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Previous studies over the past two decades have demonstrated that the brain and other
nervous systems possess key steroidogenic enzymes and produces pregnenolone and
other various neurosteroids in vertebrates in general. Recently, 7α-hydroxypregnenolone,
a novel bioactive neurosteroid, was identified in the brain of newts and quail. Impor-
tantly, this novel neurosteroid is produced from pregnenolone through the enzymatic
activity of cytochrome P4507α and acts on brain tissue as a neuronal modulator to stim-
ulate locomotor activity in these vertebrates. Subsequently, the mode of action of 7α-
hydroxypregnenolone was demonstrated. 7α-Hydroxypregnenolone stimulates locomotor
activity through activation of the dopaminergic system. To understand the functional sig-
nificance of 7α-hydroxypregnenolone in the regulation of locomotor activity, diurnal, and
seasonal changes in 7α-hydroxypregnenolone synthesis were further characterized. Mela-
tonin derived from the pineal gland and eyes regulates 7α-hydroxypregnenolone synthesis
in the brain, thus inducing diurnal locomotor changes. Prolactin, an adenohypophyseal hor-
mone, regulates 7α-hydroxypregnenolone synthesis in the brain, and also induces seasonal
locomotor changes. In addition, 7α-hydroxypregnenolone mediates corticosterone action
to modulate locomotor activity under stress. This review summarizes the current knowl-
edge regarding the mode of action and functional significance of 7α-hydroxypregnenolone,
a newly identified bioactive neurosteroid stimulating locomotor activity.
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INTRODUCTION
The brain has traditionally been considered as a target site for
peripheral steroid hormones. In addition to this classical concept,
it is now established that steroids can be synthesized de novo in the
central and peripheral nervous systems. Such steroids are called
“neurosteroids.” De novo neurosteroidogenesis in the brain from
cholesterol is considered to be a conserved property across verte-
brates, (for reviews, see Baulieu, 1997; Tsutsui et al., 1999, 2000;
Compagnone and Mellon, 2000; Mellon and Vaudry, 2001; Tsut-
sui et al., 2003, 2006; Tsutsui and Mellon, 2006; Do-Rego et al.,
2009).

Seasonally breeding wild animals, such as amphibians, have
served as excellent animal models to investigate the biosynthesis
and biological actions of neurosteroids. Previous studies over the
past two decades have demonstrated that the brain of amphibians
possesses several key steroidogenic enzymes and produces preg-
nenolone, a precursor of steroid hormones (Takase et al., 1999,
2011; Inai et al., 2003), and other various neurosteroids (Mensah-
Nyagan et al., 1994, 1996a,b, 1999; Beaujean et al., 1999; Takase
et al., 2002; Inai et al., 2003; Matsunaga et al., 2004; Do-Rego
et al., 2007; Bruzzone et al., 2010). The formation of neurosteroids
from cholesterol is now documented in amphibians as in other
vertebrates.

However, the biosynthetic pathways leading to the formation
of neurosteroids in vertebrate brains was not fully characterized

(for a review, see Tsutsui et al., 2006). In fact, Matsunaga
et al. (2004) recently found that the brain of newts actively
produces 7α-hydroxypregnenolone, a previously undescribed
amphibian neurosteroid, from pregnenolone. Importantly, 7α-
hydroxypregnenolone acts on brain tissue as a novel neuronal
modulator to stimulate locomotor activity of newts (Matsunaga
et al., 2004). Tsutsui et al. (2008) also identified 7α- and 7β-
hydroxypregnenolone in the brain of quail by using biochemical
techniques (Tsutsui et al., 2008). 7α-Hydroxypregnenolone, but
not 7β-hydroxypregnenolone, stimulates locomotor activity in
quail (Tsutsui et al., 2008) as in newts (Matsunaga et al., 2004).
It was further found that cytochrome P4507α catalyzes the conver-
sion of pregnenolone to 7α-hydroxypregnenolone in the brain of
these vertebrates (Tsutsui et al., 2008; Haraguchi et al., 2010).

