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With the increase of real-time stream data, knowledge discovery from stream data becomes more and more important, which
requires an efficient data structure to store transactions and scan sliding windows once to discover frequent itemsets. We present a
new method named Linking Compact Tree (LCTree). We designed an algorithm by using an improved data structure to create
objective tree, which can find frequent itemsets with linear complexity. Secondly, we can merge items in sliding windows by one
scan with Head Linking List data structure. (ird, by implementing data structure of Tail Linking List, we can locate the obsolete
nodes and remove them easily. Finally, LCTree is able to find all exact frequent items in data stream with reduced time and space
complexity by using such a linear data structure. Experiments on datasets with different sizes and types were conducted to
compare the proposed LCTree technique with well-known frequent item mining methods including Cantree, FP-tree, DSTree,
CPSTree, and Gtree. (e results of experiments show presented algorithm has better performance than other methods, and also
confirm that it is a promising solution for detecting frequent item sets in real time applications.

1. Introduction

With the development of information technology, such as
smart mobile phone, sensor networks, fraud detection
systems, and stock market systems, the amount of ubiqui-
tous data is exploding. Different types of data can be clas-
sified into two main categories:

Static data, for which is usually in the form of transac-
tional database, doesn’t change once being stored. Static data
[1–3] can be formalized as following: Let N � i1, i2, i3 · · · in􏼈 􏼉

be a set of literals, called items. A transaction Twith m items is
denoted by x1, x2, · · · , xm􏼈 􏼉, such that T⊆N. (e data-base DB
is a set of all static transactions.

(i) Dynamic data [1], a data stream T (also called
transaction set T) consists of a sequence of m items
drawn from a universe of itemsN. (ese data items in
dynamic transactions changes in time, and often with
a high speed. Main properties of data stream are
continuity and unboundedness.

Data mining methods for determining frequent itemsets
can be classified, based on the type of data they analyzed, as (i)
static data mining [4–6] and (ii) dynamic data mining (also
called real-time or stream data mining) [7–9] (e former is
likely to dispose of transaction dataset in the database, and
often needs to scan database more than once. Although a
disadvantage, algorithms dealing with static data have much
less strict requirements on space and time complexity than
those with dynamic data. (ere are several reasons why
methods of dynamic data mining are far more demanding:

(i) Because data streams continuously produce a large
amount of data, it is theoretically impossible to store
infinite data streams in available computer memory
space. How to handle infinite data streams is a
challenge, which is not emphasized in traditional
static data mining techniques.

(ii) Traditional mining methods for static data sets
usually read the database several times, and mining
results are obtained with non-linear complexity
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algorithms (sometimes polynomial, sometimes even
more complex). (ese approaches aren’t designed
for streaming data where reading is enabled only
once.

(iii) Data streams are changing in real-time, and some
infrequent items at a current time are becoming
frequent later. (ese changes should be detected by
streaming data mining techniques by generating
dynamic models adjusted to the data stream
changes.

Streaming transactions, continuously coming in time
with dynamically changing frequent items, require efficient
mining methods with respect to memory space, and close to
linear time complexity.

(e rest of the paper is organized as follows. Require-
ments and basic principles of the proposed approach are
given in Section 2. A review of other approaches and applied
frequent mining techniques are also given in Section 2.
Details of LCTree implementation using head-linked-list
data structure is given in Section 3. Experimental analysis
with synthetic and real-world data sets is presented in
Section 4, where a comparison of the proposed LCTree
approach with recently developed techniques: Cantree
(Canonical order Tree), FPTree (Frequent Pattern-growth),
DSTree (Data Stream Tree), CPSTree (Compact Pattern
Stream tree), and GTree (Group Tree) is discussed. (e text
is finalized with conclusions in Section 5 and references.

2. Related Work

Data streammining is an important research field because of
its wide spread of applications includingminingmedical and
big data [10–12] trajectory data stream analysis [13], sensor
data mining [14, 15] stock market prediction [16, 17] net-
work traffic data analysis [18, 19].

Streaming data mining includes techniques for frequent
item set detection, where the process is adjusted because of
dynamics in data streams [20–22]. (e main problem with
mining frequent items in data streams is to find a compatible
model for dynamically storing the data and, in parallel,
applying all operations for determining frequent itemsets in
efficient time. Generally speaking, there are three major
stream processing approaches:

(1) Landmark window model [23–25].
(2) Damped window model [26–28] and
(3) Sliding window model [29–32].

(e landmark is defined as a specific timestamp. (e
landmark window approach starts counting frequent
itemsets from a given time point and ends at the current time
[23]. (e importance of each transaction, with corre-
sponding items in window, is the same independently of
arrival time. (e Damped window model is called the time-
fading window model [33, 34]. It assigns a weight value for
each transaction, and the weights are decreasing over time.
(e assumption is that old transactions and corresponding
items are less important and they have a lower weight than

the recent ones. Finally, the sliding window model requires
that the user defines a size of the window [35, 36], and a
fixed-length window slides over time. Set of transactions in
the sliding window is treated as a unit. (is model con-
centrates on the recent transactions in fixed size window to
find frequent itemsets. (e “fixed” window does not mean
that window cannot vary in time, but it means that window
is fixed at least for some time period, and it can be changed at
a later period of time.

After the first algorithm for mining frequent itemsets in a
stream has been presented [23] the real-time data mining
becomes an important research field andmany newmethods
[37–40] were developed for data stream mining. (is review
of a related work is concentrated on several recent algo-
rithms for mining frequent itemsets; it includes FP-tree,
Cantree, DSTree, CPStree, and Cantree-Gtree approaches.

FP-tree is regarded as an extension of the prefixed-tree
technique [41], which is used to mine the completed set of
frequent patterns by pattern fragment growth with the di-
vide-and-conquer method [5] FP-tree was applied in variety
of applications, and it is a basis for many extensions of the
algorithm [42–44]. In the process of construction FP-tree,
items are arranged in some way so that more frequently
occurring items have better chances to share items than less
frequent ones. A partitioning-based-divide-conquer method
is taken by FP-tree, which can reduce the size of conditional
patterns and corresponding conditional FP-tree. In the
worst case, many algorithms that adopt FP-tree require
scanning the entire database twice to update/rebuild the FP-
tree. Updating may cause swapping (via the bubble sort),
splitting, and/or merging of tree nodes. All these modifi-
cations require more time and space, which usually can’t be
performed in real-time.

Cantree [45] is an incremental algorithm for mining
patterns using an expanded sliding window approach. (e
main merit of Cantree is that two ideas from FP-growth and
Apriori were combined in the process of projection tree
construction for mining frequent itemsets. When the da-
tabase is updated, Cantree didn’t scan the whole database
again, and adjust, merge, and/or split tree nodes during
maintenance, such as FP-tree which brings another problem
that Cantree will keep all nodes in memory. (e approach
leads to increased memory utilization, and therefore Cantree
isn’t good at coping with real-time data.

DSTree [46] develops a tree structure to capture and
maintain relevant items found in the data streams. DSTree
maintains a list of frequency counts for each node to record
the frequency of items which is from different sliding
windows. (is data structure to some extent cut down
overheads of nodes inserting or removing and this is the
main difference between FP-tree and Cantree algorithms.
However, there is no need to keep such a frequency count list
for the same node, because the same node in each trans-
action has the same meaning.

