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Introduction

MicroRNAs (miRNAs) are one of epigenetic 

mechanisms that modulate different biological processes 

via silencing and in some cases activating gene 

expression.1,2 miRNAs are 18–25 nucleotides long and 

these non-coding RNA molecules are involved in post-

transcriptional regulation of large number of genes in 

various organisms (up to 30% genes). This class of 

RNAs has highly conserved structure. The first miRNA, 

lin-4, was discovered in nematode Caenorhabditis 

elegans, less than 40 years ago.3,4 After then, different 

groups have found miRNAs in some plants and 

metazoa.5,6  

MiRNAs degrade target mRNA or inhibit protein 

translation in order to inactivate their target genes. This 

function occurs by binding the “seed sequence” 2–8 

nucleotides at 5′ end of miRNA to “untranslated sites” 

the 3 ′ UTR of the target mRNA. However 5 ′ UTR, 

promoter elements or coding sequences of target genes 

are interaction regions for seed sequences.6 Depending 

on the binding quality, the mechanism of regulation is 

different. In the perfect binding, RNA-induced silencing 

complex (RISC) is active and fragmentizes the target 

mRNA, but in weak binding situation miRNA interferes 

the ribosome assembly or leads to early detachment of 

ribosome from mRNA. Also, exonucleolytic digestion 

can happen via deadenylation and decapping of target 

mRNA.7,8 

Several miRNAs can recognize a distinct gene and 

interact with it. On the other hand, a single miRNA can 

bind lots of genes. There is not a same annotation criteria 

to analyze miRNAs, so their number is not exactly clear. 

Actually, about 2500 well known miRNAs have been 

found in the human genome.9 Each miRNA is assigned a 

name and registered to miRNAs catalog which is 

available in miRBase database (www.mir base.org; 

v21,June2014).10 

 

MicroRNA biogenesis 

Three major enzymes are involved in miRNA 

biogenesis, RNA polymerase II, ribonuclease III 

enzymes (RNase -III), Drosha and Dicer, which act in 

nucleus and cytoplasm respectively. At the first step, 

RNA polymerase II transcribes miRNA and produces 

primary-miRNA (pri-miRNA) which contains a stem-

loop structure where the dsRNA-binding protein named 

DGCR8 in humans, and Pasha in Drosophila 

melanogaster and Caenorhabditis elegans and Drosha 

(micro-processor complex), cleave it into miRNAs (pre-

miRNA).9,11,12 This cleavage is done in both strands of 

the stem near the base of the primary stem-loop. Some 

regulatory proteins such as SMAD (small mothers 

against decapentaplegic) proteins, the signal transducers 

of TGFB/ BMP (transforming growth factor beta/ bone 

morphogenetic protein) accompany RNase III 

endonuclease to regulate its function.13  

At the second step, cytoplasmic processing begins by 

RNase III endonuclease, Dicer1. XPO5 is responsible for 

transfer of pre-miRNAs from nucleus to cytoplasm. 

Cofactor of XPO5 is Ran-guanosine triphosphate– 

dependent nucleo/cytoplasmic cargo.14 Dicer1 in 

presence of dsRNA binding protein, TARBP2 [TAR 

(HIV-1) RNA binding protein 2], produces a small 
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Abstract 
MicroRNAs (miRNAs) are endogenous non-coding RNAs that have significant roles in 

biological processes such as glucose homoeostasis. MiRNAs fine-tune target genes 

expression via sequence-specific binding of their seed sequence to the untranslated region 

of mRNAs and degrade target mRNAs. MicroRNAs in islet β-cells regulate β-cell 

differentiation, proliferation, insulin transcription and glucose-stimulated insulin secretion. 

Furthermore, miRNAs play key roles in the regulation of glucose and lipid metabolisms and 

modify insulin sensitivity by controlling metabolic functions in main target organs of 

insulin such as skeletal muscle, liver and adipose tissue. Moreover, since circulating 

miRNAs are detectable and stable in serum, levels of certain miRNAs seem to be novel 

biomarkers for prediction of diabetes mellitus. 

