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Abstract
It has been suggested, without rigorous mathematical analysis, that the classical
vaccine-induced herd immunity threshold (HIT) assuming a homogeneous popula-
tion can be substantially higher than the minimum HIT obtained when considering
population heterogeneities. We investigated this claim by developing, and rigorously
analyzing, a vaccination model that incorporates various forms of heterogeneity and
compared it with a model that considers a homogeneous population. By employing
a two-group vaccination model in heterogeneous populations, we theoretically estab-
lished conditions under which heterogeneity leads to different HIT values, depending
on the relative values of the contact rates for each group, the type of mixing between
the groups, the relative vaccine efficacy, and the relative population size of each group.
For example, under biased random mixing assumption and when vaccinating a given
group results in disproportionate prevention of higher transmission per capita, we
show that it is optimal to vaccinate that group before vaccinating the other groups. We
also found situations, under biased assortative mixing assumption, where it is optimal
to vaccinate more than one group. We show that regardless of the form of mixing
between the groups, the HIT values assuming a heterogeneous population are always
lower than the HIT values obtained from a corresponding model with a homogeneous
population. Using realistic numerical examples and parametrization (e.g., assuming
assortative mixing together with vaccine efficacy of 95% and the value of the basic
reproduction number,R0, of the model set atR0 � 2.5), we demonstrate that the HIT
value generated from a model that considers population heterogeneity (e.g., biased
assortative mixing) is significantly lower (40%) compared with a HIT value of 63%
obtained if the model uses homogeneous population.
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1 Introduction

Since the identification of the severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) and the subsequent devastating impact of the 2019 novel coronavirus pandemic
(COVID-19), a pertinent question being asked by the global public health and scientific
research communities has been what is the minimum fraction of the unvaccinated
susceptible population that needs to be immunized for the pandemic to end? It has
been widely reported, in the literature for the mathematical modeling of infectious
diseases, that the vaccine-derived herd immunity threshold (HIT) coverage needed
to effectively eliminate an infectious disease, denoted by v∗, is given by the formula
v∗ � 1− 1

R0
, whereR0 is the basic reproduction number of the model, defined as the

average number of secondary infections caused by a typical infective individual over
his or her infectious period when introduced into a completely susceptible population
(Randolph andBarreiro 2020). For example, ifR0 � 2.5, thenHIT can be achieved if at
least 60%of the unvaccinated susceptible population is immunized (and, consequently,
the disease can be eliminated from the population). However, this derivation for HIT is
based onmaking several modeling assumptions regarding the properties of the vaccine
and characteristics of the population. Specifically, it assumes that the vaccine efficacy
to protect against the acquisition of infection is perfect and lasts throughout the lifetime
of the vaccinated individual (i.e., the vaccine does not wane).

McLean and Blower (McLean and Blower 1993), and other researchers (Scherer
and McLean 2002; Magpantay 2017), derived modified HIT formulae under various
assumptions for vaccine properties. Their derivation is based on considering the fol-
lowing scenario for a cohort (childhood) vaccination program. Suppose a hypothetical
vaccine against a childhood disease is efficacious in a fraction, ε, of recipients and
confers full protection that wanes at a rate ω per unit time in a population with aver-
age life expectation of 1

μ
, so that the average duration of vaccine-induced protection

is 1
μ+ω

. In this case, the critical vaccination coverage (i.e., the proportion of newborns
that need to be vaccinated to achieve herd immunity, consequently leading to disease
elimination), denoted by v∗∗, is given by (Scherer and McLean 2002)

v∗∗ �
(

μ + ω

μ

)
×

(
1

ε

)
×

(
1 − 1

R0

)
�

(
μ + ω

μ

)
×

(
1

ε

)
v∗,

where v∗ is as defined above. Thus, the herd immunity threshold (v∗) needs to be
adjusted upward to reflect the imperfect efficacy of the vaccine (0 < ε < 1) and the
fraction of the average lifetime a vaccinated individual remains protected (1/(μ + ω)÷
1/μ). For example, withR0 � 2.5 and a vaccine with protective efficacy of only 70%
(i.e., ε � 0.7) that lasts 90%of a lifetime (i.e., 1

μ+ω
÷ 1

μ
� 0.9) is used in the population,

at least 95.2% of the population of the unvaccinated susceptible newborns needs to be
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vaccinated to achieve disease elimination (i.e., to achieve HIT), since v∗∗ � 0.952 in
this case.

The above derivations assume a homogeneous, well-mixed population. However,
the transmission ofmany infectious diseases (such as SARS-CoV-2) occurs in a diverse
heterogeneous population. Hence, a more realistic approach to carry out the above
derivations and computations will be to account for the relevant heterogeneities (Brit-
ton et al. 2020). In other words, the derivations and computations need to be carried
out for the case where the total population is sub-divided into multiple groups with
similar characteristics, such as age, contact patterns, infectious period, or social, cul-
tural, demographic, or geographic factors. For example, several mathematical models
for disease transmission employ different mixing patterns, such as those between dif-
ferent age groups (Jacquez et al. 1996; Hethcote 2000). These contact patterns are
typically parametrized using empirical or synthetic social contact matrices estimated
from population-based surveys (Mossong et al. 2008).

2 Formulation of disease transmissionmodel in heterogeneous
populations

The multigroup vaccination model for the transmission dynamics of an infectious dis-
ease (such as SARS-CoV-2) in a heterogeneous population typically follows a standard
susceptible-vaccinated-exposed-infected-recovered (SVEIR) Kermack-McKendrick-
type compartmentalmodeling formulation (Hethcote 2000;Kermack andMcKendrick
1927). In this formulation, the total population at time t (denotedbyN(t)) is sub-divided
into m distinct homogeneous groups. Each group is further sub-divided into five dis-
joint (mutually exclusive) classes or compartments of unvaccinated susceptible (S(t)),
vaccinated susceptible (V (t)), exposed (E(t)), infectious (I(t)), and recovered/removed
(R(t)), so that Ni � Si +Vi +Ei + Ii +Ri , with i� 1,2,…,m. Mathematically speaking,
‘exposed individuals’ are those who are newly infected with the pathogen but are not
yet able to transmit the pathogen to other individuals (i.e., they are not infectious yet)
(Hethcote 2000).