Based on these recent findings, this review summarizes the
current knowledge regarding the mode of action and functional
significance of 7α-hydroxypregnenolone, a new key regulator of
locomotor activity in vertebrates.

OUTLINE OF 7α-HYDROXYPREGNENOLONE AND ITS
BIOLOGICAL ACTION
IDENTIFICATION OF 7α-HYDROXYPREGNENOLONE IN THE BRAIN
Our preliminary study initially suggested that the brain of newts
actively produces an unknown amphibian neurosteroid from
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pregnenolone. Subsequently, Matsunaga et al. (2004) demon-
strated that this unknown pregnenolone metabolite is 7α-
hydroxypregnenolone in the newt brain (Figure 1), based on
biochemical techniques combined with high-performance liquid
chromatography (HPLC), thin-layer chromatography (TLC), and
gas chromatography–mass spectrometry (GC–MS) analyses. Tsut-
sui et al. (2008) further demonstrated that the quail brain also
produces 7α- and 7β-hydroxypregnenolone by using the same
biochemical techniques (Figure 1).

IDENTIFICATION OF CYTOCHROME P4507α IN THE BRAIN
7α-Hydroxypregnenolone is considered to be synthesized from
pregnenolone through the enzymatic activity of cytochrome
P4507α (Figure 1). Haraguchi et al. (2010) identified a cDNA
encoding a putative cytochrome P4507α from the newt brain.
The newt P4507α cDNA had a full length of 2598 bp. The enzy-
matic activity of this putative newt P4507α was then demon-
strated (Haraguchi et al., 2010). The homogenate of COS-7 cells
transfected with the putative newt P4507α cDNA converted preg-
nenolone into 7α-hydroxypregnenolone as shown by HPLC analy-
sis, and the inhibitor of cytochrome P450s, ketoconazole, abol-
ished this metabolic process. COS-7 cells without transfection
of newt P4507α cDNA did not convert pregnenolone into 7α-
hydroxypregnenolone. 7α-Hydroxypregnenolone synthesis was
further confirmed by GC–MS analysis (Haraguchi et al., 2010).

A full length of 2341 bp cDNA prepared from the quail brain
was also identified as encoding a putative cytochrome P4507α

(Tsutsui et al., 2008). The enzymatic activity of this putative quail
P4507α was demonstrated in homogenates of COS-7 cells trans-
fected with the putative quail P4507α cDNA (Tsutsui et al., 2008).
As demonstrated by HPLC and GC–MS analyses, the homogenate
converted pregnenolone to 7α-hydroxypregnenolone. Although
it is still unclear whether cytochrome P4507α can also con-
vert pregnenolone to 7β-hydroxypregnenolone, the presence of
7β-hydroxypregnenolone as well as 7α-hydroxypregnenolone is
evident in the quail brain (Tsutsui et al., 2008; Figure 1).

The production of 7α-hydroxypregnenolone in the brain may
be a conserved property of vertebrates, because this neurosteroid
has also been identified in the brain of mammals (Akwa et al.,
1992; Doostzadeh and Morfin, 1997; Weill-Engerer et al., 2003;
Yau et al., 2003).

BIOLOGICAL ACTION OF 7α-HYDROXYPREGNENOLONE
Because 7α-hydroxypregnenolone is actively produced in the
brain of newts, this seasonally breeding amphibian has served

