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Approaches to understanding adaptive behaviour often assume that animals

have perfect information about environmental conditions or are capable of

sophisticated learning. If such learning abilities are costly, however, natural

selection will favour simpler mechanisms for controlling behaviour when

faced with uncertain conditions. Here, we show that, in a foraging context,

a strategy based only on current energy reserves often performs almost as

well as a Bayesian learning strategy that integrates all previous experiences

to form an optimal estimate of environmental conditions. We find that

Bayesian learning gives a strong advantage only if fluctuations in the food

supply are very strong and reasonably frequent. The performance of both

the Bayesian and the reserve-based strategy are more robust to inaccurate

knowledge of the temporal pattern of environmental conditions than a strat-

egy that has perfect knowledge about current conditions. Studies assuming

Bayesian learning are often accused of being unrealistic; our results suggest

that animals can achieve a similar level of performance to Bayesians using

much simpler mechanisms based on their physiological state. More broadly,

our work suggests that the ability to use internal states as a source of infor-

mation about recent environmental conditions will have weakened selection

for sophisticated learning and decision-making systems.
1. Introduction

‘Il meglio è nemico del bene’ [‘The best is enemy of the good’]

Italian proverb
The study of animal decision-making has typically taken an optimization

approach in which the animal is assumed to have perfect knowledge of current

and long-term conditions [1–4]. In reality, animals will be uncertain about con-

ditions [5]. Such uncertainty can be incorporated into evolutionary models using

Bayes’s rule, which updates knowledge given new information in a logically con-

sistent way [6,7], invoking the behavioural gambit [8] that animals will behave

as though they can perform Bayesian calculations [9,10]. However, it remains

unclear how most animals could approximate Bayesian learning without invok-

ing implausible computational abilities or excessively costly physiological or

cognitive mechanisms that would require a large brain. For a mechanism to be

favoured by selection, there needs to be sufficient advantage to the animal in

terms of reproductive success to offset the costs of the mechanism. In many situ-

ations, a simpler but less accurate mechanism, determining a ‘rule of thumb’ or

heuristic, might be advantageous if it has a smaller cost [11]. An example is

simple learning rules based on a linear operator [12]. Such rules may also be
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more robust than Bayesian learning, in that their performance

is less affected if information is imperfect [12,13].

One of the best-studied situations in decision-making is

searching for food [4,14,15]. Described rules of thumb include

the ‘two-strikes’ rule that bees (Bombus lapidarius) appear to

follow in making patch-quitting decisions [16]; the animal

acts as though it has a fixed memory window for foraging suc-

cess, such as remembering whether or not it found food on the

last few occasions that it looked. Another example is the con-

stant time in patches used by caddis fly larvae (Plectrocnemia
conspersa) [17]; here the animal acts as though it keeps track

of time and ignores changes in conditions. Both methods

may lead to behaviour that is similar to a more sophisticated

system that tracks food availability explicitly [16,17].

To behave optimally in different conditions, the animal

needs some way of assessing current conditions. In the case

of foraging, the animal discovers food items stochastically,

which does not necessarily reflect the overall food abundance

at that point in time. Animals therefore need some way to

integrate past events, but acquiring and processing infor-

mation in a Bayesian way is likely to be costly [18]. Instead,

natural selection could exploit the fact that animals have

internal states that are a potential source of information

about conditions. All else being equal, energetic reserves

tend to increase if food is abundant and fall if food is scarce.

Since conditions are positively autocorrelated over time in

most natural environments, conditions in the recent past are

informative of current conditions [5]. As such, reserves could

act as a physiological ‘memory’ of environmental conditions

and so indicate current conditions [19].