The resulting heterogenous multigroup SVEIRmodel, for the transmission dynam-
ics of a disease in m heterogeneous groups or populations, is given by the following
deterministic system of nonlinear differential equations (where a dot represents dif-
ferentiation with respect to time t):

Ṡi (t) � �i + ωi Vi (t) − λi (t)Si (t) − (μi + ξi )Si (t),

V̇i (t) � ξi Si (t) − (1 − εi )λi (t)Vi (t) − (μi + ωi )Vi (t),

Ėi (t) � λi (t)Si (t) + (1 − εi )λi (t)Vi (t) − (μi + σi )Ei (t),

İi (t) � σi Ei (t) − (μi + γi )Ii (t),

Ṙi (t) � γi Ii (t) − μi Ri (t), (1)

where the group-specific force of infection, λi (t), is given by
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λi (t) �
m∑
j�1

βi ai ci j
I j (t)

N j (t)
, (2)

withβi as the transmission probability per contact for group i, ai is the average number
of contacts that an individual of group i has during a certain period of time (called
group-specific activity level), and ci j is the proportions of contacts that members of
group i have with other individuals of group j. Mixing should meet the following
closure relation (Glasser et al. 2012):

ai ci j Ni (t) � a j c ji N j (t).

That is, the total number of contacts that individuals of group i have with other
individuals of group j during a certain period of time should equal the total number
of contacts that individuals of group j have with other individuals of group i. In
the heterogeneous multigroup model (1), heterogeneity between groups is captured
through differences in demographic rates (i.e., birth and death rates), transmission
probability per contact, contact rates, progression and recovery rates, and vaccine
efficacy and waning rates.

Adding all the equations of the heterogeneous multigroup model (1) gives the
following equation for the rate of change of the total population:

Ṅi (t) � �i − μi Ni (t).

In the heterogenous multigroup model (1), �i is the per capita recruitment (birth)
into the population, ωi is the vaccine waning rate, λi (t) is the force of infection,
μi is the natural death rate (i.e., 1/μi is the average lifespan of a person in group
i) and ξi is the vaccination rate. Furthermore, 0 < εi < 1 is the protective efficacy
of the vaccine (against the acquisition of infection), σi is the rate at which exposed
individuals develop clinical symptoms of the disease (i.e., 1/σi is the latency period
of the disease), and γi is the recovery rate. Some of the main assumptions made in the
formulation of the heterogeneous multigroup model (1) are:

(a) Within-group homogeneous mixing (i.e., although the model considersm hetero-
geneously mixed groups, contact patterns within each group is homogeneous).

(b) Exponentially distributed waiting time in each epidemiological compartment.
(c) The vaccine is not perfect (i.e., 0 < εi < 1), and the protection offered by the

vaccine wanes over time (i.e., ω > 0). In addition, the vaccine has no therapeutic
benefits.

(d) No disease-induced mortality (so that the total population in each group remains
constant).

(e) Recovery induces permanent immunity against acquisition of future infection.
(f) All heterogenous groups can be identified and their relevant parameters (e.g.,

average number of contacts, contact pattern, transmission rate, and protective
efficacy of the vaccine) are known.
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2.1 Disease-free equilibrium of general model in heterogeneous populations

The special case of the heterogeneous multigroup model (1) where only a single
group is considered (i.e., the model (1) with m � 1), has been subjected to rigorous
mathematical analysis in the literature. Specifically, results for its well-posedness,
invariance of its solutions, and existence and asymptotic stability of its equilibria
(disease-free and endemic) have been established (Hethcote 2000; Gumel et al. 2020).
These results are not repeated in this study.

The heterogeneous multigroup model (1) has a unique disease-free equilibrium,
given by

(
S∗
i , V ∗

i , E∗
i , I

∗
i , R∗

i

) �
(

�i (ωi + μi )

μi (ωi + μi + ξi )
,

�iξi

μi (ωi + μi + ξi )
, 0, 0, 0

)
,

i �1, 2, . . . ,m.

It is convenient to assume that the population in each group i has reached a stationary
(equilibrium) state, such that

Ni (0) � N∗
i � �i

μi
, wi th i � 0, 1, 2, . . . , m

It is also convenient to work with the fraction of the population in each group. For
example, the proportion of individuals in group i that are vaccinated (at the disease-free
equilibrium) is given by:

v∗
i � V ∗

i

N∗
i

� ξi

(ωi + μi + ξi )
.

Thus, adding the fractions of all compartments of group i gives ni , where

n∗
i � N∗

i

/
m∑
j�1

N∗
i

is the fraction of total number of individuals in group i relative to the total population.

3 Analysis of model in heterogeneous populations with two risk
groups

Here, we focus on deriving analytic expressions for HITs for a special case of the
heterogeneous population model (1) that considers only two risk groups (i.e., the
heterogenous multigroup model (1) with m � 2). For the resulting two-group model,
we first derive an expression for the vaccination reproduction number, denoted byRv ,
and then find the minimum proportion of the unvaccinated susceptible individuals in
the community that need to be vaccinated to reduce Rv to a value less than 1, so that
HIT can be achieved.
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3.1 Computation of vaccination and basic reproduction numbers
for the two-groupmodel

The next-generation operator method (van den Driessche and Watmough 2002; Diek-
mann et al. 2010) can be used to compute the vaccination reproduction number (and,
subsequently, the basic reproduction number) of the special case of the heterogeneous
multigroup model (1) with m � 2. It follows, using the notation in Driessche and
Watmough (2002) on the resulting two-group model, that the associated non-negative
matrix of new infection terms (F) and the M-Matrix (V ) of linear transition terms in
the infected compartments are given, respectively, by (where N∗

1 and N∗
2 are the total

population of group 1 and group 2, respectively; similarly, v∗
1 and v∗

2 represent the
HIT for groups 1 and 2, respectively):

