
Frontiers in Immunology | www.frontiersin.

Edited by:
Fabienne Tacchini-Cottier,

University of Lausanne, Switzerland

Reviewed by:
Ricardo Silvestre,

University of Minho, Portugal
Gaurav Gupta,

NIIT University, India

*Correspondence:
Milton Ozório Moraes
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Leprosy is a disease with a clinical spectrum of presentations that is also manifested in
diverse histological features. At one pole, lepromatous lesions (L-pole) have phagocytic
foamy macrophages heavily parasitized with freely multiplying intracellularMycobacterium
leprae. At the other pole, the presence of epithelioid giant cells and granulomatous
formation in tuberculoid lesions (T-pole) lead to the control ofM. leprae replication and the
containment of its spread. The mechanism that triggers this polarization is unknown, but
macrophages are central in this process. Over the past few years, leprosy has been
studied using large scale techniques to shed light on the basic pathways that, upon
infection, rewire the host cellular metabolism and gene expression.M. leprae is particularly
peculiar as it invades Schwann cells in the nerves, reprogramming their gene expression
leading to a stem-like cell phenotype. This modulatory behavior exerted by M. leprae is
also observed in skin macrophages. Here, we used liveM. leprae to infect (10:1 multiplicity
of infection) monocyte-derived macrophages (MDMs) for 48 h and analyzed the whole
gene expression profile using microarrays. In this model, we observe an intense
upregulation of genes consistent with a cellular immune response, with enriched
pathways including peptide and protein secretion, leukocyte activation, inflammation,
and cellular divalent inorganic cation homeostasis. Among the most differentially
expressed genes (DEGs) are CCL5/RANTES and CYP27B1, and several members of
the metallothionein and metalloproteinase families. This is consistent with a
proinflammatory state that would resemble macrophage rewiring toward
granulomatous formation observed at the T-pole. Furthermore, a comparison with a
dataset retrieved from the Gene Expression Omnibus ofM. leprae-infected Schwann cells
(MOI 100:1) showed that the patterns among the DEGs are highly distinct, as the
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Schwann cells under these conditions had a scavenging and phagocytic gene profile
similar to M2-like macrophages, with enriched pathways rearrangements in the
cytoskeleton, lipid and cholesterol metabolism and upregulated genes including MVK,
MSMO1, and LACC1/FAMIN. In summary, macrophages may have a central role in
defining the paradigmatic cellular (T-pole) vs. humoral (L-pole) responses and it is likely
that the multiplicity of infection and genetic polymorphisms in key genes are gearing
this polarization.
Keywords: macrophages, Mycobacterium leprae, eQTLs, SNPs, host-directed therapy, leprosy, tuberculosis
INTRODUCTION

Schwann cells in the peripheral nerves and macrophages in the
skin are the major host cells for Mycobacterium leprae (ML)
infection (1). These cells operate with high plasticity, induced by
different environmental factors, and M. leprae has a unique
ability to subvert and reprogram these host cells in order to
establish a more favorable niche in which to replicate and spread.
Huge transcriptomic variations may induce phenotypic
modifications, as evidenced by transformations in Schwann to
mesenchymal-like cells upon infection (2). Furthermore,
increased glucose uptake, mitochondrial shutdown, and lipid
biosynthesis resembling the Warburg effect are all phenomena
induced uponM. leprae infection in these cells, although some of
these are restricted to specific clinical forms (3).

Clinical presentation of leprosy is a spectrum encompassing
a myriad of manifestations (1), where the tuberculoid pole
(T-pole) is restrictive to bacillus growth leading to localized
disease, while the lepromatous forms (L-pole) present a
permissive and disseminated clinical form with high bacterial
loads (1).M. leprae has suffered a reductive evolution resulting in
low genetic variability, which suggests that the diversity of the
disease phenotypes is attributable to the host responses (4). This
landscape makes leprosy a unique model to understand the
mechanisms involved in the immunopathogenesis of
infectious diseases.