Cantree-Gtree [47] takes two steps to find frequent
itemsets: one is to construct the base tree, and the other is
using base tree to produce Gtree. Cantree-Gtree can find all
frequent itemsets by using list data structure. At first
Cantree-Gtree looks for the same node in a table, and then
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travel Cantree to find all sub-trees, and by this means they
formed Gtree. In the process of construction Gtree, the
algorithm needs to maintain a list for each node. (e next
required step for Cantree-Gtree is a construction of a
projection tree, which needs to scan memory again. (e
algorithm maintains a lot of auxiliary lists for Gtree nodes,
which will occupy plenty of extra memory. Lists play an
important role in all the procedure. (e support of no dex is
computed by adding all supports of the same no dex in the
listx. (is computing and searching process is complicated.
In order to find frequent itemsets, Cantree-Gtree [47] de-
leted nodes in the sliding-window according to supports,
and then traversed the Gtree to unite the itemsets.(e union
of all itemsets will define final frequent itemset. In this
process, nodes in the sliding-window are modified, which
affects the procedure of deleting old nodes. (e mining
phase is time-inefficient because of the structure of the
Gtree.

DSTree’s method is more efficient than Cantree-Gtree in
part, because Cantree-Gtree needs to maintain many lists to
shift frequency of each node, just like a queue. It increases
memory consumption, which is incompatible with the main
expectations of data stream analysis. Data stream mining
requires minimizing the usage of time and space memory as
much as possible.

Cantree needs to scan database only once because all
nodes are sorted by canonical order. (is property also
makes transactions to be easily added to the CanTree
without any extensive searches for merging paths, which is
different from FP-Tree and CATStree (each of them needs to
scan database twice, and requires to split and merge node in
the construction process).

As a kind of incremental mining algorithm, Cantree
grows very fast with the coming data stream. Cantree-Gtree
[47] improved Cantree. First, in Cantree-Gtree, data
structure of the node includes two fields which are value and
support, and excludes the node number, which is redundant
for the Cantree construction and saves capacity; Secondly, in
Cantree-Gtree, iTable and lTable are maintained, and nodes
in iTable is used to form many lists which sever construction
Gtree and find frequent itemsets, while lTable is used to
remove the oldest transactions by traversing from top to
bottom. In order to improve efficiency of algorithm, they
represent list of candidate Gnodes (GTree Node) with two-
dimensional list during the process of construction Gtree.
(is is themethod of trading space for time. Because of rapid
growth, Cantree suits more to mine static data. Both of them
need more time and capacity.

To reduce the time complexity and space complexity
effectively, we eliminate iTable and lTable structure, which is
useless in LCTree. Instead, we present two linear linking lists,
one is head list and the other is tail list.(e two lists replace a
large number of lists that are generated by iTable and it is
necessary for limited memory capacity.

LCTree presented in this study needs to neither create a list
nor delete the node from tree. Rather we reduce the frequent
count of node by maintaining linking. Because some nodes are
the same in transactions, we only amend the frequency count
instead of deleting the node and shifting the frequency lists.

Only sometimes we may need to add new one and delete the
oldest when the coming nodes do not exist in the LCTree.
Because our goal is to search for frequent itemsets, all items in
the slidingwindowmust exist within the same nodes whichwill
save inserting and deleting time consumption.(eworst case is
each new batch needs to be added and each the old batch needs
to be deleted(?). If this case is true, that all batches have no
frequent itemsets which makes no sense.

3. LCTree: Data Structure, Construction
and Mining

Our work is based on Cantree-Gtree approach, and com-
paring with linking cantree (see Figure 1) implementation in
Leung’s study [45]and Kim’s study [47] we developed a
method with several improvements comparing cantree and
Gtree approaches. Like Cantree and Cantree-Gtree, the
improved algorithm in this paper tries to find frequent
itemset in a sliding window.(e data streams are regarded as
a serial of transaction, where a certain amount of transac-
tions are defined in a sliding window.

3.1.Main Characteristics of LCTree. LCTree is different from
previously used tree structures in frequent itemsets mining:
FP-tree [5] Cantree [45, 48], CPSTree (Compact Pattern
Stream tree) [49], and Cantree-Gtree(Gtree) [47]. LCTree
adopts linking to construct tree and merge the nodes, and
main characteristics of LCTree are summed up as following:

(i) Efficient head linking list In LCTree, a head linking
list data structure is proposed. Unlike previous
approaches [5, 47, 49], the proposed algorithm finds
the inserting place easily with the linking table data
structure, which is convenient to mine frequent
itemsets. In order to find inserting place, scanning
whole trees is necessary in algorithms of Cantree
[45], CPSTree [49] and Cantree-Gtree [47], which is
inefficient. (ough FP-tree [5] also has linking,
which seems similar to LCTree, the linking in FP-
tree is only used to mine frequent itemsets, instead
of coping with nodes manipulation such as merging,
searching and so on. For example (see Figure 2),
no deC: n is needed to find appropriate place to
insert, we can directly find the hea dC according to
head linking list, not searching from the root.

(ii) Minority transactions scan (e former [5] algo-
rithms [45, 47, 49] need scan the path from the root
to leaves to store all itemsets transactions in ap-
propriate places. LCTree starts from a given node to
search for appropriate place to store the transac-
tions, rather than from top or from bottom. LCTree
only needs to visit a small portion of nodes, which
decreases LCTree time complexity. For example, if
we find a place to insertno de x in Figure 2, we don’t
need to scan all data from no de b:n to no de c: n,
and there will be a lot of nodes between no de b: n
and no de c: n. We just scan nodes in the head
linking list.
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(iii) Low cost of construction Cantree and CPStree need
to traverse the tree from bottom to top or vice versa,
when they build projection-tree or conditional-tree
with FP-growth algorithm. Whatever way is taken,
it is inevitable for construction projection-tree to
require high cost to visit each node. Even in Can-
tree-Gtree [5, 47], where he cost is less than the
other algorithm, it still traverses nodes from top to
bottom. We use searching algorithm in LCTree to
merge nodes, which will reduce the cost of time and
space on the basis of head linking table, instead of by
using traverse way. From Figure 2, we know the
same node can be merged into one node, which
reduces time and complexity.

(iv) Efficient removing old transactions in Cantree-
Gtree, a data structure named ltable is maintained.
When they remove an old transaction fromCantree,
they need to look for nodes information in ltable.
After removing the oldest transactions, the Cantree-
Gtree will be adjusted from the last node to its root
to keep in order. Removing old nodes in LCTree will
become easier. In LCTree, we create a table named
tail linking, which can help find old transactions
easily. (ere is a need to sort and merge the path
node after removing the oldest transactions. For
example, if we remove node d: n in Figure 2, we
only browse tail link list to find node d: k and adjust
the value of node no de d: k to (k− 1), which is
convenient. We don’t need to adjust the whole sub-
tree nodes, which shows that algorithm in this paper
is efficient.

(v) Linear linking data structure Cantree-Gtree [47]
constructs the projection-tree by using a two-di-
mensional list (a list of data items, and a list of
candidate gNodes for each item), which is similar to
combining shell sort with binary search algorithm.
(e authors reported that such a method can de-
crease the cost of the insertion operation, but will
consume more memory space. It is a thought of
sacrificing memory for speed. For data stream, the
algorithm tries to decrease time and capacity con-
sumption, that is, newly generated transactions
should be processed in less than a fixed duration and
limited capacity to produce the up-to-date analysis
result of a data stream. (e presented LCTree can
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satisfy these requirements. We maintain a linear
changeable linking list, by which inserting nodes
will consume less cost of space and time. From
Figure 2, we know that if we insert no de d: k into
tree, we only need to find node d: k and increase the
value by 1. If the no de d: k is not in the head link
list, we just insert node d: k into the tree in ap-
propriate place. (e whole process of searching for
and inserting node d: k is linear.