In this article, due to the prominent impact of miRNAs on diabetes, we overviewed the 

microRNAs regulatory functions in organs related to insulin resistance and diabetes and 

shed light on their potential as diagnostic and therapeutic markers for diabetes. 
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double stranded miRNA by digesting the loop side of the 

pre-miRNA hairpin.15  

MiRNA maturation is accomplished by helicases which 

unwound this truncated double strand miRNA to produce 

a single strand. The single strand RNA is active and 

enters Argonaute (AGO) to destroy target mRNAs. 

Generally, “guide” strand or “-3p” is functional and 

“passenger” strand, or star strand or “-5-p” is 

destroyed.16 A large number of mature miRNAs act in 

cytoplasm after maturation but some of them have 

capacity to control the gene expression in other cells. 

They can release into biological fluid or cell culture 

media.17  

 

MicroRNAs acting on pancreatic β-cells 

differentiation and functions 

The differentiation of insulin-producing β-cells, the 

highly proficient cells, is orchestrated with several 

signaling pathways and molecular mechanisms from 

fetal period until weaning. The ample evidence declares 

that miRNAs play pivotal roles in β-cell differentiation 

and functions. Importantly, generation of Dicer-null β-

cells resulted in a complete loss of insulin-secreting 

cells.18,19 β-cell specific deletion of Dicer1 using the rat 

insulin promoter 2 (RIP)-Cre transgene led to impaired 

pancreas development, declined β-cell mass and insulin 

secretion.20 In line with this evidence, recent study on 

βDicer-null mice indicated that miRNA loss primarily 

afflicts β-cell secretory function prior to any decrease in 

insulin content or β-cell mass.21 

Investigations for finding the exhaustive list of miRNAs 

in β-cell differentiation are presently in the limelight. In 

2004, the pioneering study demonstrated that miR-375 is 

highly expressed in pancreatic β-cells and contributes to 

the β-cell differentiation, pancreas development, insulin 

biogenesis, insulin secretion and generates the β-cell 

identity.22 Over-expression of miR-375 induces human 

embryonic stem cells differentiation into islet β-cells in 

culture in a stepwise process and its expression pattern 

resembles that of the human fetal pancreas.23 

Furthermore, up-regulation of miR-375 following 

treatment with anti-miR-9 in human bone marrow 

mesenchymal stem cells induces differentiation into 

mature islet like clusters and improves insulin secretion 

in a glucose-regulated manner by virtue of controlling 

the levels of key transcription factors involved in 

pancreatic β-cells maturation such as SOX-17 and HNF-

3 beta/FoxA2.24 Nathan et al. showed that expansion of 

human islet β-cells from adult human pancreatic islets is 

usually skewed due to the modifications in miRNAs 

expression. They demonstrated that over-expression of 

miR-375 in β-cell-derived cells redifferentiated them to 

cells with more β-cell functional phenotype.25 Also, it 

was found that miR-375 and miR-184 form a network 

with AGO2 to regulate β-cell expansion.26 

Emerging data suggests that miR-124a, plays a 

prominent role in β-cell differentiation and insulin 

secretion. Expression of miR-124a elevates during 

mouse embryonic pancreas development. FoxA2, a 

transcription factor essential for β-cell differentiation and 

insulin secretion, is a target of miR-124a.27 Consistent 

with this finding, Neurog3, a major β-cell transcription 

factor which regulates pancreas development and 

differentiation, was identified as a specific target of miR-

124a.28 

Glucose-stimulated insulin secretion (GSIS) is a critical 

process which controls the metabolic homeostasis. 