In the skin, macrophages are pivotal in the host-pathogen
interaction, having important roles from proinflammatory and
microbicidal activity to tissue remodeling and wound healing,
which are features of the so-called M1 and M2 macrophages,
respectively. Most of the skin macrophages are derived from
monocytes that migrate and differentiate under inflammatory
stimuli, referred to as monocyte-derived macrophages (MDMs)
(5). Macrophages present huge functional plasticity according to
the milieu in order to maintain skin homeostasis (6). Although
less efficient in T cell activation than dendritic cells, they are
vastly superior in their phagocytic ability (7). Additionally,
monocytes engulf the bacillus through phagocytosis and
produce cytokines helping to dictate the host-specific immune
response at the lesion. The initial immune events involved in
leprosy disease progression are probably triggered by the
macrophage-M. leprae interaction. This hypothesis can be
reinforced by the fact that key innate immune genes, pattern
recognition receptors, and autophagic genes have been
org 2
associated with disease outcome in the mouse model for bacilli
replication (infected footpads of Balb/C lineage mice) that carries
the NRAMP1 polymorphism. Furthermore, human genome-
wide association studies and other genetic analysis has
identified PRKN, LRRK2, NOD2, TLR1, and MRC1 as genes
associated with disease outcome and are expressed in M. leprae-
infected macrophages (8). In this regard, polarized macrophages
are found according to the clinical form of leprosy. In
tuberculoid lesions, there is a predominance of classically-
activated macrophages, which are able to partially contain M.
leprae replication by activation of cellular responses, vitamin D-
dependent pathways, and granuloma formation consistent with
the M1 profile (9). On the other hand, lepromatous lesions
present permissive, scavenging, phagocytic, and foamy
macrophages with anti-inflammatory profile harboring a large
number of bacilli, associated with a poor microbicide activity,
which are the phenotypes of M2 macrophages (9, 10).

Pathways such as apoptosis and autophagy, combined with
lower levels of proinflammatory cytokines and antigen
presentation molecules are inhibited by live, but not dead,
M. leprae in macrophages and Schwann cells (11–13). This
type of response is triggered by type I interferons (IFNs)
through a STING/TBK/IRF3 pathway that inhibits IFN-gamma
and other microbicidal mechanisms within infected macrophages
in vitro (12).

In a recent re-analysis of leprosy public microarray datasets,
mainly comparing skin lesions from different clinical forms, we
confirmed previous genes and pathways corroborating the
predominance of cellular immunity, leukocyte differentiation,
vitamin D receptor (VDR)-mediated microbicidal responses, and
granuloma formation at the T-pole, while the L-pole exhibited
scavenger receptors and lipid metabolism genes (14).
Nevertheless, we also pointed out new differentially expressed
genes (DEGs) in leprosy related to skin development and
keratinocyte differentiation (14).

Macrophages play a central role in orchestrating gene
modulation within the nerve or skin microenvironment.
Nevertheless, genome-wide expression patterns from M.
leprae-infected macrophages have never been obtained. The
gene expression signatures of these macrophages can provide
target discoveries for therapies and prevention strategies to
interfere with leprosy outcomes. Herein, we show the DEGs of
macrophages related to immune and other responses after M.
leprae infection. Our data indicate thatM. leprae-infected MDMs
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submitted to a low multiplicity of infection (10:1) for 48 h overly
express a cellular immunity profile. This suggests an M. leprae-
induced program that might create a granuloma formation type
of response in the tissues. Moreover, a comparison between the
dataset generated in this study with that of a previously published
dataset involving M. leprae-infected primary Schwann cells in
vitro was performed. Through this comparison it was found that
the expression profile obtained after a higher multiplicity of
infection (100:1) for 48 h has a distinct activation pattern, with
genes associated with lipid biosynthesis and consistent with a
scavenging and phagocytic profile. Understanding the
interaction between macrophage and M. leprae is highly
relevant in deciphering key features that could further aid in
the definition of the clinical forms.
MATERIALS AND METHODS

Study Subjects
Volunteers were recruited from the staff of the Lauro de Souza
Lima Institute (Secretary of Health of São Paulo State, Brazil)
including health care, cleaning, and security workers, as well as
students. Firstly, 29 healthy individuals (14 men and 15 women,
from 20 to 30 years), free from cancer and infectious and
autoimmune diseases, were enrolled for the collection of
peripheral blood. A signed, written informed consent was
obtained from all participants. The study was approved by the
Local Ethics Committee (Protocol: 56169616.5.0000.5475).