3.2. Data Structure of LCTree. In order to describe the
LCTree, some formal definitions should be introduced at
first.

To cope with frequent items in data stream, it is nec-
essary to introduce basic formalisms about frequent item-
sets. Let T � x1, x2, · · · , xm􏼈 􏼉 be a set of m items, and
DB � t1, t2, · · · tn􏼈 􏼉is a transaction database. Let ‖DB‖ be the
number of transactions in database, whileTxis a transaction
including itemset x. User defines a threshold θ(0≤ θ≤ 1) as a
support for itemset (x), and it represents a quotient between
the number of transactions contain itemset x defined as num
(Tx) and the total number of transactions in the database,
namelySup(x) � num(Tx)/ ‖DB‖. An itemset x is called
frequent if Sup(x)≥ θ. Based on these introductory concepts,
we may introduce definition of LCTree.

Definition 1. Headlinklist is defined as a linking list of nodes
which are from the sliding window. All nodes in headlinklist
are different from each other. (ey are linked by hlink
pointer (see Figure 3). Nodes that linked by nlink pointer
have the same data. If data in headlinklist is x, and then we
name it as headlinkedlistx.

Definition 2. Taillinklist is also defined as a linking list of
nodes which are from last node of each transaction in the
sliding window. All last nodes of transactions are linked by
nlink pointer, and each last node is linked by tlink pointer.

Definition 3. LCTreenodex is a tree node that has data x. in a
tree, there will be the same item, and so its name is the same.
But there is no effect on finding frequent itemsets, because all
of the same nodes are linked by pointer.

Definition 4. LCTree is a tree with headlinklist and tail-
linklist, where headlinklist has the same node of all trans-
actions in sliding window and taillinklist has all the last
nodes in each transaction. All items in headlinklist are linked
by hlink pointer.

(e data structure of head list, tree node and tail list
are defined as Figure 3. (e reason that we use linking lists
instead of lists is to avoid sorting the item before being put

into headlinklist. Headlinklist has been defined three
parts, hlink, data and nlink. Hlink points to the next head
node, and nlink points to the next node which has the
same value to head node in the LCTree. Data in head-
linklist stores item value. (ere is no need to order the
items value before entering the headlinklist. Figure 3
shows data structure of head list, node and tail list.
Figure 3(a) shows the structure of headlinkedlist, while
Figure 3(b) is the LCTree node structure, and taillinkedlist
is described in Figure 3(c).

(e five components included in LCTreenode are plink,
data, support, clink, and nlink. Pointer plink is used to find
the parent and data is the item(?). Support is a recorded
number of the item used to find frequent itemsets. Poniter
clink and nlink in the LCTree mode point to child and next
nodes with the same item to headlinklist respectively. (e
meaning of nlink in LCTreenode is the same to nlink in
headlinklist. LCTreenode data structure is shown in
Figure 3(b). Structure nlink in taillinkedlist has the same
function as nlink in headlinklist and LCTreenode. Tlink in
taillinklist points to all tail nodes in sliding windows. It is a
fact that tailnodes is not just leaf nodes of LCTree. It could be
ordinal tree nodes. With the help of tlink, traversing from
leaf to root can determine one transaction. Time complexity
of this operation is linear with the length of transaction.
Tlink plays a significant role to remove the oldest trans-
actions in sliding windows, which will be illustrated in later
section.

3.3. LCTree Construction Algorithm. In this part, we will
introduce the construction process of LCTree. In Cantree-
Gtree algorithm, Gtree is a projection-tree, which is used to
find frequent itemsets and remove the oldest transactions.
Gtree is the basis of all other operations. Gtree is created
from Cantree, which means that Cantree is constructed first
and then Gtree is built. From the construction process of
Gtree, we know the transactions in the window need to be
scanned twice: the first is to build Cantree; the second is to
build Gtree, which will consume extra time. Unlike the
Cantree-Gtree, constructing LCTree do not need to scan
transactions twice. LCTree doesn’t need to build base tree
nor projection tree, and so there is no need for extra steps to
create LCTree, which is one of differences between LCTree
and other main data stream algorithms such as
[5, 45, 47, 49]. Just for this reason, LCTree can save time.

LCTree is initialized as an empty root node. (e process
of construction is to insert items into LCTree. In Algorithm
1, there are two main steps to construct LCTree. In general,
Algorithm 1 includes two steps: one is searching for node;
the other is to cope with node. If one node is not in
headlinklist, the algorithm inserts the node into headlinklist

nlinkhlink data

(a)

plink supportdata nlinkclink

(b)

data length nlinktlink

(c)

Figure 3: Data structure of head list, node and tail list (a) headlinkedlist (b) LCTree node (c) taillinkedlist.
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and link to taillinklist and headlinklist, which is completed
by function insertheadlinklistH() (see Algorithm 2) and
insertheadlinklistN() (see Algorithm 3) and inserttai-
linkedlist() (see Algorithm 3). Corresponding parameters
need to be adjusted. On the contrary, instead of inserting (?),
algorithms need to look for the longest branch in LCTree.
Headlinklist can help accelerate this process which is real-
ized by using function searchmaxprenode() (see Algorithm
5). Algorithm 6 is to match two branches, and it is called by
Algorithm 5. For example, when transaction T8 is inserted
into LCTree, because there are two branches including
nodeo, namely {o, t} and {o, p, q}. Function searchmax-
prenode finds branch {o, p, q} is the maximal one (see
Figure 4). (e rest to do is the same as above operations,
such as linking, inserting and so on. So construction LCTree
is simpler than Cantree and Cantree-Gtree.

In order to explain the contents mentioned above, we
will give some illustrative examples here. Table 1 is an ex-
ample of the sliding windows. In the table, it shows eight
transactions, and each transaction includes different num-
bers of items. (ere are one sliding window in Table 1. All
items in the same transaction are different. All items in the
example are sorted in alphabetical order.

we take partial nodes from Table 1 as an example to
construct Cantree with headlinklist and taillinklist (see
Figure 1), so as to show that even if linking data structures in
LCTree are applied in Cantree construction, it has no op-
timal structure to save data point. Items are from transac-
tions T1 ∼ T8 in sliding window, and they are connected by
hlink pointer. In hea dl inke dl istd, all of the same node b is
connected by nlink pointer, so do hea dl inke dl iste. Nlinks
in taillinklist point all last nodes. It’s worthwhile to note that
the last nodes in taillinklist maybe have the same item. We
insert it into taillinklist in the order they appear in the
transactions. From Figure 1, we know that projection tree
grows very fast even if the linking is used, just like FP-tree.
We should use new methods to decrease the scale of the
projection tree.

Compared to other trees, such as FP-tree, Cantree,
Cantree-Gtree, and tire tree, LCTree is different because of
the following reasons:

First, LCTree has a different way of storing node and its
child. As we know, Cantree-Gtree is formed by maintaining
a large number of lists. Each node has one list to put its one
child. (at is to say, if one node has ten children, algorithm
must form ten lists for the node to store its children. If the
transaction is too large, memory consumption is incredible.
In LCTree, only two linking lists (headlinklist and tail-
linklist) are needed and all transactions are stored in them. A
remarkable fact is that data stored in headlinklist are dif-
ferent, which can save memory capacity. Pointer nlinking in
LCTree helps to search for tree node and frequent itemset
(which will be illustrate in the next part), which is the main
improvement of LCTree over Cantree-Gtree.

Secondly, LCTree is used to find frequent itemsets in
real-time data stream while FP-tree is wide used in static
database. (e main difference is in construction algorithm.
Because there is no pattern match process during the process
of construction, FP-growthmethodmakes FP-tree grow fast,
which will run out of memory capacity if there is a big
database. While with the help of headlinklist, LCTree uses a
sub-procedure to find the maximal branches, which can
control the tree growth effectively. Many of the same nodes
share the same branches, which is also easier to form fre-
quent itemsets. For example, Figure 1 grows faster than
Figure 5 with the same transactions. According to the FT-
tree algorithm, few transactions can be merged in Figure 1,
just T4and T7, which is against finding frequent itemsets.

