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Abstract: We consider the problem of the efficient transmit antenna subset (TAS) selection for
maximizing the signal-to-interference-plus-noise ratio (SINR) of multiuser space–time line code
(MU–STLC) systems. The exhaustive search for optimal TAS selection is impractical since the total
number of transmit antennas increases. We propose two efficient TAS selection schemes based
on the Woodbury formula. The first is to incrementally select NS active transmit antennas among
the available NT transmit antennas. To reduce the complexity of the incremental selection scheme,
the Woodbury formula is employed in the optimization process. The second is to perform the
decremental strategy in which the Woodbury formula is also applied to develop the low-complexity
TAS selection procedure for the MU–STLC systems. Simulation results show that the proposed
incremental and decremental TAS selection algorithms offer better alternatives than the existing
greedy TAS selection algorithm for the MU–STLC systems. Furthermore, in terms of bit error rate, the
proposed minimum mean square error decremental TAS selection algorithm turns out to outperform
the existing greedy algorithm with significantly lower computational complexity. Finally, we analyze
the detection SINR penalty experienced from TAS selection and the analytical quantity is shown to
be well matched with simulation results.

Keywords: antenna selection; multiple input multiple output (MIMO); precoding; zero forcing (ZF);
minimum mean square error (MMSE); multiuser; space–time line code

1. Introduction

Multiple-input multiple-output (MIMO) transmission techniques have been employed
as an integral part of present-day communication systems to improve the overall radio link
capacity and reliability [1–4]. Space–time block code (STBC) has been used as one of the
general MIMO transmission strategies when no channel state information (CSI) is available
at the transmitter [5–8]. It spreads over time and over space (transmit antennas). STBC is
an effective way to exploit the potential of MIMO systems because it is a very simple code
requiring a low encoding and decoding complexity. Although it does not require multiple
antennas at the receiver, the use of multiple receive antennas offers extra diversity gain
and array gain.

Recently, a space–time line code (STLC) in [9] was presented as a new transmission
method having full rate and diversity. In the STLC scheme, two information symbols are
encoded by channel gains coming from multiple receive antennas and are sent consecutively
in time. The STLC transmission is a dual version of Alamouti STBC [6], based on the
symmetric CSI and antenna configurations. The STLC assumes the knowledge of the full
CSI at the transmitter (CSIT), whereas the STBC requires the CSI at the receiver (CSIR). The
STLC scheme is also advantageous because of its low complexity encoding and decoding
procedure. Owing to its implementation simplicity, the STLC transmission technique has
been used for various communication systems. For example, they include massive MIMO
and multiuser systems [10,11], two-way relay systems [12], and machine learning-based
blind decoding [13].
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In the basic STLC scheme, multiple transmit antennas are not required at the transmit-
ter. In case multiple transmit antennas are present, STLC benefits from additional diversity
gain and array gain. In [14], a new multiuser (MU)–STLC scheme is designed to support
simultaneous transmission of multiple STLC signals for multiple users through preprocess-
ing at the transmitter. Moreover, a transmit antenna subset (TAS) selection problem for the
proposed MU–STLC system has been initially investigated for performance enhancement.
Firstly, an exhaustive search-based optimal TAS selection algorithm that maximizes the
detection signal-to-interference-plus-noise ratio (SINR) is presented with tremendously
huge complexity. To alleviate the complexity problem, an SINR-based greedy TAS selection
algorithm is also proposed at the cost of performance degradation. However, it requires
an NR × NR matrix inverse operation in each greedy step, where NR denotes the total
number of receive antennas and is given as the product of the number of multiple users
and the number of receive antennas per user. When the total number of receive antennas is
large, its computational complexity is huge. Additionally, TAS selection in [14] does not
guarantee optimal performance. Furthermore, the effects of TAS selection on the SINR
performance have not been sufficiently studied. Recently, the performance of the STLC
systems with TAS selection has been analyzed and evaluated in [15]. However, it considers
only the single-user model. To the best of our knowledge, no other study, except for [14],
has been previously made for effective TAS selection in the MU–STLC systems.

