm, I.; French, L.; Braun, R.P. Dermoscopypatterns of nevi associated with melanoma. G. Ital.
Dermatol. Venereol. 2010, 145, 99–110. [PubMed]

54. Zhou, Y.; Smith, M.; Smith, L.; Warr, R. A new method describing border irregularity of pigmented lesions.
Skin Res. Technol. 2010, 16, 66–76. [CrossRef]

55. Forsea, A.M.; Tschandl, P.; Zalaudek, I.; del Marmol, V.; Soyer, H.P.; Argenziano, G.; Geller, A.C.;
Arenbergerova, M.; Azenha, A.; Blum, A.; et al. The impact of dermoscopy on melanoma detection
in the practice of dermatologists in Europe: Results of a pan-European survey. J. Eur. Acad. Dermatol. Venereol.
2017, 31, 1148–1156. [CrossRef]

56. Henning, J.S.; Dusza, S.W.; Wang, S.Q.; Marghoob, A.A.; Rabinovitz, H.S.; Polsky, D.; Kopf, A.W. The CASH
(color, architecture, symmetry, and homogeneity) algorithm for dermoscopy. J. Am. Acad. Dermatol. 2007,
56, 45–52. [CrossRef] [PubMed]

57. Saba, T.; Khan, M.A.; Rehman, A. Region Extraction and Classification of Skin Cancer: A Heterogeneous
framework of Deep CNN Features Fusion and Reduction. J. Med. Syst. 2019, 43, 2–19. [CrossRef] [PubMed]

58. Lin, B.S.; Michael, K.; Kalra, S.; Tizhoosh, H.R. Skin lesion segmentation: U-nets versus clustering.
In Proceedings of the 2017 IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu,
HI, USA, 27 November–1 December 2017.

59. Soudani, A.; Barhoumi, W. An image-based segmentation recommender using crowdsourcing and transfer
learning for skin lesion extraction. Expert Syst. Appl. 2019, 118, 400–410. [CrossRef]

60. Xie, Y.; Zhang, J.; Xia, Y.; Shen, C. A Mutual Bootstrapping Model for Automated Skin Lesion Segmentation
and Classification. IEEE Trans. Med Imaging 2020, 39, 2482–2493. [CrossRef] [PubMed]

61. Akram, T.; Lodhi, J.M.H.; Naqvi, R.S.; Naeem, S.; Alhaisoni, M.; Ali, M.; Haider, A.S.; Qadri, N.N. A multilevel
features selection framework for skin lesion classification. Hum. Cent. Comput. Inf. Sci. 2020, 10, 1–26.
[CrossRef]

62. Hasan, K.M.; Dahal, L.; Samarakoon, N.P.; Tushar, I.F.; Martí, R. DSNet: Automatic dermoscopic skin lesion
segmentation. Comput. Biol. Med. 2020, 120, 1–10. [CrossRef]

63. Bi, L.; Kim, J.; Ahn, E.; Feng, D. Automatic skin lesion analysis using large-scale dermoscopy images anddeep
residual networks. arXiv 2017, arXiv:1703.04197.

64. Bi, L.; Kim, J.; Ahn, E.; Kumar, A.; Feng, D.; Fulham, M. Step-wise integration of deep class-specific learning
for dermoscopic image segmentation. Pattern Recognit 2019, 85, 78–89. [CrossRef]

65. Li, Y.; Shen, L. Skin Lesion Analysis towards Melanoma Detection Using Deep Learning Network. Sensors
2018, 18, 556. [CrossRef]

66. Al-masni, M.A.; Al-antari, M.A.; Choi, M.T.; Han, S.M. Skin lesion segmentation in dermoscopy images
via deep full resolution convolutional networks. Comput. Methods Programs Biomed. 2018, 162, 221–231.
[CrossRef]

67. Al-masni, A.M.; Kim, D.; Kim, T. Multiple skin lesions diagnostics via integrated deep convolutional
networks for segmentation and classification. Comput. Methods Programs Biomed. 2020, 190, 1–12. [CrossRef]
[PubMed]

68. Yuan, Y. Automatic skin lesion segmentation with fully convolutional-deconvolutional networks. arXiv 2017,
arXiv:1703.05165.

69. Ünver, H.M.; Ayan, E. Skin Lesion Segmentation in Dermoscopic Images with Combination of YOLO and
GrabCut Algorithm. Diagnostics 2019, 9, 72. [CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.ncbi.nlm.nih.gov/pubmed/20197749
http://dx.doi.org/10.1111/j.1600-0846.2009.00403.x
http://dx.doi.org/10.1111/jdv.14129
http://dx.doi.org/10.1016/j.jaad.2006.09.003
http://www.ncbi.nlm.nih.gov/pubmed/17190620
http://dx.doi.org/10.1007/s10916-019-1413-3
http://www.ncbi.nlm.nih.gov/pubmed/31327058
http://dx.doi.org/10.1016/j.eswa.2018.10.029
http://dx.doi.org/10.1109/TMI.2020.2972964
http://www.ncbi.nlm.nih.gov/pubmed/32070946
http://dx.doi.org/10.1186/s13673-020-00216-y
http://dx.doi.org/10.1016/j.compbiomed.2020.103738
http://dx.doi.org/10.1016/j.patcog.2018.08.001
http://dx.doi.org/10.3390/s18020556
http://dx.doi.org/10.1016/j.cmpb.2018.05.027
http://dx.doi.org/10.1016/j.cmpb.2020.105351
http://www.ncbi.nlm.nih.gov/pubmed/32028084
http://dx.doi.org/10.3390/diagnostics9030072
http://www.ncbi.nlm.nih.gov/pubmed/31295856
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Preliminaries 
	Definition of Interval Number 
	Definition of Fuzzy Set 
	Definition of Fuzzy Number 
	Definition of Triangular Fuzzy Number 
	Definition of Linear Triangular Fuzzy Number (TFN) 
	Definition of -cut Form of Linear TFN 

	Implementation of YOLOv3 Classifier 
	Proposed Methodology 
	Training YOLOv3 with PH2, ISBI 2017 and ISIC 2019 Dataset 
	Pre-Processing 
	Segmentation 
	Iteration-I 
	Iteration-II 

	Feature Extraction 
	Asymmetry and Border 
	Color 
	Diameter 


	Parameters for Performance Evaluation 
	Result Analysis 
	Discussion 
	Conclusions 
	References