as a suitable animal model to investigate the biological action
of 7α-hydroxypregnenolone. 7α-Hydroxypregnenolone synthe-
sis in the brain of male newts showed marked changes dur-
ing the annual breeding cycle, with a maximum level in the
spring breeding period when locomotor activity of wild popu-
lations of the same species increases (Matsunaga et al., 2004).
Matsunaga et al. (2004) therefore analyzed the effect of 7α-
hydroxypregnenolone on locomotor activity. For behavioral test-
ing, newts were placed individually in a water-filled aquarium
maintained at 18 ± 2˚C; each testing arena was marked with par-
allel lines to define four equal sectors (Matsunaga et al., 2004).
Immediately after administration of 7α-hydroxypregnenolone,
locomotor activity was quantified by counting the total number of
lines crossed during a 30-min observation (Matsunaga et al., 2004)
according to a previous method (Moore and Miller, 1984; Lowry
et al., 2001). Locomotion consisted of a combination of walking
and swimming movements (Matsunaga et al., 2004). Admin-
istration of 7α-hydroxypregnenolone acutely increases locomo-
tor activity of male newts in the non-breeding period when
endogenous 7α-hydroxypregnenolone synthesis in the brain is
low (Matsunaga et al., 2004). This stimulatory effect occurred
in a dose-dependent manner with a threshold dose ranging
from 0.5 to 1 ng through intracerebroventricular (i.c.v.) injec-
tion, corresponding to the physiological range observed in the
brain of normal newts (Matsunaga et al., 2004). Accordingly, 7α-
hydroxypregnenolone may act as a novel neuronal modulator to
stimulate locomotor activity of male newts, and the increase in
locomotor activity of male newts that occurs during the spring
breeding period may be ascribed to an increase in the production
of 7α-hydroxypregnenolone.

Because the quail displays a robust locomotor activity rhythm
when held under typical light/dark lighting schemes (Wilson,
1972; Wada, 1979), this bird has also served as an appropri-
ate animal model to investigate the biological action of 7α-
and 7β-hydroxypregnenolone. Both neurosteroids were therefore
administered i.c.v. to male quail during night, when activity is
low, to examine whether they affect locomotor activity (Tsutsui
et al., 2008). For behavioral testing, quail were placed individ-
ually in an empty soundproof chamber (Tsutsui et al., 2008).
For 30 min after administration of 7α-hydroxypregnenolone,
locomotor activity was measured by using an implantable
telemetry system (Tsutsui et al., 2008). A stimulatory dose-
dependent effect of 7α-hydroxypregnenolone was also observed
in male quail (Tsutsui et al., 2008). 7β-Hydroxypregnenolone
did not influence locomotor activity (Tsutsui et al., 2008). It

FIGURE 1 | 7α-Hydroxypregnenolone synthesis by cytochrome P4507α in the brain of newts and quail. See the text for details.
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thus appears that 7α-hydroxypregnenolone acts as a neuronal
modulator to stimulate locomotor activity in male quail as in male
newts.

MODE OF ACTION OF 7α-HYDROXYPREGNENOLONE
7α-HYDROXYPREGNENOLONE ACTION THROUGH DOPAMINERGIC
SYSTEM
To understand the mode of action of 7α-hydroxypregnenolone
on locomotion, Matsunaga et al. (2004) measured the concentra-
tions of several monoamines by HPLC-electrochemical detection
(ECD) 5 min after an i.c.v. injection of 7α-hydroxypregnenolone
to non-breeding male newts. 7α-Hydroxypregnenolone signif-
icantly increased the concentration of dopamine in the male
newt brain, particularly in the rostral brain region including
the striatum, which is known to be involved in the regula-
tion of locomotor behavior (Matsunaga et al., 2004). In con-
trast, there were no significant differences in the concentrations
of other monoamines, i.e., norepinephrine, epinephrine, and
5-hydroxytryptamine (Matsunaga et al., 2004).

7α-Hydroxypregnenolone treatment resulted in a concentration-
dependent increase in the release of dopamine from cultured male
newt brain tissue with the threshold concentration ranged between
10−8 and 10−7 M (Matsunaga et al., 2004). Furthermore, the
effect of 7α-hydroxypregnenolone on locomotion was abolished
by administration of haloperidol or sulpiride, two dopamine D2

receptor antagonists, but not by administration of the dopamine
D1 receptor antagonist SCH23390 (Matsunaga et al., 2004).
Accordingly, it is considered that the stimulatory effect of 7α-
hydroxypregnenolone on locomotor activity is mediated through
dopamine D2 receptors. To recapitulate, 7α-hydroxypregnenolone
synthesized actively in the diencephalon and rhombencephalon,by
acting on dopaminergic neurons localized in the posterior tuberal
nucleus (PT) and ventral tegmental area (VTA), may induce
dopamine release from their terminals in the rostral brain region,
notably in the striatum and nucleus accumbens (NA), and con-
sequently increase locomotor activity of newts (Matsunaga et al.,
2004; Figure 2).