Monocyte-Derived Macrophage (MDM)
Differentiation
Fifty milliliters of peripheral blood were collected by
venipuncture in tubes with anticoagulant (heparin). Peripheral
blood mononuclear cells (PBMCs) were purified by density
gradient (Histopaque 1077, Sigma Co., St. Louis, MO, USA)
and monocytes were isolated by positive selection employing
anti-CD14-coated magnetic microbeads (Miltenyi Biotec,
Auburn, CA, USA) according to the manufacturer ’s
instructions. Purity greater than 95% was confirmed by flow
cytometry using an anti-CD14 antibody (BD Biosciences,
Franklin Lakes, NJ, USA).

Macrophages were differentiated by adherence, without using
recombinant cytokines, in order to obtain a non-polarized
macrophage with M0 phenotype, according described by Vogel
and collaborators (15) with modifications. Briefly, monocytes
were cultured in 24-well plates (5 × 105 cells/well) in Iscove’s
modified Dulbecco’s medium (IMDM, Gibco, Grand Island, NY,
USA) supplemented with 10% of pooled human sera from the
participants and 100 units/mL of penicillin and 100 mg/mL of
streptomycin (Gibco; Thermo Fisher Scientific, Inc.) for 6 days at
37°C in 5% CO2 humidified atmosphere for the differentiation
into macrophages. Cultures were fed by replacing half part of the
complete medium on the third day. The percentage of
differentiated macrophages was evaluated during the
standardization of the protocols considering the expression of
CD68 and was greater than 95%.
Frontiers in Immunology | www.frontiersin.org 3
M. leprae Purification and Macrophages
Infection
M. leprae (Thai-53 strain, kindly provided by Dr. Yuji
Yamamoto, NIH, Japan) was obtained from footpads of
athymic nude mice, according to a previously described
protocol (16). Briefly, each footpad was inoculated with 3 ×
106 acid-fast bacilli in 30 mL of saline solution. After 6-7 months,
mice were euthanized and the footpads were collected (CEUA
06/2006). The protocol for bacilli recovery included footpad
dissection, tissue isolation, and enzymatic digestion with 0.05%
trypsin, followed by purification, quantification, and evaluation
of ML viability using the Live/Dead BacLight Bacterial Viability
Kit (Molecular Probes, Inc., Eugene, OR, USA). The M. leprae
count was done after Ziehl-Neelsen staining (16, 17).

Previously differentiated MDMs were infected with M. leprae
in the multiplicity of infection of 10 bacilli/cell (MOI = 10:1) and
kept at 37°C in 5% CO2 humidified atmosphere. After 48 h of
infection, macrophages were collected in TRIzol Reagent
(Thermo Fisher Scientific, Carlsbad, CA, USA). Uninfected
MDMs incubated under the same conditions were used
as controls.

RNA Isolation and Microarray
Total RNA was extracted by an in-house method using phenol:
chloroform and isopropyl alcohol (18). Glycogen (Thermo
Fisher Scientific) was added to improve RNA recovery. After
centrifugation at 12,000 RPM for 5 minutes, the RNA pellet was
washed with 70% ethanol, air dried, and resuspended in DEPC-
treated water. RNA quality was evaluated on a Bioanalyzer 2100
Instrument (Agilent Technologies Inc., Palo Alto, CA, USA), by
using the RNA 6000 Nano Kit (Agilent Technologies). For all
samples, the RNA integrity number (RIN) was higher than 8.

For the transcriptome, RNA samples were then purified with
the RNeasy MinElute Cleanup Kit (QIAGEN, Hilden, Germany).
The reverse transcription synthesis and biotin labeling were
performed with Epicentre TargetAmp Kit (Illumina, CA, USA),
and transcriptomes were obtained by chip hybridization using the
HumanHT-12 v4 BeadChip followed by scanning in iScan
equipment (Illumina) according to manufacturer’s instructions.