Antenna subset selection at the transmitter and/or receiver has been researched
extensively in many kinds of MIMO systems [14–25]. It has been employed to improve the
performance and reliability over those achievable with wireless communication systems
without antenna subset selection. It can be also performed to reduce the number of
expensive radio frequency (RF) chains while preserving spatial diversity gains. It is
shown in [23,24] that to reduce the number of RF chains in linearly precoded multiuser
MIMO systems and zero-forcing (ZF)-based precoded spatial modulation (PSM) MIMO
systems, respectively, decreasing the number of active transmit antennas by TAS selection
always degrades the bit error rate (BER) performance. Recently, two efficient TAS selection
algorithms for PSM-based massive MIMO systems have been developed in [25]. However,
the conventional various TAS selection algorithms presented in [25] and other studies
on different MIMO systems are unsuitable for the MU–STLC systems owing to different
transmission schemes. The reason for this unsuitability is mentioned in Section 3.1 after
the system model of MU–STLC with TAS selection is described. It should be noted that one
key issue in the antenna subset selection for the STLC transmission scheme is the optimal
design of a proper selection criterion.

In this paper, two efficient TAS selection schemes that have a better tradeoff between
transmission performance and computational complexity are proposed for MU–STLC
by exploiting incremental and decremental strategies, respectively, combined with the
Woodbury formula. First, the Woodbury formula is utilized to reduce significantly the com-
plexity of the conventional greedy TAS selection algorithm proposed in [14]. Second, we
propose a decremental TAS selection scheme in which the Woodbury formula is also used
for enormous complexity reduction. For decremental selection, the MU–STLC transmitter
uses preprocessing matrices based on ZF and minimum mean square error (MMSE) senses.
It is shown that the proposed decremental TAS selection algorithm based on MMSE can
offer near-optimal bit error rate (BER) performance with low computational complexity.
Furthermore, we show that reducing the number of activated transmit antennas through
TAS selection always degrades the SINR and BER performance. The detection SINR loss
experienced from TAS selection is analytically obtained. Simulation results demonstrate
that the detection SINR penalty agrees with the analytical one. Without BER simulations for
a large number of transmit antennas, such as massive MIMO, we can anticipate how much
BER performance is degraded in terms of signal-to-noise ratio (SNR) owing to reducing
the number of activated transmit antennas through TAS selection.

The main contributions of this study are summarized as follows:



Sensors 2021, 21, 2690 3 of 21

• The effective TAS selection algorithms based on the incremental and decremental
methods combined with the Woodbury formula have been designed for the MU–STLC
systems;

• The computational complexity of the proposed TAS selection algorithms is analyzed
and compared to the optimal one and the previous TAS selection scheme of [14]. The
complexity comparison proves the efficiency of the proposed algorithms;

• The asymptotic received SINR loss is analytically provided and verified by simulation
results.

The rest of the paper is organized as follows. The system model of MU–STLC with
TAS selection is described in Section 2. In Section 3, we propose incremental and decre-
mental TAS selection algorithms to offer low complexity. In Section 4, the computational
complexity of the proposed algorithms is analyzed and compared with that of the con-
ventional greedy TAS selection scheme. In Section 5, a simulation-based comparison of
the BER performance of the proposed algorithms and the previous method is provided.
Concluding remarks are drawn in Section 6.

Notations, we use lower-case and upper-case boldface letters for vectors and matrices,
respectively. Superscripts ∗, T , and H denote the complex conjugate, transposition, and
Hermitian transposition, respectively. The notations Tr(·) and (·)−1 denote the trace and
the inverse of a matrix, respectively. E[·], |·|, and ‖ · ‖F stand for the expectation, the
absolute value, and the Frobenius norm, respectively. In and 0n denote the n× n identity
matrix and the n× n matrix with all zero elements, respectively. X(:, k) indicates the k-th
column vector of a matrix X. X(:, [1 : (k − 1) (k + 1) : end]) stands for the submatrix
remained by deleting the k-th column vector in a matrix X. blkdiag{Q2, · · · , Q2} returns a
block diagonal matrix whose diagonal matrices are Q2, · · · , Q2.CN (0, σ2) means a complex
normal distribution with a zero mean and variance σ2.