Several miRNAs are directly involved in GSIS.29 MiR-

375 inhibits GSIS at the late stages of exocytosis in 

pancreatic β-cells by targeting myotrophin.22 cAMP as a 

second messenger, increases insulin secretion in the 

presence of glucose and activates PKA, which 

subsequently phosphorylates and activates downstream 

targets in order to enhance GSIS.30,31 It has been shown 

that reduced miR-375 expression enhances GSIS via 

cAMP/PKA-dependent or PKA-independent 

pathway.32,33 

Mir-9 negatively regulates GSIS by targeting Sirt1 and 

Onecut2. The enzyme Sirt1, deacetylates histones and 

transcription factors in an NAD-dependent manner and is 

important in the regulation of insulin secretion.34 

Onecut2, a transcription factor, regulates the expression 

of granuphilin which negatively modifies the 

exocytosis of insulin-containing granules.35 

In MIN6 and INS-1 cell lines, miR-124 regulates 

potassium channel subunits, Kir6.2 and SUR1, by 

targeting FoxA2 and leads to altering the Ca2+-sensitivity 

of β-cell and insulin secretion.27 Although Rab27A is a 

direct target of mir-124a, some other exocytosis- related 

proteins such as SNAP25, Rab3A, Synapsin-1A, and 

Noc2 are regulated by mir-124a indirectly.36 Recent 

study revealed that miRNA-463-3p/ABCG4 (ATP-

binding cassette sub-family G member 4) axis plays an 

important role in GSIS and inhibits this process. In type 

2 diabetic patients, miRNA-463-3p is up-regulated and 

ABCG4 is down-regulated in pancreatic β-cells.37  

over-expression of miR-96 diminishes the exocytosis 

through increase in granuphilin expression and decrease in 

Noc2 level.36 Granuphilin negatively modifies 

exocytosis36 whereas Noc2 binds to Rab3 and ameliorates 

insulin secretion.38 Over-expression of miR-21 and miR-

34a decreases insulin secretion by targeting VAMP2 and 

Rab3a.39,40 Additionally, miR-29a targets Syntaxin-1A and 

impairs the insulin secretion in glucose-dependent 

manner.41 Accordingly, miRNAs can regulate GSIS and 

contribute to the hyperglycemia seen in diabetes (Table 1). 

Prolonged glucose stimulation activates β-cell specific 

insulin transcription factors such as MafA, PDX1, NeuroD 

and particularly miRNAs.42 In the hyperglycemic diabetic 

mouse model B6 ob/ob, augmented expression of miR-

204, reduced insulin synthesis by targeting and down-

regulating MafA.43 Over-expression of miR-9 in vivo 

decreased insulin expression via targeting Onecut2 

transcription factor.35 MiR-30d has glucose-dependent 

expression and its up-regulation increases insulin 

transcription through indirect targeting of MafA.44,45 

Further, continuous glucose exposure in INS-1E cells 

down-regulates the level of mir-375. MiR-375 directly 
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targets PDK1 and affects the phosphorylation of PKB and 

GSK3, downstream kinases in the PI3-kinase signaling 

cascade, subsequently, inhibits glucose-induced β-cell 

proliferation and insulin transcription46 (Table 1). 

 
Table 1. miRNAs acting on GSIS and insulin transcription 

miRNAs functional effect Targets Tissue/cell References 

miR-30d Insulin transcription MafA  MIN6 44,45 

miR-204 Insulin transcription MafA mouse ob/ob islets 22,43 

miR-375 Insulin transcription, insulin secretion PDK1, myotrophin Mouse islets/INS-1E 22
 

miR-9 Insulin secretion Onecut2, Granuphilin  INS-1E 35
 

miR-21 Insulin secretion VAMP2, Rab3a MIN6 39
 

miR-29a Insulin secretion Syntaxin-1A INS-1E 41,98 

miR-34a Insulin secretion VAMP2, Rab3a MIN6 39
 

miR-96 Insulin secretion Noc2, Granuphilin MIN6 36
 

miR-124a Insulin secretion Foxa2,Rab27a, Noc2, SNAP25 MIN6 and INS-1 832/13 27,36 

miR -463 Insulin secretion ABCG4 Human 37
 

 