Here, we show that energy reserves, a physiological state,

provides a simple yet surprisingly effective cue to decide how

intensively to forage for food. For clarity, we use a simple

model of survival in a fluctuating environment (i.e. the gen-

eralized risk allocation model of [20]), where food availability

varies over time. We characterize the animal’s environment in

terms of the distribution, variability and abundance of food

items. We investigate under what conditions we expect ani-

mals to behave as though they have sophisticated learning

mechanisms for assessing current conditions, when they

should have simpler mechanisms and when they should

ignore fluctuations in conditions altogether. To predict the

outcome of natural selection it would be necessary to quan-

tify the cost of mental mechanisms, but this is currently not

possible. We therefore compare the survivorship of various

candidate mechanisms to understand when sophisticated

mechanisms give large benefits, in which case animals are

unlikely to have simple mechanisms. We find that, across a

wide range of situations, a strategy based only on the level

of reserves performs almost as well as optimal Bayesian

learning, despite being much simpler, because reserve level

acts as a memory. We discuss how such mechanisms

may operate in non-foraging contexts too, and suggest that

physiological states acting as ‘memories’ may be ubiquitous.
2. The model
We are interested in the foraging strategy that maximizes sur-

vival in a temporally changing environment where death can

occur through starvation or predation. One possible response

to harsh conditions is to cease activity and wait for better

times, but the consequences of this for the forager’s survival
and future state will depend on its current reserves. We there-

fore use a state-dependent model in which the optimal action

is allowed to depend on both the current conditions and the

current level of reserves. We model behaviour over a long

sequence of discrete time steps. The animal and its environ-

ment are characterized by two states: its level of reserves x
(x � 0) and the current environmental conditions E where

food availability is higher in good conditions (E ¼ G) than

bad conditions (E ¼ B). Food availability differs only in the

maximum probability of finding food when foraging (gG

and gB, where gG � gB).

The food availability of the environment is assumed to fluc-

tuate over time. Incorporating environmental heterogeneity

into models of adaptive behaviour requires the inclusion of an

environmental state variable [5]. Often we can capture sufficient

complexity with just two possible environmental states A and

B, such as high and low food availability. Next, we characterize

stochastic transitions between the two environmental states.

The simplest case is where the probability of transition (per

unit time) between states depends only on the current state.

At the end of a time step, we assume that the environment

changes from the current conditions E to the alternative

conditions with probability lE. Thus, a good environment

becomes a bad environment with probability lG, while a bad

environment becomes a good environment with probability

lB. The duration of both good and bad periods follow a geo-

metric distribution whose mean is the reciprocal of the

transition probabilities, which we term tG and tB, respectively.

Note that this environment will show positive temporal auto-

correlation if lB þ lG , 1 because then conditions are more

likely to stay the same than to change [5].

The aspect of behaviour we are interested in is foraging

intensity, which we call f (0 � f � 1). Increasing f increases

the probability of finding food but also increases exposure

to predators and hence the probability of being attacked.

We assume that while the animal is not foraging, it is safe

from predation. We also assume that predation risk when

foraging increases with energy reserves x because of decreas-

ing manoeuvrability [21]. (Regardless of the exact cost, some

cost needs to be assumed if long-term adaptive fat levels are

to be stable [22].) In a given time step, the probability of

mortality of the animal due to predation (m) is given by

mðx,fÞ ¼ f cd
1

2
þ x

s

� �
, ð2:1Þ

where c controls how the risk increases with f, d is the maxi-

mum probability of predator attack, and s is the maximum

reserve level. We assume that the forager uses m units of

energy per time step on metabolism and finds a food item

with probability gEf. For computational reasons, there is

some variance in the energy content of food items (see elec-

tronic supplementary material [hereafter ESM], appendix):

food items contain either b1 or b2 units of energy; for the

results shown in the main text, we assume that items with

energy b1 ¼ 5 and b2 ¼ 6 occur with equal probability. The

reserves at the next time step are therefore

xtþ1 ¼ xt þ bj �m

after a successful discovery of food item of type j ( j ¼ 1,2),

and

xtþ1 ¼ xt �m



Table 1. Parameters in the model and their default values.

symbol description value

s maximum level of reserves 100

m energy use per unit time 1

bj energy in food item type j 5, 6

d maximum probability of predator attack 0.002

c power of relationship between foraging and predation risk 2

c survival cost per time step for reserve-based strategies 0.001, 0.004

k relative cost of Bayesian compared with reserve-based strategy 2

gE probability of finding food per unit time spent foraging in environment in condition E gG ¼ 0.7, gB ¼ 0.3

lE probability that environment in condition E changes to the other condition lG ¼ 0.01, lB ¼ 0.01

tE mean number of time steps for which environment stays in condition E (tE ¼ 1/lE) tG ¼ 100, tB ¼ 100
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after a failure to find food. If xt ¼ 0, then xtþ1 ¼ 0 because the

animal is dead.