Microarray Data Analysis
Raw.idat files were imported into the R v. 3.6.1 (BiocVersion
3.9.0) environment using limma v. 3.40.0. Quality control was
carried out by investigating raw and normalized expression
intensities across arrays with Tukey box plots. Background
correction and between-array quantile normalization were
performed using negative/positive control probes (19) from the
manufacturer with limma::neqc function (Figure S1C) (20–22).
Next, an ExpressionSet (Biobase v. 2.44.0) object was assembled
to hold assay, gene, and phenotype data (23). Principal
Component Analysis (PCA) was used to inspect dataset
structure and biological and technical effects. PCA was
conducted with FactoMineR v. 1.41 (24) and visualized with
factoextra v. 1.0.5 and cowplot v. 1.0.0 (Figures S2A–F). Outlier
samples were removed before attempting statistical inference
based on the first three principal components (Figure S2).
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Differential expression analysis was performed by fitting gene-
wise linear models with moderated standard errors by the
empirical Bayes method (22, 25). The final model included the
independent variables: chip (categorical with seven levels), sex
(categorical, two levels), treatment (categorical, two levels), and
individuals as a random effect. Genes were mapped to Entrezid
and HGNC official symbols using the illuminaHumanv4.db v.
1.26.0 annotation. Duplicated Entrezid were removed by keeping
the one with the largest average across all arrays. Finally, nominal
P-values were inspected with histograms and adjusted for
multiple testing with the Benjamini-Hochberg method to
control the false-discovery rate (FDR) (26). Genes were
considered differentially expressed (DE) if FDR ≤ 10% and
absolute fold-change ≥ 1.5 (|log2FC| ≈ 0.58) with alternative
thresholds indicated wherever used. A volcano plot was drawn to
illustrate the DE results with ggplot2 v. 3.3.0 (27). Exploratory
hierarchical clustering was constructed with the top 92 DEGs
using pheatmap v. 1.0.12 (28), with Euclidean distance (samples)
plus average agglomeration and Pearson correlation (genes). Raw
and normalized data are available in the Gene Expression
Omnibus (GEO) accession GSE162416. Also, data and
computer source code are readily available in Zenodo (https://
dx.doi.org/10.5281/zenodo.4401968).

Over-Representation Analysis (ORA) and
Gene Set Enrichment Analysis (GSEA)
Gene ontology (GO) biological processes (BP) were evaluated
separately for up- and downregulated DE lists using
clusterProfiler v. 3.12.0 (29), fgsea v. 1.10.0 (30) and
org.Hs.eg.db v.3.8.2 annotations. The universe set contained all
Entrezid genes (n = 21207) used in DE analyses. The minimum
gene set size was 5 and the FDR cutoff was set at 10%. Enriched
BP were visualized with dot plots or heat plots. For GSEA
(Figure S3), the gene list was constructed using limma’s
estimated log2FC. GO BP and Reactome GSEA were estimated
with 5000 permutations and with gene sets containing at least
five genes (29, 31, 32).

Comparison to Infected Schwann
Cell Dataset
Microarray dataset GSE35423 was processed as described
elsewhere (12, 14). DEGs from Schwann cells infected with M.
leprae for 48 hours were filtered by FDR ≤ 10% and |log2FC| ≥
0.26 (20% difference). Genes differentially expressed common to
both datasets were visually compared with a dot plot along with
log2FC and confidence intervals from original results (ggplot2 v.
3.3.0). Since the number of common DEG was large, only the top
50 DEG (sorted by decreasing log2FC) with same and opposite
modulation signs were drawn. Table S6 contains the full results.
UpSetR v.1.4.0 was used to visualize the intersection between
DEG according to the dataset and modulation sign.