2. System Model of MU–STLC with TAS Selection

We consider a downlink NT−by−2K MU–STLC system with NT transmit antennas
and K users. Each user has two receive antennas for STLC [9,14,15]. Thus, the total number
of receive antennas is 2K. The transmitter is equipped with only NS(K ≤ NS ≤ NT) RF
transmission units. Thus, it is assumed that NS transmit antennas are selected from NT
antennas. Let xk,t be the t-th transmitted symbol of the k-th user, with E[xk,tx∗k,t] = σ2

x . Then,
the MU–STLC signal matrix is defined as

U = [u1 u2] = WSX ∈ CNS×2 (1)

where ut = [u1,t u2,t · · · uNS ,t]
T ∈ CNS×1, t = 1, 2, and X =[X1 X2 · · · XK]

T ∈ C2K×2 with

Xk =

[
xk,1 xk,2
−x∗k,2 x∗k,1

]
∈ C2×2, k = 1, 2, · · · , K (2)

and WS ∈ CNS×2K is the MU–STLC precoding matrix for all users such that ‖WS‖2
F = 1.

The received signals with TAS selection are then represented as

[ r1 r2] = HSU + Z ∈ C2K×2 (3)

where rt = [ r1,t r2,t · · · rK,t]
T ∈ C2K×1. Here, rk,t = [ r1

k,t r2
k,t]

T∈ C2×1 is the received signal
vector where rn

k,t is the received signal at the n-th receive antenna of the k-th user at time
t. HS ∈ C2K×NS denotes the channel submatrix obtained by selecting NS columns from
the full channel matrix H = [h1 h2 · · · hNT ] ∈ C2K×NT . Here, hm, m = 1, 2, · · · , NT , is
a channel vector between the m-th transmit antenna and all users, which is static for
t = 1 and t = 2, and whose elements are independent and identically distributed (i.i.d.)
circularly symmetric complex Gaussian random variables with zero mean and unit variance.
Z = [Z1 Z2 · · · ZK]

T ∈ C2K×2 with Zk = [z1 z2] ∈ C2×2 and zt = [ z1,t z2,t]
T ∈ C2×1,
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t = 1, 2, is an independent and identically distributed (i.i.d.) additive white Gaussian noise
(AWGN) matrix whose elements are the zero-mean circular complex white Gaussian noise
component of variance of σ2

z .
For the MU–STLC decoding, the received signal matrix of (3) is re-expressed in a linear

form as [14]

r ,
[
rT

1 rH
2

]T
=

[
HSWS

(HSWS)
∗Q2K

]
x + z ∈ C4K×1 (4)

where
x , [x1,1 x1,2 · · · xk,1 xk,2 · · · xK,1 xK,2]

T (5)

Q2K = blkdiag{Q2, · · · , Q2} ∈ R2K×2K (6)

Q2 =

[
0 −1
1 0

]
(7)

and z ∈ C4K×1 is the AWGN vector with E[zzH ] = σ2
z I4K.

By the simple STLC combining procedure at the receiver described in [14], the mul-
tiuser combined-STLC received signal vector can be given as

y = H̃SW̃Sx + z
′ ∈ C2K×1 (8)

where
H̃S , [HS QT

2KH∗S
]
∈ C2K×2NS (9)

W̃S ,
[
WT

S QT
2KWH

S

]T
∈ C2NS×2K (10)

and the combined AWGN vector z
′ ∈ C2K×1 follows the distribution CN (02K, 2σ2

z I2K).
Here, the MU–STLC precoding matrix W̃S can be given by

W̃S = β̃SH̃H
S ṼS (11)

where the power normalization factor related to the selected TAS is given as

β̃S =
1

‖ H̃H
S ṼS‖F

(12)

and ṼS is determined by ZF and MMSE precoders, respectively, as

ṼZF,S = (H̃SH̃H
S )
−1

(13)

ṼMMSE,S =

(
H̃H

S H̃H
S +

2Kσ2
z

σ2
x

I2K

)
−1 (14)

3. TAS Selection Algorithms

In this section, we first present previous optimal and suboptimal greedy TAS selection
algorithms for the MMSE-precoded MU–STLC systems. Then, the popular Woodbury
formula is exploited to obtain a suboptimal incremental SNR-based TAS selection method
with more reduced complexity. Furthermore, we propose a decremental TAS selection
algorithm based on ZF and MMSE criteria. Finally, an efficient algorithm for decremental
TAS selection is developed by using the Woodbury formula.
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3.1. Optimal Exhaustive Search-Based and SINR-Greedy-Based TAS Selection Algorithms

It is easily shown that maximizing the received SINR of the MMSE-precoded MU–
STLC systems is equivalent to maximizing the term β̃2

S. Hence, the TAS selection scheme
for the MU–STLC systems can be expressed as

Sopt = arg max
S∈ { Sn ,n=1,2,··· ,C (NT ,NS) }

β̃2
S (15)

where Sn is the n-th enumeration of the set of all available TASs. Here, C(NT , NS) is the
total number of combinations of selecting NS transmit antennas out of NT antennas. Then,
the optimal TAS selection algorithm for the MMSE-precoded MU–STLC system is described
as [14].