In the male quail brain, the expression of cytochrome P4507α

mRNA was localized in the nucleus preopticus medialis (POM),
the nucleus paraventricularis magnocellularis (PVN), the nucleus
ventromedialis hypothalami (VMN), the nucleus dorsolateralis
anterior thalami (DLA), and the nucleus lateralis anterior thal-
ami (LA; Tsutsui et al., 2008). In quail (Tsutsui et al., 2008)
as in newts (Matsunaga et al., 2004), 7α-hydroxypregnenolone
increased the concentration of dopamine in the telencephalic
region that encompasses the striatum (Sanberg, 1983; Sharp et al.,
1987; Bardo et al., 1990). In birds, dopaminergic neurons that
are located in the mesencephalic region, including the VTA and
the substantia nigra (SN), project to the telencephalon notably
the striatum (Mezey and Csillag, 2002; Hara et al., 2007). Inter-
estingly, the telencephalic region is enriched with dopamine D1

and D2 receptors in birds (Ball et al., 1995; Levens et al., 2000).
Accordingly, 7α-hydroxypregnenolone synthesized actively in the
diencephalon, by acting on dopamine neurons localized in the
VTA and SN, may induce dopamine release from their termini in
the striatum, and consequently increase locomotor activity in male
quail as in male newts.

FIGURE 2 | Schematic model depicting the action of

7α-hydroxypregnenolone on the regulation of locomotor activity in

male newt. 7α-Hydroxypregnenolone synthesized actively in the
diencephalon and rhombencephalon, by acting on dopaminergic neurons
localized in the PT and VTA, may induce dopamine release from their
terminals in rostral brain regions, notably in the striatum and nucleus
accumbens (NA), and consequently increase locomotor activity of male
newt. See the text for details.

7α-HYDROXYPREGNENOLONE ACTION THROUGH NON-GENOMIC
MECHANISM
The fact that 7α-hydroxypregnenolone acutely increases locomo-
tor activity in newts and quail suggests that this neurosteroid may
act through a non-genomic rather than a genomic mechanism. It
has been reported that in rats, the progesterone metabolite 3α,5α-
tetrahydroprogesterone (3α,5α-THP; allopregnanolone) exerts its
effects on locomotion (Wieland et al., 1995) and dopamine
release (Bullock et al., 1997; Rougé-Pont et al., 2002) via a non-
genomic pathway. Allopregnanolone may act through modulation
of GABAA receptors, since allopregnanolone is a potent allosteric
modulator of GABAA receptors (Paul and Purdy, 1992; Lambert
et al., 1995) and dopaminergic neurons are regulated by GABAer-
gic transmission (Laviolette and van der Kooy, 2001). Whether the
acute actions of 7α-hydroxypregnenolone on dopamine release
and locomotor activity in newts and quail are mediated through
GABAA receptors remain to be determined.

FUNCTIONAL SIGNIFICANCE OF
7α-HYDROXYPREGNENOLONE
SEX-DEPENDENT 7α-HYDROXYPREGNENOLONE SYNTHESIS AND
ACTION
It is well known that in vertebrates, locomotor activity of males
is higher than that of females (Tsutsui, 1931; Iwata et al., 2000;
Tsutsui et al., 2008). Sexually mature male newts in the breeding
period move around much more than the females, searching sex-
ually mature female partners or courting females prior to sperm
transfer (Tsutsui, 1931; Iwata et al., 2000). In newts, the synthesis
and concentration of 7α-hydroxypregnenolone in the male brain
were higher than in the female brain (Matsunaga et al., 2004;
Haraguchi et al., 2010). Therefore, 7α-hydroxypregnenolone may
specifically affect the activity of male newts.