The β-cells in the developing pancreas are extremely 

proliferative. By producing insulin via the progenitor 

cells, the proliferation depletes profoundly.47 In human, 

proliferation of adult pancreatic β-cells is low to 

undeterminable under steady-state conditions.48,49 

Significantly, genetic studies reveal that miR-375 is one 

of the rare miRNAs, which its knockdown is implicated 

in defects in islet architecture and function of insulin 

producing cells.50 Genetic inactivation of miR-375 in 

zebrafish causes decrease in beta cell mass and 

consequently depletes insulin production and triggers the 

onset of diabetes.51 Studies on a miR-375 KO mouse 

model displayed genetic inactivation of miR-375 reduced 

β-cell mass but increased α-cell number, improved 

hyperglycemic state and GSIS.52 Indeed, appropriate 

level of miR-375 is also critical for expanding fetal β-cell 

mass and preventing abnormal glucose homeostasis.  

In human, miR-7 is highly expressed in both the 

developing and adult pancreas.53-55 Transfecting human 

islets beta cells with anti-mir-7a demonstrated a 30-fold 

increase in proliferation, so it underscores the potential 

of miR-7 as a negative regulator of proliferation.56 

β-cell mass in the adult human increases in response to 

insulin resistance (IR) during obesity and pregnancy.48,57 

The loss of β-cell mass is associated with both type 1 

(T1D) and type 2 diabetes (T2D). The hunt for finding 

novel mechanisms to propel β-cell to develop and 

regenerate can hold promise in increasing the number of 

functional β-cells in patients with diabetes.  

Neurog3, a key regulator of β-cell differentiation, is not 

expressed during the regenerative phase.28 Profiling 283 

miRNA expression levels of developing and regenerating 

pancreas showed that miRNAs targeting Neurog3 (miR-

15a, miR-15b, miR-16 and miR-195) have the most 

expression during pancreas regeneration. It is plausible 

that, microRNAs regulate Neurog3 expression during 

regeneration in the adult mouse pancreas. 

MiR-200 family is the principal regulator of β-cell 

apoptosis in T2D. In other words, miR-200 family is 

over-expressed in islets of diabetic mice and induces β-

cell apoptosis and T2D development through targeting 

essential β-cell chaperone Dnajc3 (p58IPK) and the 

caspase inhibitor Xiap. The loss of miR-200 function 

protects β-cells against both oxidative and DNA damage 

stress and represses expression of pro-apoptotic genes.58 

During the development of diabetes, up-regulation of 

miR-21 in β-cells induces apoptosis by degradation of 

BCL2 mRNA and inhibition of BCL2 mRNA 

translation59 (Table 2). 

 
Table 2. miRNAs regulating β-cell development 

miRNAs functional effect Targets Tissue/cell References 

mir-15a, miR-15b, 
miR-16, miR-195 

Pancreas development, β-cells 
fate and regeneration 

Neurog3 
mouse 
embryo/MIN6 

28
 

miR-7a Human β -cell proliferation 
p70S6 K, elF4E, Mapkap1, Mknk1 and 
Mknk2 

mouse islets 53,56,99 

miR-375 α- and β-cell expansion 
Cav1, Id3, Smarca2, Aifm1, Rasd1, 
Rgs16, Eef1e1, C1qbp, HuD, Cadm1 

KO mouse islets 52
 

miR-124a 
Pancreas development and β-
cells functional 

Foxa2, Neurog3 
MIN6 , mouse 
islets 

27,28 

 

MicroRNAs acting on skeletal muscle insulin 

sensitivity 
Muscle tissue is the largest consumer of glucose in the 

human body. Impaired insulin-stimulated glucose uptake 

and glucose utilization are the characteristics of insulin 

resistance in skeletal muscles.60 Also, insulin resistance 

and T2D can be attributed to diminished mitochondrial 

function in skeletal muscle.61 
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In striated muscle, some miRNAs such as miR-1, miR-