A strategy specifies how f depends on circumstances (e.g.

reserves, information). We find optimal strategies of various

classes, all of which minimize the mortality rate and so maxi-

mize the survival probability over a long time period. The

classes of strategy differ in the constraints on the information

available to the forager. Where the current environmental

state E is known (perfect information), this is the generalized

risk allocation model [20]. Where E is not known, the forager

may be able to estimate it based on available cues. To model

this, we include a state variable r to represent the forager’s

estimated probability that conditions are currently good (i.e.

that E ¼ G). Here we find the optimal strategy f* from two

classes of strategy in which information is imperfect: (i) the

animal estimates the probability r that conditions are cur-

rently good directly from its foraging experiences, using

Bayesian updating; (ii) the animal does not monitor its fora-

ging experiences directly but is sensitive to its current

energy reserves, and can take into account the fact that the

level of reserves is informative of recent conditions to esti-

mate r. Assuming that the forager is optimally adapted to

minimize its long-term mortality rate, we use dynamic pro-

gramming to find optimal solutions given the constraints

on information (see ESM, appendix A). We set other par-

ameter values (m, d, c, bj) such that the risk of mortality

over some long time period is realistic. If each time step is

thought of as around 1 h, then 2000 time steps represent

around 100 days of winter, over which the animals try to sur-

vive. Small birds in temperate regions survive winter with

50–70% probability [23–25], so we tune the parameters

such that the survival at the baseline parameter values is

around this range. As mortality is far from both zero and

one, this ensures that the model can make clear predictions

about the effects of the parameter values of interest on the

performance of the various strategies.

We compare the performance of these constrained opti-

mal strategies to two other classes of strategy that would be

optimal if the environmental conditions were unchanging:

(1) A ‘pessimistic’ class of strategy that behaves as though the

food availability is constantly low (gB). (We do not show

results for the alternative ‘optimistic’ strategy that behaves

as though food availability is constantly high (gG), because

it performs very poorly in all non-trivial conditions.)
(2) An optimally biased strategy that behaves as though the

food availability is high with a fixed probability and

low otherwise, where the fixed probability is that which

is optimal, and so will have been naturally selected for

in the absence of any attempt to track food availability.

Thus, in summary we compare the performance of five

classes of strategy:

— Perfect (P): Forager has perfect knowledge about current

food availability.

— Bayesian (L): Forager uses Bayes’s theorem to estimate cur-

rent food availability directly from its foraging experiences.

— Reserves (R): Forager does not monitor its foraging experi-

ences but can base its decisions on its current reserve level;

note that, through natural selection, the response to reserves

will be influenced by the conditional probability that food

availability is high given the reserve level.

— Pessimist (S): Forager behaves as though the current food

availability is always low.

— Optimal bias (U ): Forager behaves as though the current

food availability is high with a fixed probability r*, which

is the estimate that minimizes the long-term mortality rate.

For each class, we find the optimal foraging strategy as a

function of reserves and information state. We then assess the

resulting survival over 2000 time steps starting from the

stationary distribution of x in the population. To do this,

we simulate a population following the optimal strategy

until the distribution of individuals stops changing, rescale

so the size of the population is unity, and then run for 2000

time steps to determine the survival probability Q(i), where

i indicates one of the strategy classes as shown above. All

parameters and their baseline values are shown in table 1.
3. Results
When using the reserve-based strategy (class R) the probability

that conditions are good as a function of reserves x is shown in

figure 1. For all parameter settings, the probability follows a

sigmoid curve, with a low probability that conditions are

good at low reserves and a high probability at high reserves,

because reserves gradually build up when food is abundant

and decrease when food is scarce. The curve shifts to the

right as the difference between gG and gB increases, because
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the optimal strategy is to store more reserves in good

conditions to prepare for bad conditions. The steepness of

the sigmoid curve depends on the fluctuation rate (ESM,

figure B1).