In quail, the production and concentration of 7α-
hydroxypregnenolone in the male diencephalon were also higher
than in the female diencephalon (Tsutsui et al., 2008). Such a sex-
ual dimorphism only occurs in the diencephalon (Tsutsui et al.,
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2008). In view of the sex difference in 7α-hydroxypregnenolone
synthesis and concentration in the quail diencephalon (Tsutsui
et al., 2008), it is also possible that this neurosteroid actively plays
a role in the control of locomotor activity in males (Tsutsui et al.,
2008).

DIURNAL CHANGES IN 7α-HYDROXYPREGNENOLONE SYNTHESIS AND
ACTION
To investigate the functional significance of 7α-hydroxypregnenol-
one in the regulation of locomotor activity, diurnal changes in both
locomotor activity and diencephalic 7α-hydroxypregnenolone
concentrations were studied in male quail exposed to daily pho-
toperiods of 16/8 h light/dark (LD; lights on at 07:00 a.m., off at
11:00 p.m.). Locomotor activity of males was much higher than
that of females from the time of lights on until noon, but there-
after decreased to female levels (Tsutsui et al., 2008). In males,
these changes in locomotor activity were correlated with concen-
trations of diencephalic 7α-hydroxypregnenolone, the maximum
value occurring at 11:00 a.m. when locomotor activity was high
(Tsutsui et al., 2008). The functional significance of this corre-
lation was supported by the observation that administration of
ketoconazole, an inhibitor of P450s, inhibits locomotor activity at
11:00 a.m. (Tsutsui et al., 2008). Thus, the increase in diencephalic
7α-hydroxypregnenolone may be responsible, at least in part, for
the higher locomotor activity in males. As mentioned above, the
low level of 7α-hydroxypregnenolone synthesis and concentration
in the female diencephalon suggests that this neurosteroid may
not play a role in female locomotor activity.

REGULATORY MECHANISMS OF DIURNAL CHANGES IN
7α-HYDROXYPREGNENOLONE SYNTHESIS AND ACTION
Melatonin is known to be also involved in the regulation of
locomotor activity in birds (Binkley et al., 1971; John et al.,
1978; Cassone and Menaker, 1984; Chabot and Menaker, 1992;
Hau and Gwinner, 1994; Warren and Cassone, 1995; Murakami
et al., 2001), which suggested that melatonin may regulate dien-
cephalic 7α-hydroxypregnenolone synthesis, and thereby influ-
ence locomotor activity. To elucidate the mechanism regulat-
ing diurnal changes in 7α-hydroxypregnenolone synthesis and
7α-hydroxypregnenolone-dependent locomotor activity, Tsutsui
et al. (2008) performed a series of experiments involving mela-
tonin manipulation in male quail. Combination of pinealectomy
(Px) and orbital enucleation (Ex) increased the production and
concentration of 7α-hydroxypregnenolone and the expression of
cytochrome P4507α in the quail diencephalon after 1 week. Con-
versely, melatonin administration to Px/Ex quail decreased the
production and concentration of 7α-hydroxypregnenolone and
the expression of cytochrome P4507α in the diencephalon (Tsut-
sui et al., 2008). Further, the inhibitory effect of melatonin on
7α-hydroxypregnenolone synthesis was abolished by luzindole, a
melatonin receptor antagonist (Tsutsui et al., 2008). Melatonin
derived from the pineal gland and eyes therefore may act as an
inhibitory factor of 7α-hydroxypregnenolone synthesis in the quail
(Figure 3). This notion is supported by the earlier studies indicat-
ing that melatonin treatment decreases locomotor activity in quail
(Murakami et al., 2001; Nakahara et al., 2003) and other birds
(Murakami et al., 2001).

FIGURE 3 | Schematic model depicting the action of melatonin on the

regulation of diurnal changes in 7α-hydroxypregnenolone synthesis

and locomotor activity in quail. Melatonin acts to reduce cytochrome
P4507α expression through melatonin receptor-mediated mechanisms.
Melatonin derived from the pineal gland and eyes regulates
7α-hydroxypregnenolone synthesis in the brain, thus inducing diurnal
locomotor changes. See the text for details.