Sopt = arg min
S∈ { Sn ,n=1,2,··· ,C (NT ,NS) }

Tr
[

ṼMMSE,S
]

(16)

It should be pointed out that in the ZF precoding case, the previous works of [24,25]
use the minimization of Tr

[
(HSHH

S )
−1
]

for TAS selection in the PSM systems, whereas this

work for the MU–STLC systems is based on the optimization of Tr
[
(H̃SH̃H

S )
−1
]

, where H̃S

is defined by (9). Thus, the TAS selection algorithms presented in [24,25] are unsuitable
for TAS selection in the MU–STLC systems. Due to the difference between two channel
matrices of HS ∈ C2K×NS and H̃S ∈ C2K×2NS , the Woodbury formula should be applied
differently to the development process of the low-complexity algorithm, and thus, the
succeeding efficient TAS selection algorithms proposed for the MU–STLC systems in this
work are distinct from those in [24,25]. Furthermore, note that most of the studies on
antenna selection, including [16,18,23], are based on the channel HS, not H̃S. That is why
they are inappropriate for direct use in the MU–STLC systems.

Obviously, the exhaustive search algorithm to solve (16) requires C(NT , NS) matrix
inverse operations, whose computational complexity is tremendous, especially when
the number of all possible TASs is large. Since the first effort in the MU–STLC systems
is to reduce the complexity, an SINR-greedy-based TAS selection algorithm shown in
Algorithm 1 has been proposed in [14].

Algorithm 1 SINR-greedy-based TAS selection algorithm.

Inputs: H, Q2K , NT , NS, K, σ2
x , σ2

z
1: Cn = ‖H(:, n)‖F, n = 1, 2, · · · , NT
2: [V, u] = max{C1, C2, · · · , CNT}
3: HS = H(:, u)
4: H̄0 = H(:, [1 : (u− 1) (u + 1) : end])
5: for k = 1, 2, · · · , NS − 1
6: for q = 1, 2, · · · , (NT − k)
7: Htemp = [HS(:, 1 : k) H̄k−1(:, q)]
8: H̃temp =

[
Htemp QT

2KH∗temp

]
9: Ṽk,q =

(
H̃tempH̃H

temp +
2Kσ2

z
σ2

x
I2K

)−1

10: λk,q = Tr
[

Ṽk,q

]
11: end
12: q̂ = arg min

q
λk,q

13: HS(:, k + 1) = H̄k−1(:, q̂)
14: H̄k = H̄k−1( :, [1 : (q̂− 1) (q̂ + 1) : end])
15: end
Output: HS
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3.2. Proposed Incremental TAS Selection Algorithm

In the MMSE-precoded MU–STLC systems, the received SNR can be used as the design
criterion for the proposed incremental TAS selection optimization and readily derived from
(8), (10), and (12) as

ηS = β̃2
S

σ2
x

2σ2
z

(17)

where
β̃2

S =
1

Tr
[(

H̃SH̃H
S

)−1
] (18)

To significantly reduce the complexity of Algorithm 1, an SNR-based efficient in-
cremental TAS selection algorithm can be developed by using the popular Woodbury
formula [26]. The first-proposed TAS selection algorithm constructs the TAS by starting
with an empty TAS and adding one antenna in each iteration. Assuming that k transmit
antennas have been selected, the resulting selected subchannel is denoted as Hk ∈ C2K×k,
where 1 ≤ k < NS. Then, the channel matrix for the (k + 1)-th iteration process can be
represented as

Hk+1 = [ Hkhk+1] (19)

where hk+1 denotes one of the unselected column vectors of H after completing the k-th
iteration. Using the selected channel submatrix Hk, the (k + 1)-th selected antenna can be
determined by the following optimization.