Gene Set Variation Analysis (GSVA)
Pathway activity was estimated using GSVA with custom gene
sets (33). GSVA is an unsupervised non-parametric alternative to
ORA and GSEA as it does not depend on prior selection or
Frontiers in Immunology | www.frontiersin.org 4
ranking of the genes from group comparisons. The score
produced by GSVA can be interpreted as the coordinated
activation of genes from the gene set, summarizing the
expression profile within individual samples. The gene sets
used herein were compiled from literature and functional
annotation databases. The ‘granulomatosis’ gene set was
assembled with genes sourced from the Human Phenotype
Ontology (HP:0002955), Gene Ontology (GO:0002432), and
DisGeneNet (granulomatous diseases with score ≥ 0.1) totaling
30 genes (Table S7). The macrophage polarization signatures are
mainly from (34), where ‘M1’ (n genes = 25), ‘M2’ (n=20), ‘M2a’
(n=12), ‘M2b’ (n=9) and ‘M2c’ (n=12). ‘Pro-M1’ and ‘Pro-M2’
gene sets were built from literature (35, 36). Autophagy genes
were retrieved from Reactome v.75 accessions: ‘Macroautophagy’
(R-HSA-1632852.8, n=137), ‘Chaperone Mediated Autophagy’
(R-HSA-9613829 . 3 , n=22) , and ‘La t e endosoma l
microautophagy’ (R-HSA-9615710.3, n=34). Wilcoxon signed-
rank test was used to test the differences between mean ranks
between infected and mock macrophages signatures. Spearman’s
rank correlation coefficient was calculated alongside 95%
confidence intervals using DescTools R package v.0.99.40 (37).
Principal component analysis (PCA) was applied to further
explore the macroautophagy genes in the dataset. Mean-
centered and variance standardized expression matrix with the
137 genes from macroautophagy gene set was subjected to PCA
computed with FactoMineR v.2.4 (24). PCA scatter plot and
contribution bar plots were graphed with factoextra v.1.0.6.
RESULTS

Differentially Expressed Genes in MDMs
Infected With M. leprae
Here, we included 29 healthy volunteers (15 females and 14
males) with an age range of 20-30 years. PBMCs were collected
and used to obtain monocytes for differentiation to MDMs,
which were subsequently infected withM. leprae at 10:1 MOI for
48 h. Microarray quality control was used to discard aberrant
arrays, and outlier samples were removed (Figure S2).

We designed our study to evaluate early changes in the
macrophage-M. leprae interaction. Thus, human MDMs were
analyzed after 48 h of infection withM. leprae, which resulted in
325 unique upregulated (FDR ≤ 10% and log2FC ≥ 0.58) and 117
downregulated (FDR ≤ 10% and log2FC ≤ -0.58) genes. Genes
with the largest effect size (|log2FC| > 1.5) are annotated in the
volcano plot of Figure 1A, of which some members of the
metallothionein family can be observed, like MT1G, MT1E and
MT1P. Figure 1B shows a heatmap with hierarchical clustering
of all samples and the top 92 genes with an FDR ≤ 10% and
|log2FC| ≥ 1. The heatmap demonstrates a cluster pattern that
clearly distinguishes infected from non-infected samples (Figure
1B), at the same time highlighting the high heterogeneity among
individuals for some genes, such as ORM1, MT1G, MT1H,
MMP12, CXCL5, COL22A1, and GAL. Some of the gene
families identified such as metallothioneins, chemokines, and
interleukins are involved in inflammation and autophagy, and
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FIGURE 1 | (A) Volcano plot showing the DEGs from monocyte-derived macrophages infected with live M. leprae (MOI 10:1) for 48 h. Blue dots represent genes
with an FDR ≤ 10% and |log2FC| ≥ 0.58. Gene symbols are given for those with an FDR ≤ 10% and |log2FC| ≥ 1.5. (B) Heatmap and unsupervised hierarchical
clustering of genes with an FDR ≤ 10% and |log2FC| ≥ 1 (n = 92). Samples were clustered based on Euclidean distance and genes with Pearson correlation
coefficient, both with average agglomeration. Color key displays expression values in standard deviation units away from the mean (i.e., scaled and centered row-
wise). FDR, false discovery rate; FC, fold change.
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among the induced genes, we found that MT1G, MMP7,
TNFAIP6, CYP27B1, and CCL5/RANTES had the largest fold-
changes (Figure 1A and Table S1). Conversely, among the most
repressed were SELENOP, TLR7, CDCP1, HPSE, and GNG2
(Figure 1A and Table S1).