(irdly, some LCTree’s children share the same partial
branch, not whole branch as in the case of trie tree. Trie tree
has a requirement that all children of one node must have
the same prefixed nodes. Unlike tire tree, node in transaction
matching with other node in LCTree is from the beginning of
any LCTree node, not from the root. For example, in Fig-
ure 5, node o and node m have different prefix branches, and
the prefix branch of node o is branch b, c, g, k􏼈 􏼉 while prefix
branch of node m is branch g, k􏼈 􏼉 or branch c, g, k􏼈 􏼉.

Our work is a true oriented to dynamic data, while FP-
tree is efficient algorithm for static data. Our work is also
different from other algorithms. We don’t need to keep a list
of counts for each node to insert and remove tree nodes;
nevertheless, we just use two linking tables to implement this
requirement, which is different from DSTree. We also don’t
maintain a lot of list to construct Gtree to mine frequent
itemsets after constructing projection tree. In our algorithm,
only one tree is needed to complete inserting and removing
nodes and mining frequent itemsets, which is different from
Cantree-Gtree.

3.4. Mining Frequent Itemsets. According to the definitions
of frequent itemset, support is greater than or equal to the
given threshold. We set the threshold to 3. Figure 5 is the
LCTree from transaction T1 ∼ T8 in Table 1. Transactions
T1 ∼ T4 and T5 ∼ T8 belong to window SD1. We are
searching for frequent itemsets from SD1 now.

To find all frequent itemsets, the overall mining process
implementation is divided three steps. (1) algorithm needs to
find the node from headlinklist; (2) the related node is
searched in LCTree by using pointer nlink in headlinklist; (3)
all frequent sub_LCTree is found. In this step, the support of

o

k:3

o:1

t:1

m:3

o:3

p:3

q:1

Figure 4: Search for the max branches for LCtree.
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Input: item in transactions
Output: LCTree
int∗h� null; int∗hh� null; int∗t� null int∗hc�null;
for each item in each transaction t
{sorting transaction t to To in alphabetical order;}

for (get first node x in transaction To)
{h� searchheadlinklist(x)

if (h� null)
{hh� createheadnode(x); //create node for headlinklist
insertheadlinklistH(h, hh); //insert into headlinklist
hc� creatLCTreenode(x);
root� hc; //let hc be child of root
support(x)� 1;
insertheadlinklistN(h, hc);
if(x is the last node in To)

{inserttaillinklist(q, x);} //insert x into taillinklist
else
{for(To is not null)
{y � getnextnode(T0); hc� createLCTreenode(y); insert y as child of x;
support(y)�1;
insertheadlinklistN(h, hc);
}

}
}
else
{q� searchmaxprenode(h, x, To); //look for maximal pre-branch
support(x)� support(x) + 1;
for(To is not null)
{y � getnextnode(To); // get the next item from To

hc� createLCTreenode(y); // create LCTreenode for y

if (y �� q→ child)
{support(y)� support(y) + 1;}

else
{insert y as a child of q; support(y)� 1;
insertheadlinklistN(h, hc); // linking the LCTreenode(y) to headlinklist
q� q→ child; //move q to his child and prepare for the next comparasion
}

if (y is the last item in To )
{inserttaillinklist(q, y); } //linking the LCTreenode(y) to the taillinklist

}
}

}

ALGORITHM 1: Construction LCTree algorithm.

insertheadlinkH (p, r)
{while(p→ hlink→ data is equal or less than r→ data)
{p points to the next node; }

If(p→ hlink→ hlink is not null)
{linking p→ hlink to r→ hlink;
linking r to p→ hlink;

}
Else
{linking r to p→ hlink→ hlink;
r→ hlink is null;

}
}

ALGORITHM 2: Adding headnode into headlinklist algorithm.
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related node has to be summed and then compared with the
threshold. All nodes and their branches will be put into
frequent itemsets, if their support is equal or greater than the
threshold. For example, we get the first head node a from
headlinklist. According to nlink in headlikedlist, we find
node a in LCTree. All support of nodes a in LCTree should
be summed by using nlink. In this place, nlink of node a is
empty, that means there is no node a in LCTree. All supports
of node a are less than threshold, and in this case node a and
all his children will not be taken into account. Node b and c is

similar with node a. Support of node f is greater than the
threshold. Node f has one branch, and so we find all his
children whose supports are greater than the threshold (see
Table 2). Node g has four children whose supports are
greater than the threshold.(e frequency of node g is shown
in Table 2. Node k has two branches which is different from
the former nodes. We add all supports of node kwhose
support is six, and so it is frequent item. We will take into
account all its branches. We find both branch k, p, r􏼈 􏼉 and
k, s, t{ } does not meet the threshold requirement, hence they

InsertheadlinklistN(s, p)
{while(p→ data is not null)
{p goes to the next node}
Linking s to p→ nlink;
s→ nlink is null;
s→ support is equal to 1;

}

ALGORITHM 3: Linking LCTreenode to headlinklist algorithm.

Inserttaillinklist (t, x)
{t� taillinklist;

tt� createtailnode (x);
while(q→ nlink is not null)

{q goes to the next node}
Linking tt to t;
t→ nlink is null;

}

ALGORITHM 4: Linking LCTreenode to taillinklist algorithm.

Searchmaxprenode (p,x, T0)
{p� p→ nlink;
q� p→ child;
r� p→ nlink;
s� r→ child;
while(r→ nlink !� null)
{m�Comp(q,T0);

n�Comp(s,T0);
if(m≥n)
{t� p; //t points the longest branch
s� r→ nlink;
}

else
{t� r;
p� p→ nlink→ nlink;
q� p→ child;
}

}
return(t)

}

ALGORITHM 5: Search for the maximal branch of x.
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Comp(q,T0)
{for(T0 is not null)
{y � getnextnode(T0)
if(y �� anychild(q)) //if y is equal to any child of q

{q� q→ child; //move to the next child to prepare for comparing
count++; // number of the same items
}

else
{break;}

}
return(count);

}

ALGORITHM 6: Compare two branches to find the longer branch.

Table 1: Items in sliding window.

Sliding windows Transactions Items

SDW1

T1 {k, t, g, c, b, o}
T2 {m, p, o, k, g}
T3 {k, m, g, c}
T4 {k, f, a, s}
T5 {p, k, r, f}
T6 {o, m, p}
T7 {s, t, f, k}
T8 {p, o, q}

a

b

c

f

g

k

m

o

p

q

s
r

t

t p m s r p t q null

q:1

p:3

t:1 o:3

o:1 m:3

k:3 p:1 s:3

k:3g:3

c:2 f:3

a:1

root

b:1

r:1 t:1

Figure 5: LcTree with headlinklist and taillinkedlist, formed with transcations T1∼T8.

Table 2: Some nodes meet threshold and finding all frequent items.

Nodelist

Sub_LCTree

Itemsets {f}{fk} {g}{gk}{gm}{go}{gp} {k}{km}{ko}{kp} {m}{mo}
{mp} {o}{op} {p}
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will not be considered. Another branch k, m, o, p􏼈 􏼉 meet the
threshold requirement, so we find frequent items of node k

(see Table 2). (e rest nodes such as nodes m, o, p have the
same operation to the former. Support of nodes q, r, s, t is
less than threshold, and so they are not listed in Table 2. (is
method not only gets all frequent nodes but also is easier
than the algorithm in Cantree-Gtree [47].