133a/b-3p, miR-206-3p, miR-208a/b-3p and miR-499-5p 

are the tissue-specific miRNAs with expression levels of 

at least 20-fold higher in comparison to other tissues.62-64 

Additionally, theses miRNAs accounts for 25% of total 

miRNAs express in skeletal muscle and are termed 

“myomiRs”. Most myomiR family members are 

expressed in both cardiac and skeletal muscle with the 

exception of miR-208a-3p which is cardiac-specific and 

miR-206, which is skeletal muscle-specific. MiR-486 has 

expression in other tissues and considered “muscle-

enriched” rather than “muscle-specific”.63 

“mitomiR” is a term given to the miRNAs identified 

inside mitochondria. Of relevant importance is that 

miRNAs are implicated in regulation of mitochondrial 

biogenesis, energy metabolism, and electron transport 

chain subunits.65 

Intriguingly, epigenetics regulates gene expression in 

response to extracellular stimuli or pathological states. 

Exercise is known to have beneficial effects on T2D and 

IR. Previous studies reveled that exercise leads to 

epigenetic modifications such as DNA methylation.66 It 

has been well-characterized that response to exercise in 

skeletal muscle is largely mediated by miRNAs which 

post-transcriptionally regulate gene expression. 

Markedly, regarding insulin sensitivity, exercise alters 

skeletal muscle genes and microRNAs expressions such 

as miR-37867(Table 3). Acute exercise resulted in 

increased levels of miR-1, miR-107, miR-18168 and miR-

133a69 and diminished miR-23 levels which it can up-

regulated peroxisome proliferator-activated receptor 

gamma coactivator 1-alpha (PGC-1α).70 Furthermore, 

through analysis of epigenetic changes in skeletal muscle 

of T2D patients in response to both types of exercise 

revealed a metabolic reprogramming.1 

 
Table 3. miRNAs in skeletal muscle, adipose tissue and liver contribute to diabetes 

miRNAs Cell types functional effect References 

Myomirs: miR-1, miR-133, miR-206 Skeletal muscle Myogenesis 100,101 

miR-1, miR-107, miR-133, miR-181 Skeletal muscle - 68,69 

miR-23a Skeletal muscle Associated with PGC-1a upregulation 70
 

miR-29a Skeletal muscle 
Impairs insulin-stimulated glucose 
uptake, IRS-1 

98,102 

miR-206 Skeletal muscle Fiber type transition 103
 

miR-106 Skeletal muscle - 104,105 

miR-24 Skeletal muscle - 105
 

miR-27 Adipose tissue Adipocyte differentiation 106
 

miR-29a Adipose tissue 
Impairs insulin-stimulated glucose 
uptake 

98
 

miR-133 Adipose tissue Adipocyte differentiation 78
 

miR-143 Adipose tissue 
Adipocyte differentiation, insulin 
resistance 

79,107 

miR-93 Adipose tissue Insulin resistance 77
 

miR-126 Adipose tissue - 105
 

miR-221 Adipose tissue Insulin resistance 80
 

miR-320 Adipose tissue Insulin resistance 75
 

miR-193b, miR 365, miR-196a, miR-155, miR-133a/b, 
miR 455 and miR-30 

Adipose tissue Browning of white fat 83
 

miR-103 
Adipose 
tissue/liver 

Insulin resistance 78
 

miR-107 
Adipose 
tissue/liver 

Insulin resistance 78
 

miR-33 Liver Controls HDL biogenesis 87,88 

miR-122 Liver Controls VLDL secretion 85,108 

miR-181a Liver Improves insulin resistance 90
 

miR-802 Liver Insulin resistance 109
 

 

MicroRNAs acting on adipose tissue insulin 

sensitivity 

Adipose tissue is a highly active metabolic endocrine 

organ and one of the important targets of insulin action.71 

Excess adipose tissue contributes to obesity related 

metabolic diseases. Multiple lines of evidence 

underscore the importance of miRNAs in adipogenesis 

and obesity.72 Over-expressed miR-223 in adipose 

tissues of IR patients reduced GLUT4 protein content 

and subsequently impaired glucose uptake in these 
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tissues.73 MiR-26b increases insulin sensitivity via the 