To further understand which biological processes the DEGs
were involved in, we performed an over-representation analysis
(ORA) with Gene Ontology Biological Process annotation. ORA
revealed several biological processes modulated by M. leprae
infection, whereby the expression patterns of the MDM genes
were consistent with resistant responses and a reprogramming
profile that would induce M. leprae killing and infection control.
Strikingly, the upregulated pathways had a greater number of
DEGs and more robust FDR. Among these predominantly
induced pathways, there were redundancies, which are
expected since several of these genes participate in multiple
pathways. Nevertheless, there is a clear activation of ‘regulation
of inflammatory response’, ‘regulation of leukocyte activation’,
‘cytokine secretion’, ‘regulation of T cell activation’, ‘response to
IFN-gamma’, as well as some others (Figure 2A and Table S2).
On the contrary, downregulated genes pertain to biological
processes such as membrane lipid metabolic process,
sphingolipid metabolic process, and locomotory behavior
(Figure 2B and Table S3).

Commonly Modulated Genes in
Macrophages and Schwann Cells Upon
Infection With Live-M. leprae
As a comparison, we decided to use a public dataset from M.
leprae infected (100:1) Schwann cells where approximately 30-
100 intracellular bacilli per cell were observed (2). In this case, a
shift toward a de-differentiation phenotype was noticed. By
comparing the lists of DEGs from this study and the results
from Schwann cells infected with live M. leprae (100:1) for 48 h,
we identified 920 DEGs with FDR ≤ 10% and a difference in
mean expression of at least 20% (i.e., |log2FC| ≥ 0.26). Of these,
229 (24.89%) were upregulated in both datasets, while 179
(19.45%) were jointly downregulated (Figure 3A and Table
S6). On the other hand, 512 genes (55.65%) were regulated in
opposite directions in the two experiments (Figure 3A). We next
graphed the top 50 genes with the greatest |log2FC| for both
concordant and discordant DEG, as this can be used to further
enlighten both similarities and differences in how the pathogen
interacts with each host cell as well as the effect of a higher/lower
multiplicity of infection (Table S6). Indeed, a higher multiplicity
of infection (Schwann dataset) leads to activation of the type I
IFN pathways (OAS1, TRIM7, TNFSF10) and subversion of
energetic metabolism where increased glucose uptake is
redirected from glycolysis/mitochondrial respiration to lipid
metabolism (MVK, DHCR7, HMGCS1, LDLR, MSMO1) (3,
12). In the same manner, some members of TNF signaling,
inflammasome pathway, and regulators of NFkB and JNK
pathways were upregulated in MDMs but repressed in
Schwann cells, such as TNF, CXCL5, FAS, MAPK13, TRAF1,
NKFB2, AIM2, and PANX1 (Figure 3C and Table S6).
Furthermore, in Schwann cells, we observed a consistent
Frontiers in Immunology | www.frontiersin.org 6
upregulation of genes involved with prostaglandin biosynthesis,
lipogenesis, mitochondrial metabolism, and negative regulation
of immune ADORA1, LDLR, NOV, PPARA, SERPINF1, FFAR4,
and ARG2). The patterns were quite distinct from the MDMs
where Schwann cells showed a more pronounced expression of
genes SELENOP, GAL, RGS18, AIF1, DEF6, ANGPTL6,
DHCR7, MVK, and MSMO, some involved in cholesterol
biosynthesis, along with LACC1/FAMIN, which is also
genetically associated with leprosy (Table S6).