3.5. How to Delete the Oldest Transactions. In the window
model (see Table 1), when the window is full, the oldest
transaction will be removed so as to let new transaction
come in. LCTree can easily find and delete the oldest
transactions with help of taillinklist structure. Nodes in
taillinklist were inserted in arrival chronological order.
According to taillinklist, we know the first node is the oldest
one, and the last is the newest. In data structure taillinklist,
each tail node records the length of this branch. When the
oldest transaction needs to be deleted, the first step is to find
the head pointer of taillinklist, and then traverse the
transactions along tlink pointer. In this process, the support
of each node is reduced by 1, so does the length of the
branch. Algorithm 7 shows the implementation steps. For
example, in Figure 5 the first node in taillinklist is no det.
According to pointer tlink, no det can be searched in LCTree.

Support of no det is reduced by 1. Because support of
no detis zero, no det should be removed from LCTree. Rel-
ative pointers need to be adjusted. At the same time, length in
taillinklist also reduces by 1. Length is not zero, each node
from no det to no deb will be coped with at the same operation
along plink. By this way, the oldest transaction is removed.
Figure 6 shows results after removing transaction, Figure 6
shows results after removing transaction.

3.6. Time and Space Complexity for LCTree

3.6.1. Time Complexity. Time and space complexity for
LCTree include two phases, namely construction LCTree and

mining frequent itemsets. We analyze time complexity by
proofing (eorem 1 and (eorem 2.

Theorem 1. Let n be the number of items, and time com-
plexity of construction LCTree is O(n) (proof will be shown in
part of time complexity)

Proof of <eorem 1. Algorithm 1 is to construct LCTree. We
know the number of items in each transaction is far less than
the number of transaction. So the number of item in each
transaction can be regarded as a constant λ, namely λ≪n.
Searching for maximal pre-no dex is to find the same node in
LCTree. (e maximal times of comparison is no more than
the number of items in one transaction, which means
searching scope is small. So we can set the time of com-
parison as a constant δ. In Algortihm 2, no deyis from some
transaction. (e number of node access is no more than the
number of items in one transaction. (erefore, access rate is
set as constant θ. (e whole time complexity can be
expressed by formula (1)

O(Ltree) � O(λ) + O(max (λ, δ, θ)∙ n). (1)

In formula (1), because λ, δ, θ is far less than
n(λ≪ n, δ≪ n, θ≪n), the time complexity is regarded as
O(n). □

Theorem 2. Let n be the number of items, and time com-
plexity of finding frequent itemsets is O(n) (proof will be
shown in part of time complexity)

Proof of <eorem 2. In Algorithm 8, there are two while
loops. By analyzing the algorithms, we know these two loops
just scan the data stream once.(e first loop is to find no dex
and the next loop is to scan all the same no dex in LCTree.
When the first loop is completed, the data stream is scanned
only once. So the two loops are linear. Assume the number of
node in headlinklist is a, and the number of the same node is
b. According Algorithm 8, the maximal length is (a + b), and

FindFreqItemsets
Input: LCTree
Output: ParFreqItemset
While (headlinklist is not null)
{getno dex from headlinklist;
While (no dex→ nlink !� null) //finding all freqent no dex and all his children in LCTree
Sum all support of no dex //summing the same node’s support
{if (no dex→ support≥ threshold)
If (no dex→ chil d→ support≥ threshold)

{put branch of no dex into ParFreqItemsets;
put no dex into FreqItemsets;
}

Else
{put no dex into FreqItemsets;}

put no dex into nodelist;
}

}

ALGORITHM 7: Finding all frequent itemsets.
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so the cost of scan is proportional to O(a + b). To sum-
marize, time complexity of finding partial frequent itemset is
O(n). In Algorithm 7, there is only one loop. So time
complexity is O(n). Time complexity of finding frequent
timesheets is shown by formula (2).

O(FreqItemsets) � O(n) + O(n). (2)

From formula (2), we know time complexity of finding
frequent itemsets is O(n). □

3.6.2. Space Complexity. With the help of headlinklist,
many nodes that are the same can be merged. Each branch
has maximal nodes that are the same. LCTree is growing
much slower than Gtree [47]and other algorithms [5, 45,
46, 49], and so the number of nodes in memory produced
by LCTree is far less than by theirs. For example, in
Figure 1, branches cgko􏼈 􏼉 and cgkm􏼈 􏼉 have the same
branch cgk􏼈 􏼉, however, other algorithms can’t merge the
same parts, and so tree grows fast. Of course, a large
number of memory spaces are consumed. In contrast,
LCTree is constructed using only two lists in Algorithm 1.
Algorithm 8 removes branches and nodes whose support
is less than threshold during the process of scanning.
(ese two algorithms have a significant reduction in
memory consumption because nodes were removed be-
fore forming extra list, which means there is no necessary
to create extra lists to store a large number nodes.
Whereas Gtree needs to form extra list for each nodes and
then removes some lists by pruning. (us space com-
plexity will be cut down sharply. (is space complexity
difference will be seen in the Experiments and Analysis
section below.

4. Experiments and Analysis

To evaluate the proposed LCTree method, we have conducted
experiments on synthetic dataset T10I4D100K and
T40I10D100K [50], and real dataset mushrooms [51], connect-
four (“connect-four,” n.d.) and chess [52]. Synthetic datasets
are obtained from the IBM Quest Data generator. (e other
three datasets are fromUCI. All experiments are conducted on
a personal computer with Intel i7 CPU, 8G RAM, Windows 7
64bit OS, and C++ programming environment.

4.1. Datasets and Parameters Setting. Information about the
five dataset is listed in Table 3. Mushroom and chess datasets
are smaller database, containing 8,124 and 3,196 transac-
tions, respectively, while connect four is a very large and
dense database and produces many long and frequent
itemsets, even for high support values. T10I4D100K and
T40I10D100K are synthetic dataset, whose transactions are
the same but lengths of transactions are different. (e av-
erage length of transactions (ALT) in T40I10D100K is much
longer than T10I4D100K. (e parameter (ALT) can de-
termine which algorithm has better performance when they
deal with large and complex datasets. (e character “T,”“I”
and “D” in the name of two datasets represent the average
transaction size, average maximal potentially frequent pat-
terns, and the number of transactions, respectively.

(e last column in Table 3 is the window and trans-
action size. (e expression “m∗ n” in window size means
the number of batches (m) multiples the number of
transactions (n) per windows. We set the different sizes
according to the character of dataset. (e column of av-
erage distinct items means that each transaction includes
the number of distinct items. (e larger the value is, the
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Figure 6: LCTree after removing transactions T1.
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more distinct items are per transaction, and the lower the
value of “n.” On the contrary, if the value of average distinct
items is low, the “n” value should be high. (e value of “m”
is proportion to the number of transactions. For example, if
value of average distinct items in dataset mushrooms and
chess are high, then the size of each transaction is low.
Additionally, because the number of transaction in two
datasets are small, the number of windows is also low.
When we look at the other three datasets, the size of
transaction should be high because of low value of average
distinct items. If the value of “n”is set as low, perhaps it does
not include distinct items in transactions(?). It is insigni-
ficance for data mining and cannot test the performance of
all algorithms(?). We also implemented methods in current
papers [45, 46, 49] and obtained parameters of size.
However, our method is different from theirs, especialy for
computing average distinct items. We set the size of the
window as shown in Table 3.

4.2. ExperimentalResults. (e proposed algorithm LCTree is
compared with Cantree, DSTree, CPSTree, Cantree-Gtree,
and FP-tree. (ese algorithms are relevant and have good

performance for data mining including streaming data
mining. (e criteria for performance evaluation are as
follows: runtime, memory usage on changing support set-
tings, and scalability. Such criteria are the standards widely
used in sliding window-based approaches for streaming data
mining.