PTEN/PI3K/AKT pathway. Decreased miR-26b 

expression is involved in obesity-related insulin 

resistance in adipocytes.74 In insulin resistant 3T3-L1 

adipocytes, miR-320 and miR-29 mediate insulin 

response through the PI3K/AKT pathway.75 Some other 

microRNAs such as miR-21,76 miR-93,77 miR-103, miR-

107,78 miR-14379 and miR-22180 are concerned in insulin 

sensitivity of adipocytes (Table 3). 

Notably, miRNAs can be packaged into exosomes and 

secreted from cells. Ying et al. demonstrated that miR-

155 is present in obese adipose tissue macrophages 

exosomes and targets PPARγ. These miRNA-containing 

exosomes can modulate insulin sensitivity, and glucose 

homeostasis in insulin target tissues.81  

Remarkably, brown adipocytes can emerge among white 

adipose tissue (WAT); this phenomenon is known as 

browning of white fat. Owing to the fact that, brown 

adipose tissue (BAT) increases energy expenditure rather 

than storage of fat, the presence of BAT in adults, hold 

the promise for treatment of metabolic disorders such as 

T2D and obesity.82 It has been well documented that 

several miRNAs such as miR-193b/-365, miR-196a, 

miR-155, miR-133a/b and miR-30 are instrumental in 

recruiting brown adipocytes in white adipose tissue.83  

 

MicroRNAs acting on liver insulin sensitivity 

Hepatic insulin resistance disturbs glucose and lipid 

metabolism and also is a contributing factor in the 

pathogenesis of T2D and metabolic syndrome. MiR-122 

is abundantly expressed in liver and constitutes up to 

70% of all liver microRNAs. Inhibition of this 

microRNA is implicated in decreased hepatic steatosis, 

plasma cholesterol84 and also results in decreased 

circulatory lipoprotein levels through reduction of very 

low density lipoprotein (VLDL) secretion.85 Moreover, 

miR-223 controls cholesterol biosynthesis and high 

density lipoprotein (HDL) uptake in the liver.86 MiR-33b 

and miR-33a via SREBF1 and 2, respectively87,88 and 

miR-29 through regulation of Ahr and Sirt1 impact on 

cholesterol and lipoprotein metabolism.89 Additionally, 

MiR-181a improves hepatocyte insulin sensitivity via 

down-regulation of Sirt1.90 

Liver insulin resistance results in decreased miR-338-3p 

expression. Several other miRNAs such az miR-143, 

miR-181a, miR-103, miR-107, miR-802 has been shown 

to improve insulin sensitivity91 (Table 3). 

 

MicroRNAs as circulating biomarkers 
Large set of miRNAs besides their intracellular function 

are found in bio fluids, such as blood, urine and saliva.91 

Variations in the miRNA patterns of bio fluids are 

emerging as promising biomarkers of several 

pathological conditions including diabetes.92-96 

One of the first studies to evaluate the circulating 

miRNAs profile changes associated with T2DM 

identified most significantly changed miRNA: miR-15a, 

miR-126, miR-223, miR-320, and miR-28-3p were able 

to distinguish T2DM patients from healthy controls.97 

Notably, the miRNAs signature sometimes is able to 

predict diabetes development in 70% of patients in a 10 

year follow-up. 

 

Conclusion 

Exhaustive lists of miRNAs have been implicated in the 

metabolic syndrome and diabetes mellitus. Although the 

full repertoire of miRNAs involved in β-cell 

differentiation and functions remains to be elucidated, 

more defined number of microRNAs appear to affect the 

function or differentiation of the pancreatic β-cells. 

However, microRNAs in skeletal muscle, liver and 

adipose tissue constitute different and almost non-

overlapping sets of microRNA. Collectively, the hunt for 

new regulatory miRNAs in different cell types is still 

open. 
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