F �

⎛
⎜⎜⎜⎜⎝

0 0
β1a1c11(S

∗
1+(1−ε1)V ∗

1 )
N∗
1

β1a1c12(S∗
1+(1−ε1)V ∗

1 )
N∗
2

0 0
β2a2c21(S

∗
2+(1−ε2)V ∗

2 )
N∗
1

β2a2c22(S
∗
2+(1−ε2)V ∗

2 )
N∗
2

0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎟⎠,

and,

V �

⎛
⎜⎜⎝

μ1 + σ1 0 0 0
0 μ2 + σ2 0 0

−σ1 0 γ1 + μ1 0
0 −σ2 0 γ2 + μ2

⎞
⎟⎟⎠,

from which it follows that the vaccination reproduction number of the two-group
model is given by (where ρ is the spectral radius)

Rv � ρ
(
FV−1

)
� 1

2

(
�1 +

√
�2

1 − 4�2

)
, (3)

where,

�1 � (
1 − v∗

1ε1
)R11 +

(
1 − v∗

2ε2
)R22,

�2 � (
1 − v∗

1ε1
)(
1 − v∗

2ε2
)
(R12R21 − R11R22).

In deriving Eq. (3), we utilized the following definition of the constituent basic
reproduction numbers associated with disease transmission between individuals in
group i with individuals in group j:

Ri j � βi ai ci j
σ j

(γ j + μ j )(μ j + σ j )
, (4)
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where the index i represents group i and the index j represents group j. To obtain
the basic reproduction number (R0) associated with the two-group model, we set the
vaccination coverage rates in the expression forRv, given by (3), to zero (i.e., we set
v∗
1 � v∗

2 � 0 in (3)). This gives,

R0 � 1

2

(
R11 +R22 +

√
R2

1,1 + 4R1,2R2,1 − 2R1,1R2,2 +R2
2,2

)
. (5)

3.2 Herd immunity thresholds for a two-groupmodel with heterogeneous
populations

For the computation of herd immunity threshold of a two-group model (such as (1)
with m � 2), the objective is to find the values of the respective HITs, v∗

1 and v∗
2 , such

that the total vaccine coverage (i.e., the proportion of individuals in the community
that is vaccinated), given by

V ∗
1 + V ∗

2

N∗
1 + N∗

2
�

(
N∗
1

N∗
1 + N∗

2

)
V ∗
1

N∗
1
+

(
N∗
2

N∗
1 + N∗

2

)
V ∗
2

N∗
2

� n∗
1v

∗
1 + n∗

2v
∗
2 ,

is at its minimum and vaccination reproduction number,Rv , given by (3), is less than or
equal to one. Formally, the associated optimization problem can bewritten as choosing
v∗
1 and v∗

2 to

minimize(n∗
1v

∗
1 + n∗

2v
∗
2)

subject to,

0 ≤ v∗
1 ≤ 1, 0 ≤ v∗

2 ≤ 1,Rv ≤ 1,

whereRv is given by Eq. (3). The solution of this nonlinear optimization problemwill
be characterized using a geometrical approach. Specifically, we compare the shape of
the curve depicting values of vaccination coverage where the vaccination reproduction
number is equal to one (i .e.,Rv � 1) with the contour lines (or level sets) n∗

1v
∗
1 +n

∗
2v

∗
2

(as illustrated in Fig. 1). Each contour line represents the locus of vaccination coverage
combinations (v∗

1 , v
∗
2) that yield the same level of total vaccination coverage at the

population level. The blue contour lines correspond to lower levels of total vaccination
coverage when moving in the southwestern direction toward the origin.

The solution of the equation of the orange curve Rv � 1 yields a value of v∗
2 as a

function of v∗
1 :

v∗
2 � R22 + (1 − v∗

1ε1)(R12R21 − R11R22 +R11) − 1

ε2
[R22 + (1 − v∗

1ε1)(R12R21 − R11R22)
] . (6)
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Fig. 1 Vaccination threshold values for group 1 and group 2. The orange curve shows values of vaccination
coverage where the vaccinated reproductive number is equal to one:Rv � 1. The slope of this curve when

intersects with the y-axis is given by − ε1R12R21
ε2(R22+R12R21−R11R22)

2 . The blue level curves show different

values of total vaccination coverage going down in the direction of the origin: n∗
1v

∗
1 + n∗

2v
∗
2 . The slope of

these level curves is − n∗
1

n∗
2
. Under biased random mixing (a) when the blue line is flatter than the orange

curve when it intersects the y-axis, the closest blue line to the origin that intersect the orange curve occurs

when v∗
1 � v̄1 � R11+R22+R12R21−R11R22−1

ε1(R11+R12R21−R11R22)
, v∗

2 � 0; (b) when the blue line is steeper than the
orange curve when it intersects the x-axis, the closest blue line to the origin that intersect the orange curve

occurs when v∗
1 � 0, v∗

2 � v̄2 � R11+R22+R12R21−R11R22−1
ε2(R22+R12R21−R11R22)

.Under biased assortativemixing (c) the
optimum occurs when the blue line is tangent to the orange curve. In the homogeneous population model
(v∗
1 � v∗

2 ), the optimum occurs at the intersection of the black 45-degree line with the orange curve
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It follows from Eq. (6) that this function intersects the x-axis (v∗
2 � 0) and y-axis

(v∗
1 � 0) at

v∗
1 �v̄1 � R11 +R22 +R12R21 − R11R22 − 1

ε1(R11 +R12R21 − R11R22)
,

v∗
2 �v̄2 � R11 +R22 +R12R21 − R11R22 − 1

ε2(R22 +R12R21 − R11R22)
, (7)

respectively. The slope of the orange curve (Fig. 1) is given by

dv∗
2

dv∗
1

� − ε1R12R21

ε2[R22 + (1 − v1ε1)(R12R21 − R11R22)]2
. (8)

The slope of the orange curve, at the point of intersection with the y-axis (i.e.,
v∗
1 � 0), is given by

dv∗
2

dv∗
1
|v∗

1�0 � − ε1R12R21

ε2(R22 +R12R21 − R11R22)
2 , (9)

and the slope of the orange curve when it intersects with the x-axis (i.e., v∗
2 � 0) is

given by

dv∗
2

dv∗
1
|v∗

1�v1
� −ε1(R11 +R12R21 − R11R22)

2

ε2R12R21
. (10)

The equations of the blue level curves are: n∗
1v

∗
1 +n

∗
2v

∗
2 � A,where A is an arbitrary

constant (Fig. 1). The slope of these level curves is

dv∗
2

dv∗
1

� −n∗
1

n∗
2
. (11)

Depending on the situation, the geometrical approach involves comparing the slopes
of the curves given by Eqs. (8)–(11). We consider the following two scenarios, based
on to which group(s) the vaccine is prioritized to.