4.2.1. Runtime Comparison. We tested all algorithm using
two synthetic datasets, and Figure 7 presents different
characteristics of a runtime for six tested algorithms. (e
results show a big disparity by running on two datasets.
Each algorithm has a far longer runtime on T40I10D100K
than on T10I4D100K. Although the size of two datasets is
the same, the dataset structures are different. (e average
length of T40I10D100K is greater than T40I10D100K.
Much more time is required to construct a projection tree
for every algorithm on T40I10D100K with the same
window size. (e gaps between algorithms are also more
apparent on T40I10D100K, which shows that six algo-
rithms have their own special features, when they were
tested with the complicated dataset. As shown in
Figure 7(b), except for LCTree, the other algorithms

Input: LCTree
Output: LCTree
RemoveTran
{int∗p� taillinklist; ∗q� p→ child; ∗r� null
while (length≥0)
{reducing q→ support by 1;
If(q→ support is zero)
{adjusting q→ nlink; //headlink points to nlink

adjusting q→ clink //children of q should be adjusted
r� q
q points to parent;
removing r→ data from LCTree //deleting the node from LCTree;

}
else
{q points to parent; } //coping with the next node

Reducing the length by 1;
}
q points to p→ nlink; //moving to the next tail node
deleting p→ data from list; //deleting the first node from taillinklist;
p points to q;

}

ALGORITHM 8: Removing the oldest transaction from LCTree.

Table 3: Parameters setting and statistical information of five datasets.

Dataset name
Relevant parameters

Transactions Distinct
items

Maximal
length

Minimal
length

Average
length

Average distinct items
(∗100%)

Windows size
(m∗ n)

Mushrooms 8124 119 23 23 23 1.46 2∗ 1K
Connect four 67557 129 42 42 42 0.19 5∗ 5K
Chess 3196 75 42 42 42 2.34 1∗ 1K

T10I4D100K 100000 872 29 1 10 0.87 5∗ 5K
T40I10D100K 100000 940 77 5 39 0.94 5∗ 5K
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showed obvious deficiency, especially for Cantree. Cantree
needs more time not only in constructing projection tree
but also in maintenance cost. FP-tree [5], DSTree [46],
CPStree [49], and Gtree [47]are based on Cantree and use
FP-growth [53] method to construct projection tree. So the
runtime of the four algorithms is closed, as presented in
Figure 7. However, there are some gaps between them. FP-
tree need to scan database twice to find frequent itemsets,
and so it will require more time, which can be seen in
Figure 7. (e structure of DSTree is slightly different from
FP-tree. DSTree maintains a list of support and captures
fluent data in the sliding window by scanning dataset once.
In fact, the base tree of DSTree is Cantree. DSTree uses the
FP-growth to mine frequent itemsets. So the runtime of
these two algorithms is similar. We can find this from
Figure 7. CPSTree takes FP-tree as projection tree and finds
frequent itemsets easily without scanning twice. CPSTree
has better performance which is shown in Figure 7. Gtree
also employs the Cantree as base tree and construct Gtree as
projection tree. On the process of building projection tree,
Gtree deletes infrequent itemsets by combining several sub-
trees. Runtime of Gtree is less than CPSTree. Figure 7 also
clearly manifests that LCTree outperforms the other trees
according to runtime with high and low support values.
Because the process of constructing LCTree is different
from any other method, LCTree does not need base tree and
therefore combines two steps into one. Hence all operations
can be carried out in one tree, which can save much time.
(e LCTree uses linking to find the adequate ranches for
itemsets, which is essentially different from linking in FP-
tree [5] that has been elaborated above. (e old items in
LCTree are easy to find and they are removed by using tail
linking structure. (is also can reduce the time con-
sumption. All these analyses are the reason why LCTree has
the best performance among all algorithms.

(e previous results on synthetic dataset show that
LCTree has the lowest runtime. Someone may wonder what
performance on real datasets for all algorithms. So we also
need to compare all algorithms on real datasets.

We tested all algorithms on two small datasets mush-
rooms and chess. (e data size of two datasets is similar, and
therefore the comparison of results is reasonable. (e
runtime in all figures includes time for a tree construction
and frequent itemsets mining. Y-axis of Figures 8(a) and 8(b)
shows the changing runtime of all algorithms with different
support values. Experimental results of all algorithms
present that runtime decreased with support rising. (ere is
no significant difference except for Cantree and LCTree.
Runtime of Cantree is greater than other algorithms. (ere
are some reasons for these results. Cantree is a tree structure
designed for incremental mining and so Cantree needs more
time to construct a projection tree. (e gap between LCTree
and others is not obvious; however, from Figures 8(a) and
8(b) we notice that the runtime of LCTree is less than other
algorithms, that is to say, on small real dataset; LCTree is
superior to other algorithms. Like mushrooms and chess,
connect four is also real dataset, but it includes far more data
than the other two. From Figure 8(c), we see that gaps in
performance between algorithms are increased when the size
of the dataset becomes large. (e performance of each al-
gorithm thus is more distinguishable. Just like on the small
dataset, runtime of Cantree is the longest among all algo-
rithms, and the gap between Cantree and other algorithms is
increased. (e process of construction projection tree is
extremely time-consuming for Cantree, when facing large
data. For CPSTree [49] FP-tree [5], DSTree [46], and Gtree
[47], runtime are decreased in turn. CPSTree should have
better performance than any other one. However, it is the
worst one among four algorithms in Figure 8(c). In Table 3,
value of average distinct items for connect four is lowest
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Figure 7: Runtime comparison on T10I4D100K and T40I10D100K for cantree, FP-tree, DSTree, CPSTree, Gtree and LCTree.
(a) T10I4D100K. (b) T40I10D100K.
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among real dataset. (e possible reason is that CPSTree is
not suitable to cope with the connect four dataset, which can
be proved by Figures 8(a) and 8(b). Results of CPSTree in
Figures 8(a) and 8(b) are much better than (c), because the
datasets of mushroom and chess have high value of average
distinct items. LCTree showed superior performance among
all algorithms because of the proven linear time complexity.

4.2.2. Memory Space Requirements Comparison. Memory
usage is one of the most important measures for algorithms
dealing with data stream with large data volume. We
evaluated algorithms according to the number of nodes
generated by each algorithm, assuming that the size of
nodes reflects the memory requirement of the algorithm.
X-axis and y-axis in Figure 9 represent support and the
number of nodes, respectively. We test the required
memory by varying the support at each dataset. From the
figure, we see memory footprints for all algorithms

decrease with the support increasing. In all graphs, the
amount of nodes created by Cantree is the largest among all
algorithms on several datasets. However, there are some
differences among the other four datasets. (e differences
between Cantree and other algorithms are increased when
items in database are large. With large data volume, the
sliding window of Cantree has to cope with more items.
Because Cantree keeps all infrequent itemsets, it makes
memory increase rapidly, a major disadvantage of the al-
gorithm. In the other analyzed algorithms, number of
nodes generated by Gtree is larger than other algorithms on
all datasets. (ere are two reasons for these results. First,
Gtree creates Cantree as based tree to construct projection
tree. In this process, Gtree needs to create a lot of lists for
each item to store sub-tree branches, which will influence
the number of nodes in memory. Second, in order to reduce
the cost of insertion operation, Gtree uses two-dimensional
list to represent lists, which trades more space for less
processing time. We also notice that FP-tree is slightly
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Figure 8: Runtime comparison on mushroom, chess and connect four for cantree, FP-tree, DSTree, CPSTree, Gtree and LCTree
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better than CPStree and DSTree. In essence, these three
algorithms adopt the idea of pre-Tree. FP-tree is a kind of
method for approximate stream mining and mines the
static data, while CPStree and DSTree can get exact mining
results for stream data, which explains the results in Fig-
ure 9 among the three algorithms. From Figure 9(a),
FPTree has the best performance in dataset T10I4D100K
among the five algorithms. When statistical analysis were
performed by comparing LCTree and FPTree, LCTree
appeared to save memory capacity from 42.69% to 58.42%
at different support value, respectively. In Figures 9(b)∼
9(c), we get similar results. LCTree saves memory capacity
averaging 50.33% comparing to FPTree. No matter in the
real or synthetic dataset, LCTree has the best performance.
(ere are two causes for getting such results. First, in the
process forming LCTree, we don’t need too many extra lists
for mining frequent itemsets. (e number of lists LCTree
need is far less than Gtree. Second, just like what the
analysis above has shown, LCTree can find the longest
braches to merger items with the help of head linking list,
which is good for not only saving time for the next step of