The optimal foraging intensity f* for all five strategy

classes is shown in figure 2 for the baseline parameter

values (with the differences in foraging intensity plotted in

ESM, figure B2). As we have shown previously [20], there

is a crossover point in the optimal intensity of foraging

under perfect information f*P (grey lines), with more intense

foraging when food availability is low if reserves are low

[ f*P(x,B) . f*P(x,G) when x , 30], but less intense foraging

when food availability is low if reserves are high

[ f*P(x,B) , f*P(x,G) when x � 30]. A pessimist has f*S that is

too high because it does not expect good conditions to

occur at all. For the reserve-based optimal strategy, foraging

intensity f*R is similar to f*P(x,B) when reserves are low and

closer to f*P(x,G) when reserves are high (compare grey and

dotted lines). This is intuitive, because the lower the reserve

level, the more likely it is that conditions are bad, hence the

animal should behave as though conditions are bad; whereas

if reserves are high it is likely that conditions are good, hence

the animal should behave as though conditions are good. For

the Bayesian learning strategy, f*L is similar to f*P(x,B) when

the posterior probability that conditions are currently good r

is zero and similar to f*P(x,G) when r is unity, with a gradual

change in f*L for intermediate r (ESM, figure B3).

We assess the probability of surviving 2000 time steps for

each optimal strategy under various conditions (figure 3;

shown for gB ¼ 0.25 and gG ¼ 0.75, for other values see

ESM, figure B4). For clarity, we first show survival under per-

fect knowledge (P, which always does best) and then the

differences between the various strategies. Survival always

increases with the mean duration of good periods and

decreases with the mean duration of bad periods because mor-

tality mostly occurs in bad periods, and the length of these

therefore determines survival (figure 3a; ESM, figure B4a–e).

Survival decreases as the difference in food availability

increases because that determines the severity of bad periods,
except that survival increases with the difference in food avail-

ability if conditions are good most of the time (cf. ESM, figure

B4a,d), because the increased rate of gain in good periods

more than compensates for this and risk allocation has a

large benefit.

In general, the difference in survival between perfect

knowledge (P) and the information-constrained strategies

(L, R) is much less than 5% for most conditions. L (Bayesian

learning) does worst compared to P when periods are short

because it is impossible to learn fast enough to perform risk

allocation effectively (figure 3b; ESM, figure B4f–j); this is

exacerbated when food availability differs markedly between

good and bad conditions (ESM, figure B4j). Across parameter

space, there is strikingly little difference between L and the

reserve-based strategy R (figure 3c; ESM, figure B4 k–o),

except when periods are moderately short (around 20 time

steps) and the difference in food availability between con-

ditions is very large (ESM, figure B4o). R does much better

than U (optimal bias) when periods are long and of roughly

equal duration, because then it is most important to do the

correct thing (figure 3d; ESM, figure B4p–t). The optimal esti-

mate r* under the U strategy is always smaller than the actual

r (ESM, figure B5). This is because eating too much in good

conditions is less deleterious than eating too little in poor

conditions.

In figure 4, we clarify the conditions under which a learn-

ing (L) or reserve-based (R) strategy should evolve, under the

arbitrary assumption that L is twice as costly as R. We expect

sophisticated learning to be worth this additional cost when

periods are moderately short and food availability changes

greatly (bottom-left of figure 4b,d) or when the fluctuations

are subtle and infrequent (top-right of figure 4a). We expect

the reserve-based strategy to be favoured if the world is not

predominantly poor or rich (i.e. along the main diagonal of

figure 4) and does not change too quickly (not the bottom-

left). This is because R does not adapt fast enough when

conditions turn bad and so the animal is more likely to die;

in this situation, either L or U does better. In all other cases,
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decisions based solely on the current reserve level allow the

animal to perform almost as well as a sophisticated Bayesian

learning strategy, with differences less than 1% in most of

parameter space, and 0.04% for the baseline parameter values.