Scenario 1: Vaccinating only one group
We start with the case where the value ofRv can be brought down to or below one

by vaccinating either group 1 alone or group 2 alone. That is, the values of v1 and v2
given in Eq. (7) are less than 1.

We note that the type of mixing between groups (i.e., ci j ) determines the sign of
the expression R12R21 − R11R22. By using Eq. (4), we can establish that

sign(R12R21 − R11R22) � sign(c12c12 − c11c22).

We distinguish two types of mixing.
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3.2.1 Biased randommixing:R12R21 ≥ R11R22

When transmission occursmore because ofmixing between groups rather than because
of mixing within the groups, we call this type of mixing biased toward random mix-
ing. The separable proportionate mixing is a special type of biased random mixing
(Hethcote 2000; Glasser et al. 2012). We consider the two boundary scenarios below

i. Vaccinating group 1 disproportionately contributes more to prevention of per-
capita transmission. Here, the following inequality holds:

ε1R12R21

n∗
1

>
ε2(R22 +R12R21 − R11R22)

2

n∗
2

.

Figure 1a depicts the situation where the absolute value of the slope of the orange
curve when it intersects the y-axis (Eq. (9)) is greater than the absolute value of
the slope of the blue line (Eq. (11)) (i.e., blue line is flatter). That is (hence the
inequality above),

ε1R12R21

ε2(R22 +R12R21 − R11R22)
2 >

n∗
1

n∗
2
.

In this case, the closest blue line to the origin that intersect the orange curve
happens when

v∗
1 � v̄1 � R11 +R22 +R12R21 − R11R22 − 1

ε1(R11 +R12R21 − R11R22)
, v∗

2 � 0,

and the herd immunity threshold is given by

n∗
1v

∗
1 + n∗

2v
∗
2 � n∗

1
R11 +R22 +R12R21 − R11R22 − 1

ε1(R11 +R12R21 − R11R22)
. (12)

ii. Vaccinating group 1 disproportionately contributes less to prevention of per-capita
transmission:

ε1R12R21

n∗
1

≤ ε2(R22 +R12R21 − R11R22)
2

n∗
2

.

In this case, the absolute value of the slope of the orange curve when it intersects
the y-axis (Eq. (9)) is less than or equal the absolute value of the slope of the blue
line (Eq. (11)) (i.e., blue line is steeper) (illustrated in Fig. 1b), and the herd immunity
threshold is

v∗
1 � 0, v∗

2 � v̄2,

n∗
1v

∗
1 + n∗

2v
∗
2 � n∗

2
R11 +R22 +R12R21 − R11R22 − 1

ε2(R22 +R12R21 − R11R22)
. (13)
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In summary, the above results show that, under the biased random mixing assump-
tion, achieving herd immunity entails exclusively optimizing vaccination coverage
among the group that results in relatively more prevention of per-capita disease trans-
mission.

3.2.2 Biased assortative mixing:R12R21 < R11R22

When transmission occurs more due tomixingwithin groups rather than due tomixing
between groups, we refer to this type ofmixing as biased toward assortative mixing. In
this case, the optimization problem has both boundary (corner) and interior solutions.
We start with the two boundary solutions followed by the interior solution.

i. Vaccinating group 1 disproportionately contributes more to prevention of per-
capita transmission:

ε1R12R21

n∗
1

>
ε2(R22 +R12R21 − R11R22)

2

n∗
2

,

ε2R12R21

n∗
2

<
ε1(R11 +R12R21 − R11R22)

2

n∗
1

.

In this case, the absolute values of the slope of the orange curve when it intersects
the y-axis (Eq. (9)) and the x-axis (Eq. (10)) are greater than the absolute value of
the slope of the blue line (Eq. (11)) (i.e., blue line is flatter). In this case,

v∗
1 � v̄1, v∗

2 � 0,

and the herd immunity threshold is given by Eq. (12). In other words, we achieve
optimal results by allocating all necessary vaccine resources to group 1.

ii. Vaccinating group 1 disproportionately contributes less to prevention of per-capita
transmission. Here, we have:

ε1R12R21

n∗
1

<
ε2(R22 +R12R21 − R11R22)

2

n∗
2

,

ε2R12R21

n∗
2

>
ε1(R11 +R12R21 − R11R22)

2

n∗
1

.

In this case the absolute values of the slope of the orange curve when it intersects
the y-axis (Eq. (9)) and the x-axis (Eq. (10)) are less than the absolute value of the
slope of the blue line (Eq. (11)) (i.e., blue line is steeper). In this case,

v∗
1 � 0, v∗

2 � v̄2,

and the herd immunity threshold is given byEq. (13).Here, optimal results are achieved
by allocating all vaccine resources to group 2.

Scenario 2: Vaccinating both groups

123



73 Page 12 of 23 E. H. Elbasha, A. B. Gumel

This scenario includes one interior solution and 2 boundary solutions. For this
scenario, we do not need to assume thatRv can be brought down to one by vaccinating
either group 1 alone or group 2 alone.

i. Interior solution. For this solution to exist, the following inequalities must hold:

ε1R12R21

n∗
1

>
ε2(R22 +R12R21 − R11R22)

2

n∗
2

,

and,

ε2R12R21

n∗
2

>
ε1(R11 +R12R21 − R11R22)

2

n∗
1

.