mining frequent itemsets but also significantly cutting
down the requirement of memory. Experimental results are
consistent with our analysis and we also conclude by
comparing Figure 1 with Figure 5. (e third is that LCTree
has a most efficient tail linking structure, which is easy to
delete the old items, but doesn’t need too much
operation(?).

As analyzed above, we can conclude that LCTree has a
good design which makes the mining process more efficient
than other algorithms on different types of datasets. Both
theoretical analysis and experimental results support our
conclusion.

5. Conclusions

LCTree is for mining frequent itemsets over data streams
and is based on the sliding windowmodel. LCTree effectively
finds the appropriate branches and removes the items and
also correctly searches for frequent itemsets with help of
linked structure.(e extensive experiments presented in this
study showed that the proposed algorithm outperforms
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Figure 9:(e comparison of memory overhead on T10I4D100K, connect four, mushroom and chess for Cantree, FP-tree, DSTree, CPSTree,
Gtree and LCTree. (a) T10I4D100K. (b) Connect four. (c) Mushroom. (d) Chess.
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recently developed algorithms Cantree, CPSTree, FP-tree,
DSTree, and Gtree in runtime, usage of memory, on both
synthetic and real datasets. Compared with the five algo-
rithms on different dataset, the runtime and capacity of
LCTree is improved to some extent, which depended on
supported value. (ese improvements may help in LCTree
implementations for streaming data environment, which
includes network traffic analysis, weblogs analysis, market
basket analysis, and so on.

We prove the efficiency of LCTree on synthetic and real
datasets. In future studies, we hope to apply them to some
fields and improve performance in various fields.

Data Availability

(eChess andMushrooms data used to support the findings
of this study have been deposited in the UCI repository
(https://archive.ics.uci.edu/ml/datasets.php).

Conflicts of Interest

(e authors declare that they have no conflicts of interest.

Acknowledgments

(is work was supported by National Natural Science
Foundation of China (NSFC) (Grant number: 72174079)
and “Petrel Program of Lianyungang Jiangsu Province,
China” (Grant number: KK18088) and “the Program of
Science and Technology Associate Chief Engineer of Jiangsu
Province China” (Grant number: FZ20200458) .

References

[1] G. John, P. Langley, and H. John, Static versus Dynamic
Sampling For Data Mining, pp. 367–370, Kdd, 1996.

[2] R. Agrawal and R. Srikant, “Fast algorithms for mining as-
sociation rules in large databases,” in Proceedings of the 20th
International Conference on Very Large Data Bases,
pp. 487–499, Santiago de Chile, Chile, September 1994.

[3] M. R. Karim, M. Cochez, O. D. Beyan, C. F. Ahmed, and
S. Decker, “Mining maximal frequent patterns in transac-
tional databases and dynamic data streams: a spark-based
approach,” Information Sciences, vol. 432, pp. 278–300, 2018.

[4] R. C. Agarwal, C. C. Aggarwal, and V. V. V. Prasad, “A tree
projection algorithm for generation of frequent item sets,”
Journal Of Parallel And Distributed Computing, vol. 61, no. 3,
pp. 350–371, 2001.

[5] J. Han, J. Pei, Y. Yin, and R. Mao, “Mining frequent patterns
without candidate generation:A frequent-pattern tree ap-
proach,” Data Mining And Knowledge Discovery, vol. 8, no. 1,
pp. 53–87, 2004.

[6] B. Kumar and K. Rukmani, “Implementation of web usage
mining using APRIORI and FP growth algorithms,” Inter-
national Journal of Advanced Networking and Applications,
vol. 404, no. 6, pp. 400–404, 2010.

[7] C. Fernandez-Basso, A. J. Francisco-Agra, M. J. Martin-
Bautista, and M. Dolores Ruiz, “Finding tendencies in
streaming data using Big Data frequent itemset mining,”
Knowledge-Based Systems, vol. 163, pp. 666–674, 2019.

[8] Y. Baek, U. Yun, H. Kim et al., “Erasable pattern mining based
on tree structures with damped window over data streams,”
Engineering Applications of Artificial Intelligence, vol. 94,
Article ID 103735, 2020.

[9] H. L. Li, Y. J. Wu, and Y. W. Chen, “Time is money:dynamic-
model-based time series data-mining for correlation analysis
of commodity sales,” Journal Of Computational And Applied
Mathematics, vol. 370, Article ID 112659, 2020.

[10] H. M. Huynh, L. T. T. Nguyen, B. Vo, A. Nguyen, and
V. S. Tseng, “Efficient methods for mining weighted click-
stream patterns,” Expert Systems With Applications, vol. 142,
Article ID 112993, 2020.

[11] X. F. Li, H. S. Jiao, and D. Li, “Intelligent medical hetero-
geneous big data set balanced clustering using deep learning,”
Pattern Recognition Letters, vol. 138, pp. 548–555, 2020.

[12] H. Estiri, Z. H. Strasser, J. G. Klann et al., “Transitive se-
quencing medical records for mining predictive and inter-
pretable temporal representations,” Patterns, vol. 1, no. 4,
Article ID 100051, 2020.

[13] Z. Deng, W. Han, L. Wang, R. Ranjan, A. Y. Zomaya, and
W. Jie, “An efficient online direction-preserving compression
approach for trajectory streaming data,” Future Generation
Computer Systems, vol. 68, pp. 150–162, 2017.

[14] R. M. Rani and M. Pushpalatha, “Generation of Frequent
sensor epochs using efficient Parallel Distributed mining al-
gorithm in large IOT,” Computer Communications, vol. 148,
pp. 107–114, 2019.

[15] M. M. Rashid, I. Gondal, and J. Kamruzzaman, “Dependable
large scale behavioral patterns mining from sensor data using
Hadoop platform,” Information Sciences, vol. 379, pp. 128–
145, 2017.

[16] K. Sim, J. Li, V. Gopalkrishnan, and G. Liu, “Mining maximal
quasi-bicliques: novel algorithm and applications in the stock
market and protein networks,” Statistical Analysis And Data
Mining, vol. 2, no. 4, pp. 255–273, 2009.

[17] S. H. Liao, H. H. Ho, and H. W. Lin, “Mining stock category
association and cluster on Taiwan stock market,” Expert
Systems With Applications, vol. 35, no. 1–2, pp. 19–29, 2008.

[18] E. Glatz, S. Mavromatidis, B. Ager, and X. Dimitropoulos,
“Visualizing big network traffic data using frequent pattern
mining and hypergraphs,” Computing, vol. 96, no. 1,
pp. 27–38, 2014.

[19] S. Das, R. K. Behera, M. kumar, and S. K. Rath, “Real-time
sentiment analysis of twitter streaming data for stock pre-
diction,” Procedia Computer Science, vol. 132, pp. 956–964,
2018.