For the results above, we assumed that gG þ gB ¼ 1. How-

ever, the difference between L and R remains small for almost

all combinations of gG and gB (ESM, figure B6). We have also

confirmed that the results are not sensitive to our assump-

tions about the variance in energy consumption over time

(ESM, figure B7). We did this by increasing the energy con-

tent of food items bj while decreasing their rate of discovery

gG and gB, such that the total amount of energy in the

environment remained constant but the variance increased

(implying longer periods without eating). The results are

almost unchanged across the full range of the proportion of

food that occurs under good conditions (ESM, figure B7).

In addition to having imperfect knowledge about current

conditions, a forager’s perception of the pattern of
environmental change may be prone to error. This may be

the case because of dispersal or because anthropogenic

change is altering environments faster than animals can

adapt [26]. To investigate this, we assess the performance

of the same five strategy classes in an environment that fluc-

tuates on a different timescale from that to which the forager

is adapted. In figure 5, we present the survivorship relative to

the P case when the strategy is mismatched for the transition

probabilities (for absolute values, see ESM, figure B8). Over-

all the survival of P is poorer than that of R and L if the

perceived rate of environmental change is different to the

actual rate. This occurs because the optimal decision depends

on the forager’s current state and its expectations about the

future; if those expectations are wrong, then performance

will be poor. This is ameliorated if the forager can adjust its

expectations via learning or other changes in state, which are

influenced by the real conditions. At the extreme, if the forager

expects periods to be long then the performance of P worsens
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as the actual period durations decrease (ESM, figure B8),

whereas performance improves for L and R (figure 5g). If

the actual duration of periods is much longer than expected,

then it would be better to act as though conditions are

always poor (S) (figure 5d,f,h), but there is always a range of

perceived durations where L and R outperform P. When the

expected durations are quite inaccurate, the actual durations

determine whether R outperforms L or vice versa: if the

actual durations are long, reserves become a reliable cue of cur-

rent conditions (figure 5f,h), whereas if the actual durations are

short, the Bayesian strategy performs better (figure 5b,d).

The maintained reserve level is similar under L and R but

slightly shifted to lower reserves compared with P for baseline

parameter values (ESM, figure B9). Storing a lower level of

reserves is predicted across most of parameter space (ESM,

figure B10), except where there is a small difference in food

availability between good and bad conditions and conditions

change slowly (ESM, figure B10b, f) or when conditions are

more often good (ESM, figure B10d,h). Across all of parameter

space, reserves under L are closer to those under P than R,

explaining the slightly better performance of L.
4. Discussion
The need to track and respond appropriately to environ-

mental conditions generates an important selective pressure

on sensory and cognitive systems. Animals typically do not

have perfect knowledge [27]. While foraging they may learn

about the current food availability, but because food discov-

ery is stochastic there is uncertainty. Given this uncertainty,

animals are likely to have decision rules that perform well

in most conditions [8,11,28]. The level of sophistication of

these rules will depend on their associated costs and the

benefit of tracking the environment. Here, we have compared

the performance of a number of implementations of possible

foraging mechanisms in an environment with fluctuating

food availability. Our findings suggest that a Bayesian learn-

ing strategy—a commonly used paradigm in research on

learning [6,9,12,29] but one which is arguably implausible

for real organisms [6,7] (but see [9,10])—is unlikely to

evolve under most conditions, because a simpler decision

rule based solely on current energy reserves could allow

the animal to perform almost as well. The greatest benefit

to distinguishing between conditions occurs when the

environment fluctuates slowly, but in this case there is

ample time for energetic reserves to respond to current con-

ditions before they change, and so most of the time the

reserve level will be a sufficiently reliable indicator of current

conditions. The ability to behave appropriately using only

energy reserves as a cue is likely to have greatly reduced

the selective pressure for sophisticated learning systems.