When the absolute value of the slope of the blue line (Eq. (11)) is between the
absolute values of the slope of the orange curve when it intersects the y-axis
(Eq. (9)) and the x-axis (Eq. (10)), it is optimal to vaccinate both groups (illustrated
in Fig. 1c). The interior solution is obtained when the slope of the orange curve
(Eq. (8)) is equal to the slope of the blue curve (Eq. (11)). Thus, by equating the
right-hand side of Eqs. (8) and (11), and solving for v∗

1 and using the resulting
solution in Eq. (6), we have:

v∗
1 � n∗

1ε2(R22 +R12R21 − R22R11) − √
n∗
1ε2n

∗
2ε1R12R21

n∗
1ε2ε1(R12R21 − R11R22)

and,

v∗
2 � ε1n∗

2(R11 +R12R21 − R22R11) − √
n∗
1ε2n

∗
2ε1R12R21

ε1n∗
2ε2(R12R21 − R11R22)

.

It follows from the assumption of biased assortative mixing, and the inequalities
above, that a positive interior solution exists if the following inequalities hold:

R12R21 < R11R22,

ε1(R11 +R12R21 − R11R22)
2

ε2R12R21
<

n∗
1

n∗
2

<
ε1R12R21

ε2(R22 +R12R21 − R11R22)
2 ,

(14)

0 ≤ v∗
1 ≤ 1, 0 ≤ v∗

2 ≤ 1.

The herd immunity threshold is
n∗
1v

∗
1 + n∗

2v
∗
2

� ε1n∗
2 (R11 +R12R21 − R22R11) + ε2n∗

1 (R22 +R12R21 − R22R11) − 2
√

ε1n∗
2ε2n

∗
1R12R21

ε1ε2 (R12R21 − R11R22)
.

(15)
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ii. Boundary solutions.
The case where Rv cannot be brought down to one by vaccinating either
group 1 alone or group 2 alone (i.e., the values of either v̄1 or v̄2 are greater
than 1) always leads to boundary solutions. For example, when ε1R12R21

n∗
1

<

ε2(R22+R12R21−R11R22)
2

n∗
2

and ε2R12R21
n∗
2

>
ε1(R11+R12R21−R11R22)

2

n∗
1

and v̄2 > 1,

we first maximize vaccination coverage among group 2 and then find the value of
coverage among group 1 that brings Rv to one. In this case,

v∗
1 � R11 + (1 − ε2)(R22 +R12R21 − R22R11) − 1

ε1[R11 + (1 − ε2)(R12R21 − R22R11]
, v∗

2 � 1,

and the herd immunity threshold is

n∗
1v

∗
1 + n∗

2v
∗
2 � n∗

1
R11 + (1 − ε2)(R22 +R12R21 − R22R11) − 1

ε1[R11 + (1 − ε2)(R12R21 − R22R11]
+ n∗

2. (16)

Similarly, when v̄1 > 1,we may have,

v∗
1 � 1, v∗

2 � R22 + (1 − ε1)(R11 +R12R21 − R22R11) − 1

ε2[R22 + (1 − ε1)(R12R21 − R22R11]
,

and the herd immunity threshold is

n∗
1v

∗
1 + n∗

2v
∗
2 � n∗

1 + n∗
2
R22 + (1 − ε1)(R11 +R12R21 − R22R11) − 1

ε2[R22 + (1 − ε1)(R12R21 − R22R11]
. (17)

Thus, the optimal solutions and HIT values for the heterogeneous two-group vac-
cination model are summarized as follows:

1. The heterogeneous two-group vaccination model has an interior solution if the
inequalities given in (14) are satisfied. The corresponding HIT value is given by
Eq. (15);

2. The heterogeneous two-group vaccination model has four boundary solutions if
any of the inequalities given in (14) does not hold. The associated HIT value is
given by Eqs. (12), (13), (16), and (17);

3. The heterogeneous two-group vaccination model has no solution otherwise.

These analyses show that, for a two-group vaccination model in heterogeneous
populations (such as (1) with m � 2), the optimum vaccination program depends
on the relative values of the constituent reproduction numbers of the model (i.e.,
R12, R21,R11,R22), the relative vaccine efficacy, and the relative population sizes
of the two groups. The values of the constituent reproduction numbers are determined
by the type of mixing allowed or assumed between the two groups. When the mixing
between the groups is biased towards randommixing, achieving herd immunity entails
restricting vaccination coverage to the group that results in relatively more prevention
of per-capita transmission. If herd immunity cannot be achieved by vaccinating one of
the two groups alone, vaccination coverage among the group that results in relatively
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more prevention of per-capita transmission should be maximized before vaccinating
the other group. These scenarios occur under biased assortativemixing too, but scenar-
ios involving vaccinating both groups are more common, including interior optimum
where coverage of any of the two groups is less than 100%.

4 Analysis of model with a homogeneous population

The heterogeneous multigroup vaccination model (1) can be reduced to that with
homogeneous population by assuming that each individual in any of the two groups is
identical with every other individual in the community. That is, we achieve homogene-
ity by setting ci j � c, ai � a, ξi � ξ, εi � ε, μi � μ,�i � �, σi � σ , γi � γ

for all i and j into the model (1). Specifically, the vaccination model with a homoge-
neous population is obtained from system (1) by dropping the group subscript i and
re-defining the force of infection as

λ(t) � ncaβ
I (t)

N (t)
.