Infected MDMs Express Mainly M1
Polarization Genes That Are Correlated
With Granuloma Formation
The somewhat contrasting gene expression profiles identified
before suggested that the infected MDMs could be expressing M1
markers with autophagic and phagocytic profiles. To examine
this, we calculated gene scores representative of multiple
macrophage polarization phenotypes, autophagy, and
granulomatosis, which are features often observed in
paucibacillary leprosy patients. Figure 4A shows the scores for
each signature indicating a transcriptional activity increase in
genes involved with M1 macrophage polarization, as well as
decreased or similar activity for M2, M2a, and Pro-M2. It seems
that although genes responsible for inducing M2 phenotype are
unaffected, the M2b signature shows activation upon infection,
which could indicate either a mixed MDM specialization
phenotype or distinctive polarization patterns between
individuals, like the clinical disease presentation. As for the
autophagy signatures, macroautophagy is specifically active in
infected MDMs, whereas chaperone-mediated autophagy
appears the opposite (Figure 4A). Finally, we tested the
correlation between granulomatosis gene scores with M1, M2,
and macroautophagy scores. There was a moderated positive
correlation between M1 polarization signature with
granulomatosis, and no correlation with M2 score, which
together corroborated our hypothesis that a pro-inflammatory
macrophage profile seems predominant in this model with low
MOI (Figures 4B, C). The granulomatosis signature does not
correlate with macroautophagy, which could indicate that these
processes may not be simultaneously active at the transcriptional
level (Figure 4D). Finally, we wanted to see which
macroautophagy genes were driving the signature activity
signal. Principal component analysis (PCA) with the 137 genes
from the macroautophagy signature revealed that the second
principal component (PC2) separated MDMs according to the
infection treatment, explaining around 12% of the variability
(Figure 4E). As expected, there is considerable between-
individual variation and noise captured mainly by the first and
second principal components (PCs). We then explored PC1, and
only the “microarray chip” variable partially correlated with this
PC (data not shown). Some uninfected MDMs had basal higher
expression (placed vertically higher across PC2) as seen in blue
dots over the horizontal dashed line marking zero (Figure 4E).
Next, we extracted the top 25 genes most correlating to PC2. The
gene TOMM40 alone contributed with explaining almost 4% of
the variability of that axis (Figure 4F), where more than 25 genes
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contribute with more variability than would be expected if
contributions were uniform (dashed vertical line in Figure 4F).
Infected MDMs separated from their mock pair by great distance
vertically (Figure 4F) are cells with the most difference in
expression for the genes correlating with PC2, which varies
among individuals. Most of the top genes with higher
contributions to PC2 showed upregulation after infection with
live M. leprae, with some exceptions that were significantly
downregulated (Figure 4G).
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DISCUSSION

Here, we evaluated the gene expression patterns of M. leprae-
infected MDMs, at a 10:1 MOI for 48 h, using a large-scale
technique. The data were consistent with an M1-like
differentiation profile, with several enriched pathways
associated with increased microbicidal activity, T cell
activation, and IFN-gamma cytokine secretion. Among the
most DE genes were those found in the vitamin D processing
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FIGURE 2 | Dot plot showing the top significant GO biological processes enriched from ORA of genes (A) upregulated (n = 35) or (B) repressed (n = 30) by M.
leprae infection. Gene ratio is the fraction of genes belonging to an ontology over the total number of modulated genes. Circle size shows the number of modulated
genes per biological process. FDR, false discovery rate.
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pathway (CYP27B1, VDR, IL1B), CC-chemokine ligands (CCL5,
CCL4, CCL3, CCL4L2, CCL2), receptors involved in cellular
migra t ion (GREM1 , MCOLN2 , MDK , CCL3 ) , and
inflammation (CCL5/RANTES). It seems that a combination of
MDM differentiation with M. leprae infection at a low
multiplicity of infection (10:1) induces a gene expression
program in agreement with a protective response. One of these
genes, CCL5/RANTES, is a key chemoattractant for monocytes in
the skin suggesting a pro-inflammatory feedback loop during
Frontiers in Immunology | www.frontiersin.org 8
M. leprae infection toward M1-like macrophages, which is
consistent with the higher expression in PB leprosy (38, 39).
Curiously, the chemokine-clustered genomic region has been
associated with leprosy indicating that genetic variations within
this gene could contribute to clinical form polarization (40). We
observed an upregulation of metallothionein gene’s expression,
like MT1E and MT1G. These genes produce proteins that
regulate metal availability, while zinc homeostasis is crucial to
activation of transcriptional factors and reactive oxygen species
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and have been associated with antimicrobial immune
responses (41).

Some metalloproteinases, such as MMP7, ADAMDEC1 and
MMP12, were also highly differentially expressed. These are
involved with tissue/matrix remodeling and host defense. It is
interesting that the macrophages in this model appear to have a
regulatory activation of gene expression involved in tissue
Frontiers in Immunology | www.frontiersin.org 9
remodeling. Indeed, MMP2 and MMP9 expression and activity
were higher among T-pole patients (42). This pattern is
dependable with the reshaping of cellular morphology and the
adjacent tissue during M1-like macrophage differentiation
observed here.