In quail, as in other vertebrates, the nocturnal secretion of mela-
tonin is night-length dependent (Cockrem and Follett, 1985), and
the onset of melatonin secretion occurs soon after the onset of
darkness (Kumar and Follett, 1993). Therefore, the increase in 7α-
hydroxypregnenolone synthesis in the brain of male quail during
the light period is likely to be a result of the decrease in endogenous
melatonin secretion (Figure 3). Since 7α-hydroxypregnenolone
stimulates locomotor activity, it is proposed that, in male quail, this
neurosteroid plays a crucial role in diurnal changes in locomotor
activity through the action of melatonin.

In birds and other vertebrates in general, locomotor activity
undergoes a circadian rhythm (Saper et al., 2005) controlled by
diurnal rhythm of melatonin secretion (Binkley et al., 1971; John
et al., 1978; Cassone and Menaker, 1984; Chabot and Menaker,
1992; Hau and Gwinner, 1994; Warren and Cassone, 1995). How-
ever, the molecular mechanisms underlying this neurohormonal
regulation of behavior have been poorly understood. The discov-
ery of the role of 7α-hydroxypregnenolone in mediating the action
of melatonin on diurnal locomotor rhythmicity is an important
step in understanding these mechanisms (Tsutsui et al., 2008). A
similar mechanism may underly the regulation of diurnal loco-
motor rhythms in other vertebrates (for reviews, see Tsutsui et al.,
2009a,b, 2010a,b), since 7α-hydroxypregnenolone is also present
in the brains of newts (Matsunaga et al., 2004) and mammals
(Akwa et al., 1992; Doostzadeh and Morfin, 1997; Weill-Engerer
et al., 2003; Yau et al., 2003).

SEASONAL CHANGES IN 7α-HYDROXYPREGNENOLONE SYNTHESIS
AND ACTION
To further understand the functional significance of 7α-hydro-
xypregnenolone, seasonal changes in 7α-hydroxypregnenolone
synthesis and concentration in the brain were also demonstrated
in newts (Matsunaga et al., 2004; Haraguchi et al., 2010). Both the
synthesis and concentration of 7α-hydroxypregnenolone in the
male brain markedly changed during the annual breeding cycle
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and were maximum in the spring breeding period (Matsunaga
et al., 2004; Haraguchi et al., 2009, 2010). Similar seasonal changes
in the expression of cytochrome P4507α occurred in the male brain
(Haraguchi et al., 2010). These findings suggest that the increase
in locomotor activity of male newts in the spring breeding period
can be accounted for an increase in 7α-hydroxypregnenolone syn-
thesis in the brain. In contrast to males, 7α-hydroxypregnenolone
levels in the brain of females did not vary significantly and are
constantly low (Haraguchi et al., 2010). Accordingly, the lower
locomotor activity in females could be ascribed to a lower level of
7α-hydroxypregnenolone in their brain.

REGULATORY MECHANISMS OF SEASONAL CHANGES IN
7α-HYDROXYPREGNENOLONE SYNTHESIS AND ACTION
Plasma prolactin (PRL) levels in the male newt are elevated dur-
ing the breeding period (Matsuda et al., 1990; Mosconi et al.,
1994) and it has been shown that PRL acts directly on the
brain to regulate courtship behavior in the male newt (Toy-
oda et al., 2005). Based on these observations, PRL may act on
the brain to increase 7α-hydroxypregnenolone synthesis, thus
enhancing locomotor activity of male newts during the breed-
ing period. A recent study has provided evidence that PRL is
an important regulator of 7α-hydroxypregnenolone production
(Haraguchi et al., 2010; Figure 4). Hypophysectomy (Hypox)
decreased 7α-hydroxypregnenolone synthesis and concentration
in the brain of sexually mature males after 2 weeks, suggesting that
some pituitary hormone(s) may be involved in the regulation of
7α-hydroxypregnenolone synthesis in the brain (Haraguchi et al.,
2010). Administration of PRL but not gonadotropins (GTHs)
to Hypox male newts caused a dose-dependent increase in 7α-
hydroxypregnenolone synthesis and concentration in the brain
(Haraguchi et al., 2010). Reciprocally, administration of anti-newt
PRL serum dose-dependently decreased 7α-hydroxypregnenolone
biosynthesis (Haraguchi et al., 2010). Accordingly, PRL secreted by