Using the next-generation operator method (van den Driessche and Watmough
2002; Diekmann et al. 2010), the vaccination reproduction number associated with
the resulting homogeneous model, also denoted byRv , is given by:

Rv �
(
1 − εξ

μ + ξ + ω

)
R0, (18)

where the basic reproduction number, R0, is now given by

R0 � ncaβσ

(γ + μ)(μ + σ)
. (19)

Since the vaccination coverage at the disease-free equilibrium (v∗) for the multi-
group model with homogeneous population is

v∗ �
∑m

j V
∗
j∑m

j N∗
j

� ξ

μ + ξ + ω
, (20)

it follows, by using (18) in (20), that

Rv � (
1 − εv∗)R0. (21)

It should be noted that this relationship betweenRv andR0 (Eq. (21)) in the homo-
geneous populationmodel can be obtained directly from the formula of the vaccination
reproduction number of the heterogeneous populationmodel (1) by substituting εi � ε

and v∗
i � v∗, i � 1, 2, into Eq. (3) and using the definition of R0 given by Eq. (5).
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Setting Rv (from (21)) to one and solving for v∗ gives the following threshold
value needed to achieve herd immunity for the model with homogeneous population
(Scherer and McLean 2002; Hethcote 2000):

v∗ � 1

ε
×

(
1 − 1

R0

)
. (22)

Thus, in constructing the homogeneous population model corresponding to the
heterogeneous model (1) for comparison, we followed previous studies and matched
the twomodeling types (i.e., homogeneous vs. heterogeneous population) according to
the expressions or values of their respective basic reproduction number,R0 (Andreasen
2011; Clancy and Pearce Christopher 2013).

4.1 Comparison of HIT values using homogeneous and heterogeneous population
models under proportionate mixing

One of the simplest types of mixing in disease epidemiology is the separable pro-
portionate mixing, in which the contacts of a person of group i are distributed over
those of other groups in proportion to the activity levels and sizes of the other groups
(Hethcote 2000). Thus, with separable proportionate mixing, proportions of contacts
that members of group i have with group j, ci j , is given by

ci j � a j N∗
j∑m

k�1 ak N
∗
k
,

where a j and N∗
j are as defined before.

By substituting this definition of ci j into the formulae for the constituent reproduc-
tion numbers in Eq. (4), it can be shown that the assumption of proportionate mixing
implies that R12R21 � R11R22, which, in turn, implies �2 � 0. Thus, for this
scenario of proportionate mixing, the vaccination reproduction number reduces to,

Rv � (
1 − v∗

1ε1
)R11 +

(
1 − v∗

2ε2
)R22.

We now seek to answer the question: what are the values of v∗
1 and v∗

2 such that the
total vaccination coverage, n∗

1v
∗
1 + n∗

2v
∗
2 , is at its minimum and Rv ≤ 1? The answer

depends on the relationship between the ratio of constituent reproduction numbers

(R11R22
) adjusted by efficacy and the ratio of population (

n∗
1

n∗
2
) in the two groups. The

solution of this simple linear programming problem is a special case of the biased
random mixing where R12R21 � R11R22. As before, there are three scenarios:

Scenario (i):Vaccinating group 1disproportionately contributesmore to prevention
of per-capita transmission: ε1R11

n∗
1

> ε2R22
n∗
2

.

In this case,

v∗
1 � (R11 +R22 − 1)

ε1R11
, v∗

2 � 0,
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and the herd immunity threshold is

n∗
1v

∗
1 + n∗

2v
∗
2 � n∗

1
(R11 +R22 − 1)

ε1R11
. (23)

Scenario (ii):Vaccinating group 1 disproportionately contributes less to prevention
of per-capita transmission: ε1R11

n∗
1

< ε2R22
n∗
2

.

In this case,

v∗
1 � 0, v∗

2 � (R11 +R22 − 1)

ε2R22
,

and the herd immunity threshold is

n∗
1v

∗
1 + n∗

2v
∗
2 � n∗

2
(R11 +R22 − 1)

ε2R22
. (24)

Scenario (iii): Vaccinating both groups contribute equally to prevention of trans-

mission: ε1R11
ε2R22

� n∗
1

n∗
2

In this case, values of v∗
1 and v∗

2 such that

n∗
1v

∗
1 + n∗

2v
∗
2 � n∗

1
(R11 +R22 − 1)

ε1R11
� n∗

2
(R11 +R22 − 1)

ε2R22
(25)

will yield the minimum fraction that need to be vaccinated to achieve herd immunity.
To facilitate the comparison of the herd immunity thresholds between homogeneous

and heterogeneous populationmodels, we need tomake sure efficacy in the twomodels
is the same. One approach is to assume that vaccine efficacy does not vary across the
two groups. That is, we set ε1 � ε2 � ε.

If ε1R11
n∗
1

> ε2R22
n∗
2

, the threshold vaccine coverage under heterogeneous population

model is (given by the right-hand side of Eq. (23)):

n∗
1
(R11 +R22 − 1)

εR11
,

and that for the homogeneous population model is given by

v∗ � R0 − 1

εR0
� R11 +R22 − 1

ε(R11 +R22)
,

sinceR0 � R11 +R22 > 1 under proportionate mixing.
It can be shown that

n∗
1
(R11 +R22 − 1)

εR11
< v∗ � R11 +R22 − 1

ε(R11 +R22)
.
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Upon simplifications, the above inequality holds if

n∗
1

1

R11
<

1

R11 +R22
,

Noting (andusing) our starting assumption R11R22
>

n∗
1

n∗
2
, it follows that R22R11

+1 <
n∗
2

n∗
1
+1

or (upon further algebraic manipulation)

n∗
1

1

R11
<

1

R11 +R22
.

Therefore, it follows, from the above inequality, that the threshold vaccine coverage
in the heterogeneous population model, under scenario (i), is always less than that in
the corresponding homogeneous population model.

Similarly, if ε1R11
n∗
1

< ε2R22
n∗
2

, we can follow the same approach above and show that

the threshold vaccine coverage under heterogeneous populationmodel, under scenario
(ii), given by Eq. (24) is always lower than that under the homogeneous population:

n∗
1v

∗
1 + n∗

2v
∗
2 � n∗

2
(R11 +R22 − 1)

εR22
< v∗ � R11 +R22 − 1

ε(R11 +R22)
.