The upregulation of mitochondrial genes inM. leprae-infected-
macrophages, as compared to Schwann cells, is also consistent
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with the aforementioned alterations observed in infected MDMs
toward epithelioid transformation programming. In this same
direction, NDUFAF6, which encodes a protein that participates
in the mitochondrial respiratory chain complex I (NADH:
ubiquinone oxidoreductase) assembly; TACO1, which is
involved in the translational activation of mitochondria
cytochrome c; and TOMM40, the encoded protein of which
produces a pore to channel protein precursors into
mitochondria were also observed. We also detected an over-
expression in MDMs of metabolite transporters across the inner
mitochondrial membrane (SLC25A12).

Other sets of induced genes in the MDMs were involved in
tubulin assembly and cytoskeleton remodeling, such as TUBB6.
Some of these genes are involved in autophagy and the mTOR
pathway (43), which is increased during macrophage
differentiation in the presence of a low M. leprae MOI or dead
mycobacteria (44). Curiously, Yang and colleagues showed that a
20:1 MOI leads to higher CD163 and an anti-inflammatory
profile with higher IL-10 and lower HLA expression, although
dead M. leprae induced proinflammatory cytokines (45). In
clinical samples these patterns are observed in low bacterial
index patients (T-pole) and type 1 reactional patients (RR)
where vitamin D-mediated microbicidal clearance is observed.
Furthermore, IFN-gamma and IL-15 have been demonstrated to
gear the polarization of M1-like macrophages, exhibiting a
phenotype that is probably orchestrating the milieu inducing
granuloma formation and autophagy (44, 46). Thus, there is a
clear antagonistic pattern that, on the one hand, we observed
granuloma formation and M1-like polarization for macrophages
(10:1 MOI), whereas lipid biogenesis, wound healing and a
phagocytic signature were observed for Schwann cells (100:1
MOI). This M2-like profile occurred in both Schwann cells and
macrophages when higher concentrations ofM. leprae were used
to infect the cells (11, 12, 47). Indeed, molecular and biochemical
subversion induced by M. leprae infection leads to a type I IFN
response reducing autophagy (12, 48) and turning on the
Warburg-like effect (3). This is expected since this
downregulation was detected as associated with diminished
capacity to produce ATP through the respiratory chain (3) and
the redirection of glycolysis to lipid biosynthesis. Furthermore,
we observed a prominent upregulation toward higher MOI
(100:1) when genes associated with cholesterol and fatty acid
metabolism (DHCR7, MVK, and MSMO, and LACC1/FAMIN
were analyzed, which are pathways involved in lepromatous
leprosy immunopathogenesis.

Genes associated with leprosy outcome are also involved with
ulcerative colitis pathogenesis and other diseases, such as
Crohn’s disease, Parkinson’s and Alzheimer’s (49). Curiously,
some of the genes highlighted here, such as TOMM40 and
TUBB6, were associated not only with neurodegenerative
diseases, like Alzheimer’s, but also with ulcerative colitis (50,
51). These proteins interact with LRRK2, which is a gene that has
been independently associated with leprosy, and Parkinson’s
disease (49, 52). Another important gene upregulated in M.
leprae-Schwann cells was LACC1. The protein which LACC1/
FAMIN encodes is involved in fatty acid oxidation and bacterial
Frontiers in Immunology | www.frontiersin.org 10
clearance. Interestingly, the gene was associated with leprosy in
several studies (53, 54).

The global gene expression can also be analyzed in a genotype-
phenotype correlation perspective. In leprosy, whole blood cells
stimulated with M. leprae sonicates indicate quantitative trait loci
(eQTL) associated with transcript levels when samples were
compared before and after stimulation. The data revealed SNPs
controlling immunoinflammatory responses such as type II IFNs
and bacterial/pathogen recognition (55). Indeed, there are SNPs
regulating expression of genes such as LACC1, which indicates
that it is likely that a combination ofM. leprae-induced activation
with genetic polymorphisms may define the commitment toward
the T- or L-pole. Thus, together these could contribute to
identifying potential pharmacologic targets as adjuvants to
personalize treatment for each specific clinical form.
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