FIGURE 4 | Schematic model depicting the action of PRL on the

regulation of seasonal changes in 7α-hydroxypregnenolone synthesis

and locomotor activity in newts. PRL synthesized in the
adenohypophysis, by acting on Mg neurons in the hypothalamus, induces
the expression of cytochrome P4507α. Cytochrome P4507α and PRL receptor
(PRLR) are colocalized in Mg neurons. Thus, prolactin, an adenohypophyseal
hormone, regulates 7α-hydroxypregnenolone synthesis in the brain, and
also induces seasonal locomotor changes. See the text for details.

the adenohypophysis can be regarded as a major factor regulating
7α-hydroxypregnenolone synthesis (Figure 4). This is a previ-
ously undescribed role of the adenohypophyseal hormone in the
regulation of neurosteroidogenesis in the brain in any vertebrate.

In contrast to male newts, no seasonal changes in
7α-hydroxypregnenolone synthesis and concentration, and
cytochrome P4507α mRNA expression were observed in female
newts (Haraguchi et al., 2010). In newts, plasma PRL levels in
males exhibit marked seasonal changes during the annual breeding
cycle and are maximum in the spring breeding period (Matsuda
et al., 1990; Mosconi et al., 1994). In contrast, plasma PRL levels in
females are constantly low (Matsuda et al., 1990). Such a sex dif-
ference in the seasonal changes in plasma PRL levels may account
for the absence of seasonal changes in 7α-hydroxypregnenolone
synthesis and concentration, and cytochrome P4507α mRNA
expression in the female brain.

To understand the mode of action of PRL in the regulation
of 7α-hydroxypregnenolone synthesis, Haraguchi et al. (2010)
determined the site of cytochrome P4507α expression and colo-
calization of cytochrome P4507α and PRL receptor (PRLR) in
sexually mature male newts. P4507α-positive cells were local-
ized mainly in the anterior preoptic area (POA), magnocellular
preoptic nucleus (Mg), and tegmental area (TA) in the brain
(Haraguchi et al., 2010). However, PRLR-like immunoreactivity
was found only in the Mg (Haraguchi et al., 2010). Thus, the
major, but perhaps not exclusive, targets of PRL action to increase
7α-hydroxypregnenolone synthesis are the P4507α-positive cells in
the Mg (Figure 4). The Mg is sexually dimorphic both in terms
of response to pheromones and neuroanatomical aspect (Govek
and Swann, 2007). In particular, the Mg possesses more neurons
in the male than in the female (Govek et al., 2003). Electrolytic
lesions that include the Mg immediately and permanently elimi-
nate male copulatory behavior in the hamster (Powers et al., 1987).
In newt (Giorgio et al., 1982; Toyoda et al., 1993), the involvement
of PRL in eliciting courtship behavior of males has been reported.
Accordingly, it is possible that PRL may also induce the expres-
sion of locomotor activity and courtship behavior by increasing
7α-hydroxypregnenolone synthesis in the Mg of sexually mature
male newts (Figure 4).

On the other hand, it is known that in mammals, PRL is syn-
thesized not only in the adenohypophysis but also in a subset
of hypothalamic neurons projecting throughout the brain (Fuxe
et al., 1977; De Vito, 1988; Emanuele et al., 1992). Based on the
preliminary studies conducted by the laboratory of Kikuyam (I.
Hasunuma and S. Kikuyama, unpublished observation), PRL was
expressed in the newt brain but the expression level might be
very low (see Haraguchi et al., 2010). Thus, the localization and
function of brain PRL are still unclear in newts. It is considered
that adenohypophyseal PRL is more important than brain PRL
in the expressions of locomotor activity and courtship behavior,
in as much as the increase in plasma PRL levels in breeding male
newts (Matsuda et al., 1990; Mosconi et al., 1994) and the suppres-
sion of locomotor activity and courtship behavior in Hypox male
newts (Toyoda et al., 1993; Haraguchi et al., 2010) have also been
reported.