When ε1R11
n∗
1

� ε2R22
n∗
2

, it follows, under equal vaccine efficacy, that R11R22
+1 � n∗

1
n∗
2
+1

or

n∗
2

1

R22
� 1

R11 +R22
.

Thus, the threshold vaccine coverage for heterogeneous population model, under
scenario (iii), given by Eq. (25) is always equal to that under the homogeneous popu-
lation:

n∗
1v

∗
1 + n∗

2v
∗
2 � n∗

2
(R11 +R22 − 1)

εR22
� v∗ � R11 +R22 − 1

ε(R11 +R22)
.

Therefore, under the form of proportionate mixing between groups, we show ana-
lytically that the HIT value in the heterogeneous population model is always less than
or equal to the HIT value in a homogeneous population model. This result is consistent
with that reported by Britton et al. (Britton et al. 2020), which showed, via numerical
simulation of an age-structured model with mixing rates fitted to social activity, that
if the basic reproduction number of the model isR0 � 2.5, the HIT is 43%, which is
significantly lower than the HIT value of 60% obtained for the corresponding model
that uses homogenous immunization of the population.
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4.2 Comparison of HIT values using homogeneous and heterogeneous population
models under general mixing

To show that the HIT value in the heterogeneous population model is always less than
or equal to the HIT value in a homogeneous population model under general mixing
between groups, we utilize the geometrical approach depicted in Fig. 1. Recall that the
blue level curve represents total vaccination coverage. Thus, line AA corresponds to
HIT value in heterogeneous population model, whereas BB corresponds to HIT value
in the homogeneous population model. We consider scenarios with two boundary
solutions and one interior solution:

i. Vaccinating group 1 only (Fig. 1a). In this case, line AA is closer to the origin
than line BB. Hence, the HIT value in heterogeneous population model is lower
than the HIT value in the homogeneous population model.

ii. Vaccinating group 2 only (Fig. 1b). In this case, line AA is closer to the origin
than line BB. Hence, the HIT value in heterogeneous population model is lower
than the HIT value in the homogeneous population model.

iii. Vaccinating both group 1 and group 2 (Fig. 1c). In this case, line AA is closer to
the origin than line BB. Hence, the HIT value in heterogeneous population model
is lower than the HIT value in the homogeneous population model.

5 Numerical analysis of HIT values in heterogeneous
and homogeneous populationmodels

Figure 2 numerically illustrates the different scenarios leading to different HIT values
in the heterogeneous population model and compare them with the HIT values in a
corresponding homogeneous population model. The orange curve shows values of
vaccination coverage whereRv � 1 and the blue level curves show different values of
total vaccination coverage going down in the direction of the origin (n∗

1v
∗
1 +n

∗
2v

∗
2). In a

homogeneous populationmodel, vaccination coverage (determined by the intersection
with the orange curve) is uniform across the two groups as shown by the dotted black
45-degree line. In all scenarios, we set vaccine efficacy to 95% across the two groups.

(a) The chosen parameter values represent a situation of biased random mixing
between groups, and v̄1 < 1 and v̄2 < 1. As a result, the blue line is steeper than
the orange curve when the latter intersects the y-axis, and the closest blue line to
the origin that intersect the orange curve happens when v∗

2 � v̄2 � 0.69, v∗
1 � 0

(Fig. 2a). Given that group 2 represents only 25% of the population, the over-
all HIT value is just 17.2% compared with the HIT value in a homogeneous
population model of 49.3%.

(b) The chosen parameter values represent a scenario of biased assortative mixing
between groups,v1 < 1 and v̄2 < 1, and the inequalities in (14) are satisfied.
As a result, it is optimal to vaccinate both groups (v∗

2 � 0.789, v∗
1 � 0.594)

for an overall HIT value of 64.3% (Fig. 2b). The HIT value in a homogeneous
population model is 64.9%.
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Fig. 2 Illustration of optimal least vaccine coverage determination by group that satisfies the constraint
Rv � 1 (orange curve). Parameter values: ε � 0.95, ε1 � 0.95, ε2 � 0.95. (a–c) R12 � 1.0, R21 �
0.8,R22 � 1.3,N∗

1 � 0.75,N∗
2 � 0.25. (a) R11 � 0.5, R0 � 1.88; (b) R11 � 2, R0 � 2.6;

(c) R11 � 1.2, R0 � 2.16; (d) R12 � 0.8, R21 � 1.0,R22 � 0.5,N∗
1 � 0.75,N∗

2 � 0.25, R11 �
0.5, R0 � 1.88; (e) R12 � 0.8, R21 � 1.0,R22 � 0.5,N∗

1 � 0.2,N∗
2 � 0.8, R11 � 1.9, R0 �

2.51
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(c) The chosen parameter values represent a situation of biased assortative mixing
between groups, and v̄1 > 1 and v̄2 > 1. As a result, the blue line is steeper than
the orange curve, and it is optimal to vaccinate all of group 2 and 20.6% of group
1 (v∗

2 � 1, v∗
1 � 0.206) for an overall HIT value of 40.4% (Fig. 2c). The HIT

value in a homogeneous population model is 56.2%.
(d) The chosen parameter values represent a scenario of biased random mixing

between groups and v̄1 < 1 and v̄2 > 1. As a result, the blue line is flatter than the
orange curve, and it is optimal to vaccinate group 1 only (v∗

2 � 0, v∗
1 � 0.713)

for an overall HIT value of 13.5% (Fig. 2d). The HIT value in a homogeneous
population model is 47.1%.

(e) The chosen parameter values represent a situation of biased assortative mixing
between groups and v̄1 > 1 and v̄2 > 1. As a result, the blue line is flatter than
the orange curve, and it is optimal to vaccinate all of group 1 and 20.6% of group
2 (v∗

1 � 1, v∗
2 � 0.207) for an overall HIT value of 40.5% (Fig. 2e). The HIT

value in a homogeneous population model is 63.3%.