Bayesian learning might still be advantageous if other

classes of strategy are very expensive, if there is a strong

difference between conditions (making it more important to

adjust behaviour accordingly) and if conditions change suffi-

ciently fast that reserves are an unreliable cue to current

conditions. This perspective suggests that animals in strongly

and quickly fluctuating environments might be better at

learning, which contradicts the suggestion that learning is

favoured under intermediate rates of change [30,31]; note

that these previous studies did not consider simpler alterna-

tive mechanisms. Strikingly, we predict that animals should
be insensitive to some types of environmental fluctuations,

such as if the fluctuations are not very large, or fluctuations

are very quick, or if the world is usually in one state or the

other. The latter result is predicted because if food conditions

are dominated by one level of availability, then animals can

just behave as though this is always the case. With fast

changes or changes of small magnitude, it is less important

to be sensitive to changes in food availability because current

conditions do not provide much information about future

conditions [20]. In experiments that have found no response

to changing conditions [32], it is important to consider

whether the study organism is adapted to an environment

in which there is limited benefit of responding to changes.

In some situations, such as when the level of food avail-

ability changes frequently, it may be that the animal should

do the same thing in the different conditions [20]. In such

cases, an evolved mechanism may implement some simpler

rule that does not try to track conditions (U ). This may

underlie state-dependent valuation of food sources, because

an animal’s state may reflect what conditions were generally

like when particular sources were exploited [33].

The reserve-based strategy class may be the most likely

evolutionary outcome in most situations. Even the simple

rule (U ) requires a basic sensitivity to reserve level to avoid

starvation, and the reserve-based strategy is unlikely to

involve significant additional costs. Thus, animals will not

necessarily carry the level of reserves predicted by standard

models that assume perfect knowledge or Bayesian learning,

but instead may make systematic deviations because they are

using reserves as a source of information. We predict that

these deviations will be positive (more reserves than pre-

dicted by perfect information models) when conditions

change slowly but negative when conditions change quickly

(ESM). There may be no need for a cognitively encoded

memory of recent foraging experiences; natural selection

will simply exploit information by favouring an adaptive

response to energetic reserves. In effect, the animal’s reserves

act as a physiological memory of past events. This suggestion

could be tested empirically in systems where foraging experi-

ences can be decoupled from the perceived level of reserves,

for example, through experimental manipulation of hor-

mones such as ghrelin and leptin that are involved in the

regulation of feeding behaviour. By manipulating hormone

levels and foraging experiences independently of each

other, it should be possible to determine whether foraging be-

haviour is controlled by a cognitively encoded memory, a

reserve-based memory or some combination of the two.

Lea et al. [34] assessed the performance of cognitive mech-

anisms for solving the explore-exploit trade-off. They found

that a simple decision rule can perform better than more soph-

isticated strategies in some conditions, such as where there is

insufficient time to learn about current conditions, which is

comparable to the poor performance of our Bayesian learning

strategy when fluctuations are frequent. However, the choice

of foraging currency is likely to be crucial for the insights

obtained [15], and often maximization of net rate as assumed

by Lea et al. [34] will make substantially different predictions

to currencies that incorporate the risk of mortality that most

foragers face [15,35]. Future theoretical work should consider

how a foraging rule based on physiological state, such as a hor-

mone level, performs relative to a cognitive mechanism that

attempts to learn about the level of predation risk from

direct experiences (e.g. sightings of predators).
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Learning rules that maximize long-term reward rate by

learning about conditions can perform much better than

ignorant rules [36,37]. But these rule sets have not accounted

for the fact that internal state, such as the level of energy

reserves or body temperature, always provides animals

with some information and we expect natural selection to

have formed strategies that exploit all sources of information

about the external conditions. Several models have shown

that an animal’s state should influence decision-making to

the extent that behaviour may appear irrational [38–41].