In mammals, choroid plexus PRLR has been proposed to be
involved in the transport of PRL from blood into the cerebrospinal
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fluid (Walsh et al., 1987). In the choroid plexus of newts, dense
PRLR immunoreactivity and PRLR mRNA signals were observed
in the epithelial cells (Hasunuma et al., 2005). Thus, PRL trans-
ported from the blood into the cerebrospinal fluid via the
choroid plexus receptor is considered to play an important role
in the expression of locomotor activity and courtship behavior,
although a possible contribution of PRL transported to the brain
through retrograde blood flow by the portal system cannot be
excluded as reported in mammals (Oliver et al., 1977; Porter et al.,
1978).

EFFECTS OF STRESS ON 7α-HYDROXYPREGNENOLONE SYNTHESIS
AND ACTION
It is firmly established that locomotor activity of vertebrates
changes after acute stress (Lee et al., 1986; Lowry et al., 2009;
Hubbard et al., 2010). Numerous studies in various vertebrates
document that concentrations of adrenal steroid hormones,
namely cortisol or corticosterone, increase shortly after expo-
sure to stressful conditions (Coddington et al., 2007; Kirby et al.,
2009). There is also evidence that injection of corticosterone
rapidly and dramatically changes male locomotor activity (Moore
and Miller, 1984; Mitra and Sapolsky, 2008; Ricciardella et al.,
2010). However, the molecular mechanisms involved in corti-
costerone regulation of behavioral changes under stress are still
obscure.

Based on these observations, we hypothesized that acute stress
may increase 7α-hydroxypregnenolone synthesis via corticos-
terone action in the newt brain, and that 7α-hydroxypregnenolone
may subsequently increase locomotor activity. To test these
hypotheses, we conducted a series of experiments using the male
newt (S. Haraguchi, T. Koyama, S. I. Hasunuma, S. Okuyama,
S. Kikuyama, J. L. Do-Rego, H. Vaudry, and K. Tsutsui, unpub-
lished observation). A 30-min restraint stress increased 7α-
hydroxypregnenolone synthesis and plasma corticosterone levels
in male newts. Hypox decreased 7α-hydroxypregnenolone syn-
thesis, whereas administration of corticosterone to Hypox newts
caused an increase in 7α-hydroxypregnenolone synthesis. These

results provide new evidence that 7α-hydroxypregnenolone, a key
neurosteroid implicated in the induction of locomotion, mediates
the action of corticosterone to modulate locomotor activity in
newts under stress.

CONCLUSION AND FUTURE DIRECTIONS
In conclusion, 7α-hydroxypregnenolone, a newly discovered
amphibian and avian neurosteroid, acts as an important factor
stimulating locomotor activity. The stimulatory action of 7α-
hydroxypregnenolone is mediated by the dopaminergic system.
7α-Hydroxypregnenolone apparently functions in males but not
in females. Melatonin acts on the neurons expressing cytochrome
P4507α to regulate 7α-hydroxypregnenolone synthesis, thus induc-
ing diurnal locomotor changes. PRL, an adenohypophyseal hor-
mone, also acts on the neurons expressing cytochrome P4507α

to regulate 7α-hydroxypregnenolone synthesis, thus inducing
seasonal locomotor changes. 7α-Hydroxypregnenolone further
mediates the action of corticosterone to modulate locomotor
activity under stress.

The synthesis of 7α-hydroxypregnenolone increases during the
breeding season and decreases during the non-breeding season.
These seasonal changes suggest that 7α-hydroxypregnenolone may
be involved in maintaining energy balance via energy conserva-
tion during lean times. Future study is needed to demonstrate this
hypothesis. In addition, various wild animals migrate just before
reproduction. They become very active at the time of migration.
7α-Hydroxypregnenolone may also drive animals to migrate and
enhance migratory activity. Avian migration is a good model to
demonstrate this hypothesis.
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