Figure 3 illustrates different optimal solutions and HIT values for various values of
the basic reproduction numbers. The figure shows the situation where, relative to its
small size, group 2 is contributing more to transmission for low values ofR11 andR0,

and there is a need to vaccinate more people from group 2. AsR11(andR0) increases,
necessary vaccination coverage among group 2 increases until all of group 2 is vacci-
nated. AsR11(andR0) increases further, both groups are vaccinated, but vaccination
coverage among group 1 increases; whereas that among group 2 decreases. Of note, the
herd immunity threshold for the homogeneous population (red curve) is consistently
higher, but the difference between the two shrinks as the basic reproduction number
increases.

Fig. 3 Vaccine coverage above which herd immunity is achieved by group and basic reproduc-
tion number. Parameters values: R12 � 1.0, R21 � 0.8,R22 � 1.3, ε � 0.95, ε1 �
0.95, ε2 � 0.95,N∗

1 � 0.75,N∗
2 � 0.25. Using the definition of R0, we chose R11 �(

R2
0 − R12R21 − R0R22

)
/(R0 − R22).
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6 Discussion

Our theoretical results, for a heterogeneous two-group vaccination model, suggest
that deriving the vaccine-induced herd immunity threshold (HIT) in a heterogeneous
population model is much more complex than deriving HIT for the corresponding
model with homogeneous population. Our study shows that the HIT for each vacci-
nated group depends on the relative values of the constituent reproduction numbers,
the relative vaccine efficacy, and the relative population sizes of the two groups. The
values of the reproduction numbers are determined by the level and duration of infec-
tiousness of a contact for each group, contact rates for each group, as well as the
type of mixing between the two groups. We show that, under biased random mixing
assumption and when vaccinating a given group results in disproportionate prevention
of higher transmission per capita, it is optimal to prioritize vaccination of that group
before vaccinating the other groups.We also found situations, under biased assortative
mixing assumption, where it is optimal to vaccinate more than one group.

We show that population heterogeneities tend to result in lower HIT values, com-
pared with the corresponding case with homogeneous population. This is true under
both proportionate and other types ofmixing among heterogeneous populations. Using
realistic numerical examples and parametrizations (e.g., assuming biased assortative
mixing with vaccine efficacy of 95% and basic reproduction number,R0, set atR0 �
2.5), we illustrate this finding, where theHIT value considering heterogeneity is shown
to be significantly lower (40%) compared with a HIT value assuming a homogeneous
population of 63%. It should be noted that the above parametrizations are consistent
with the transmission dynamics of SARS-CoV-2 in the USwhere the Pfizer-BioNTech
COVID-19 (BNT162b2) vaccine and the Moderna COVID-19 (mRNA-1273) vaccine
(with estimated protective efficacy of 95%) are used (United States Food and Drug
Administration 2020a, b).

Although our rigorous theoretical analysis is based on using a heterogeneous two-
group vaccination model, our findings can be extended to models of multiple (more
than two) heterogeneous groups. Although, admittedly more complex than that of a
two-group heterogenous model, the rigorous analysis of more realistic models with
many (more than two) heterogeneous groups can be conducted using the methods
introduced and/or used in this study.

In our heterogeneousmulti-groupmodel, we assume that themultiple heterogenous
groups can be identified, and that the relevant parameters of the model associated with
these groups are known or can be estimated from available data. For a number of
disease types and transmission settings, heterogeneities can be accounted for by easily
stratifying the total population in terms of groups with similar characteristics, such as
demographic, social, cultural, or geographic factors. Data to estimate the sizes of these
groups are readily available. For example, population census data can be used to stratify
populations according to age or sex.Data from social surveys, epidemiological studies,
and clinical trials can be used to estimatemodel parameters such asmixing preferences
(Wallinga et al. 2006), risk of acquiring infection, and vaccine efficacy and duration
of protection. However, some populations may not be readily categorizable in terms
of such heterogeneities and evidence on some parameter values may be lacking. For
example, it may not be practically feasible to identify groups who disproportionately
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contribute more to transmission than others (e.g., super spreaders). In addition, as is
the case with many epidemiological outcomes predicted using modeling, estimated
HIT values obtained from modeling are contingent on the availability, validity, and
generalizability of parameter estimations (Metcalf et al. 2015a; Holmdahl and Buckee
2020).

It has been recognized, since the 1970s (Smith 1970; Dietz et al. 1975), that HIT,
under homogeneous mixing population and sterilizing vaccine-derived immunity, fol-
lows a simple formula: the critical proportion of the population that must be vaccinated
to achieve elimination should exceed 1− 1

R0
(Fine et al. 2011; Fine 1993;Metcalf et al.

2015b). Research by McLean and colleagues (McLean and Blower 1993; Scherer and
McLean 2002) has addressed the complexities of imperfect immunity and vaccine-
derived duration of protection, and derived HIT values when vaccination does not
confer perfect, long-lasting immunity against infection to all recipients.

Although the importance of population heterogeneity and its effect on HIT values
has been emphasized (Fox et al. 1971; Anderson and May 1985), rigorous theoretical
work on herd immunity using mathematical models that consider heterogeneous pop-
ulations is very rare. Most of the work that considers the complications induced by
heterogeneity relied heavily on numerical simulations (largely owing to the fact that
models that incorporate heterogeneity tend to be not readily amenable, or tractable, to
rigorous mathematical analysis). For example, Britton et al. (Britton et al. 2020) show,
via numerical simulations of a disease transmission model with basic reproduction
number R0 set at 2.5, that the classical HIT value assuming a homogeneous popula-
tion is substantially higher (60%) than the minimum HIT obtained when considering
population heterogeneities in an age-structured population with mixing rates fitted to
social activity (43%).

Our rigorous mathematical analysis supports the conclusion that the HIT values
assuming a heterogeneous population are always lower than the HIT values obtained
froma correspondingmodelwith a homogeneous population. In addition,we show that
there may not be a unique HIT for populations. For example, under biased random
mixing assumption and when vaccinating a given group results in disproportionate
prevention of higher transmission per capita, we show that it is optimal to vaccinate
this group in its entirety before vaccinating the other groups. We also found situations
where it is optimal to vaccinate more than one group at different rates.
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