Here, we have identified that the effect of energetic reserves

may be more complex still: animals with equal levels of

reserves may differ in their response if they are adapted to

different environments, such as different rates of change,

because of how this affects the information content [20].

The marginal value theorem predicts that the marginal

capture rate for leaving patches of prey should be higher

when the overall prey abundance is higher, but this is often

not observed [42]. A simple rule of thumb of a constant

giving-up time results in behaviour that approximates the

optimal solution much of the time [17,43,44]. Such a rule

may be driven by some internal physiological state, involving

feedback from the gustatory system, which reflects the time

since the last prey item was consumed. Nonacs [45] showed

that including a forager’s energy reserves alters the predic-

tions of the marginal value theorem, but he also assumed

that animals could keep track of foraging success in a perfect

way. We suggest that a better approach may be to model a

gustatory state, such as stomach contents, which the animal

can use as a cue of foraging success. Our reserve-based

approach could be used to incorporate information con-

straints in many established models of animal behaviour

and decision-making.

There is currently much interest and concern about the

ability of organisms to cope with human-induced rapid

environmental change [46]. Such rapid changes will cause

there to be a mismatch between the conditions that animals

have evolved to deal with and those they actually experience.

Our results (figure 5) suggest that the details of how the

environment has changed will determine how organisms

respond. Interestingly, if environmental change causes con-

ditions to fluctuate more quickly or more slowly than in the

evolutionary past—for example, because it leads to more

extreme weather patterns—then organisms that can perceive

the current conditions directly (P) may in fact perform worse

than those that use simple rules to estimate current con-

ditions (figure 5). Which strategy class performs best

depends on whether fluctuations are more or less frequent:

if conditions now change more quickly than in the past,

then learning does best (figure 5b,d), whereas if conditions

change more slowly then simpler (e.g. reserve-based) strategy

classes not based on learning do best (figure 5f,h).

We have shown that, in a foraging context, a behavioural

strategy based only on an internal physiological state (R) can

perform so well that more sophisticated strategies, such as
learning directly from foraging outcomes (L) or accurately

perceiving current conditions (P), might not provide suffi-

cient advantages to offset their costs. It is striking that a

reserve-based strategy is more robust to error in the pattern

of environmental fluctuations than a rule based on perfect

information about current food availability. Therefore, if the

information about the environment is unreliable, we expect

selection to favour simpler strategy classes. So far, we have

been unable to prove that our methodology for finding the

best-performing reserve-based strategy actually converges

on the global optimum, rather than a local optimum (see

ESM, figure B11). However, if it is just a local optimum,

then our conclusions would be strengthened: the perform-

ance of the reserve-based strategy at its global optimum

(elsewhere in n-dimensional space) would be even better

than the one we have described here, and hence even closer

to the performance of the Bayesian learning strategy.

Similar principles could well apply in other (non-fora-

ging) contexts: any physiological or psychological state

variable that is altered by experience might function as an

efficient integrator (a ‘memory’) of past experiences. An

obvious candidate is emotions and moods, which have

been modelled mechanistically [47] and may help an

animal to adjust its behaviour adaptively when conditions

are uncertain [48,49]. In fact, in non-foraging contexts, the

state variable may have greater flexibility to act as a cue

because (unlike energy reserves) the animal does not necess-

arily depend on it for survival, so it could potentially evolve

to be more informative than energy reserves are in the fora-

ging case. One intriguing possibility is that emotional states

were initially unavoidable consequences of levels of neuro-

transmitter activity, but have been modified by selection to

provide more reliable information about recent experiences

and thereby influence cognitive decisions. If the principle

we have highlighted applies to most physiological states,

then organisms may often appear to be cognitively sophisti-

cated despite basing their decisions on relatively simple

mechanisms. Since internal states can summarize a great

deal of information about the environmental conditions,

they will reduce the selective pressure to learn directly from

the immediate outcomes of decisions. Animals are therefore

likely to be cognitively unsophisticated when they are able

to perform well using simple mechanisms.
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