[20] K. C. Lin, I. E. Liao, T. P. Chang, and S. F. Lin, “A frequent
itemset mining algorithm based on the Principle of Inclu-
sion–Exclusion and transaction mapping,” Information Sci-
ences, vol. 276, pp. 278–289, 2014.

[21] S. H. Cai, R. B. Huang, J. F. Chen et al., “An efficient outlier
detection method for data streams based on closed frequent
patterns by considering anti-monotonic constraints,” Infor-
mation Sciences, vol. 555, pp. 125–146, 2021.

[22] W. Wang, J. Tian, F. Lv, G. Xin, Y. F. Ma, and B. L. Wang,
“Mining frequent pyramid patterns from time series trans-
action data with custom constraints,” Computers & Security,
vol. 100, Article ID 102088, 2021.

[23] G. S. Manku, “Approximate frequency counts over data
streams,” in Proceedings of the 28th VLDB Conference,5,
pp. 346–357, Hong Kong, China, August 2002.

[24] C. K. S. Leung, F. Jiang, and Y. Hayduk, “A landmark-model
based system for mining frequent patterns from uncertain

16 Computational Intelligence and Neuroscience

https://archive.ics.uci.edu/ml/datasets.php


data streams,” ACM International Conference Proceeding
Series, pp. 249-250, 2011.

[25] A. Onishi, “Landmark map: An extension of the self-orga-
nizing map for a user-intended nonlinear projection,” Neu-
rocomputing, vol. 388, no. 7, pp. 228–245, 2020.

[26] Y. Baek, U. Yun, H. Kim et al., “Erasable pattern mining based
on tree structures with damped window over data streams,”
Engineering Applications Of Artificial Intelligence, vol. 94,
Article ID 103735, 2020.

[27] M. Cafaro, M. Pulimeno, I. Epicoco, and G. Aloisio, “Mining
frequent items in the time fading model,” Information Sci-
ences, vol. 370–371, pp. 221–238, 2016.

[28] U. Yun, D. Kim, E. Yoon, and H. Fujita, “Damped window
based high average utility pattern mining over data streams,”
Knowledge-Based Systems, vol. 144, no. 15, pp. 188–205, 2018.

[29] P. S. M. Tsai, “Mining top-k frequent closed itemsets over data
streams using the sliding window model,” Expert Systems
With Applications, vol. 37, no. 10, pp. 6968–6973, 2010.

[30] X. W. Zhuang, Z. S. Yang, V. Mishra, K. Sreenivasan,
C. Bernick, and D. Cordes, “Single-scale time-dependent
window-sizes in sliding-window dynamic functional con-
nectivity analysis: a validation study,” NeuroImage, vol. 220,
Article ID 117111, 2020.

[31] D. H. Chen and L. Chen, “Sliding-window probabilistic
threshold aggregate Queries on uncertain data streams,” In-
formation Sciences, vol. 520, pp. 353–372, 2020.

[32] K. Shyam, S. Reddy, C. Shoba Bindu, and S. W. Stream, “A
density-based approach for clustering data streams over
sliding windows,” Measurement, vol. 144, pp. 14–19, 2019.

[33] M. Cafaro, M. Pulimeno, I. Epicoco, and G. Aloisio, “Mining
frequent items in the time fading model,” Information Sci-
ences, vol. 370–371, pp. 221–238, 2016.

[34] M. Pulimeno, I. Epicoco, and M. Cafaro, “Distributed mining
of time-faded heavy hitters,” Information Sciences, vol. 545,
pp. 633–662, 2021.

[35] Y. F. Yuan, Z. X.Wang, andW.Wang, “Unsupervised concept
drift detection based on multi-scale slide windows,” Ad Hoc
Networks, vol. 111, Article ID 102325, 2021.

[36] L. Lin and J. S. Su, “Anomaly detection method for sensor
network data streams based on sliding window sampling and
optimized clustering,” Safety Science, vol. 118, pp. 70–75,
2019.

[37] G. Lee, U. Yun, and K. H. Ryu, “Sliding window based
weighted maximal frequent pattern mining over data
streams,” Expert Systems With Applications, vol. 41, no. 2,
pp. 694–708, 2014.

[38] H. Ryang and U. Yun, “High utility pattern mining over data
streams with sliding window technique,” Expert Systems With
Applications, vol. 57, pp. 214–231, 2016.

[39] L. Pietruczuk, L. Rutkowski, M. Jaworski, and P. Duda, “How
to adjust an ensemble size in stream data mining?” Infor-
mation Sciences, vol. 381, pp. 46–54, 2017.

[40] P. Goyal, J. S. Challa, S. Shrivastava, and N. Goyal, “Anytime
frequent itemset Mining of transactional data streams,” Big
Data Research, vol. 21, Article ID 100146, 2020.

[41] F. Bodon and L. Rónyai, “Trie: An alternative data structure
for data mining algorithms,” Mathematical And Computer
Modelling, vol. 38, no. 7–9, pp. 739–751, 2003.

[42] Y. L. Xun, X. H. Cui, J. F. Zhang, and Q. X. Yin, “Incremental
frequent itemsets mining based on frequent pattern tree and
multi-scale,” Expert Systems With Applications, vol. 163,
Article ID 113805, 2021.

[43] J. Ragaventhiran and M. K. Kavithadevi, “Map-optimize-re-
duce: CAN tree assisted FP-growth algorithm for clusters

based FP mining on Hadoop,” Future Generation Computer
Systems, vol. 103, pp. 111–122, 2020.

[44] L. Shabtay, P. Fournier-Viger, R. Yaari, and I. Dattner, “A
guided fp-growth algorithm for mining multitude-targeted
item-sets and class association rules in imbalanced data,”
Information Sciences, vol. 553, 2020.

[45] C. K. S. Leung, Q. I. Khan, Z. Li, and T. Hoque, “CanTree: a
canonical-order tree for incremental frequent-pattern min-
ing,” Knowledge And Information Systems, vol. 11, no. 3,
pp. 287–311, 2007.

[46] C. K. S. Leung and Q. I. Khan, “DSTree: a tree structure for the
mining of frequent sets from data streams,” in Proceedings of
the IEEE International Conference On Data Mining,
pp. 928–932, ICDM, Hong Kong, China, December 2006.

[47] J. Kim and B. Hwang, “Real-time stream data mining based on
CanTree and Gtree,” Information Sciences, vol. 367–368,
pp. 512–528, 2016.

[48] B. Mozafari, H. (akkar, and C. Zaniolo, “Verifying and
mining frequent patterns from large windows over data
streams,” in Proceedings of the IEEE 24th International
Conference on Data Engineering, pp. 179–188, Cancun,
Mexico, April 2008.

[49] S. J. Shin, D. S. Lee, and W. S. Lee, “CP-tree: an adaptive
synopsis structure for compressing frequent itemsets over
online data streams,” Information Sciences, vol. 278,
pp. 559–576, 2014.

[50] T40I10D100K, “Retrieved from,” http://fimi.ua.ac.be/data.
[51] “Mushrooms. retrieved from,” https://archive.ics.uci.edu/ml/

datasets.php.
[52] Chess, “Retrieved from,” https://archive.ics.uci.edu/ml/

datasets.php.
[53] K. Garg and D. Kumar, “Comparing the performance of

frequent pattern mining algorithms,” International Journal of
Computers and Applications, vol. 69, no. 25, pp. 21–28, 2013.

Computational Intelligence and Neuroscience 17

http://fimi.ua.ac.be/data
https://archive.ics.uci.edu/ml/datasets.php
https://archive.ics.uci.edu/ml/datasets.php
https://archive.ics.uci.edu/ml/datasets.php
https://archive.ics.uci.edu/ml/datasets.php