Sk+1 = arg min
(k+1)∈Rk

Tr
[
(H̃k+1H̃H

k+1)
−1
]

(20)

where H̃k+1 =
[
Hk+1 QT

2KH∗k+1

]
, Sk+1 indicates the TAS determined after the (k + 1)-th

selection procedure, and Rk denotes the TAS unselected after the k-th iteration. In each
iteration, the computation of the matrix product H̃k+1H̃H

k+1 and the matrix inversion in

(H̃k+1H̃H
k+1)

−1
requires an expensive computational load.

To reduce the computational complexity further, we adopt the Woodbury formula [26]
written as (

A + BCH
)−1

= A−1 −A−1B
(

I + CHA−1B
)−1

CHA−1 (21)

Then, (H̃k+1H̃H
k+1)

−1
can be re-expressed as

(H̃k+1H̃H
k+1)

−1
= (H̃kH̃H

k + h̃k+1h̃H
k+1)

−1

= (H̃kH̃H
k )
−1
− (H̃kH̃H

k )
−1

h̃k+1

(
I2 + h̃H

k+1(H̃kH̃H
k )
−1

h̃k+1

)−1
h̃H

k+1(H̃kH̃H
k )
−1 (22)

where h̃k+1 =
[
hk+1 QT

2Kh∗k+1

]
. Thus, by defining Ṽk = (H̃kH̃H

k )
−1

, (20) can be written as

Sk+1 = arg min
(k+1)∈Rk

Tr
[

Ṽk − Ṽkh̃k+1

(
I2 + h̃H

k+1Ṽkh̃k+1

)−1
h̃H

k+1Ṽk

]
(23)

Based on the above analysis, the procedure of the proposed SNR-based incremental
TAS selection algorithm can be summarized in Algorithm 2. As an initial one of the matrix
Ṽk, Ṽ0 is employed with a 2K× 2K identity matrix of I2K. Here, H(:, q) and HQ(:, q) denote
the q-th column vector of the updated channel matrix H and HQ = QT

2KH∗, respectively,
which are associated with the transmit antennas remained after completing each step. It
should be pointed out that in Algorithm 2, a 2× 2 matrix inverse operation is performed
in each incremental step, which mainly contributes to lower complexity compared to the
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conventional greedy-based algorithm. The idea of the proposed algorithm is to find a TAS
by reducing the complexity for the matrix inverse operation needed at each step.

Algorithm 2 SNR-based efficient incremental TAS selection algorithm.

Inputs: H, Q2K , NT , NS, K
1: HQ = QT

2KH∗

2: Ṽ0 = I2K
3: for k = 1, 2, · · · , NS
4: for q = 1, 2, · · · , (NT − k + 1)

5: H̃k,q =
[
H(:, q)HQ(:, q)

]
6: Θ̃k,q = Ṽk−1H̃k,q

7: λk,q = Tr
[

Ṽk−1 − Θ̃k,q

(
I2 + H̃H

k,qΘ̃k,q

)−1
Θ̃H

k,q

]
8: end
9: q̂ = arg min

q
λk,q

10: Ṽk = Ṽk−1 − Θ̃k,q̂

(
I2 + H̃H

k,q̂Θ̃k,q̂

)−1
Θ̃H

k,q̂
11: H = H(:, [1 : (q̂− 1) (q̂ + 1) : end])
12: HQ = HQ(:, [1 : (q̂− 1) (q̂ + 1) : end])
13: end
14: HS = H
Output: HS

3.3. Proposed Decremental TAS Selection Algorithm

In the ZF-precoded MU–STLC systems, the received SNR of (17) can be also employed
as a design criterion for the proposed decremental TAS selection optimization. In order
to see how TAS selection affects the SNR, let S and S′ be two TASs in the ZF-precoded
MU–STLC systems, where S ⊂ S′ ⊆ { 1, 2, · · · , NT}. Let S = S′ − S and HS′ =

[
HS HS

]
.

Then, the expression of H̃S′ can be written as

H̃S′ =
[
HS′ QT

2KH∗S′
]
=
[
HS HS QT

2KH∗S QT
2KH∗S

]
(24)

Thus, it is easily shown that H̃S′H̃
H
S′ = H̃SH̃H

S + H̃SH̃H
S , where H̃S ,

[
HS QT

2KH∗S

]
∈

C2K×2NS . Now we have

(H̃SH̃H
S )
−1

= (H̃S′H̃
H
S′ − H̃SH̃H

S )
−1

(25)

Then, according to the Woodbury formula [26] written as(
A− BCH

)−1
= A−1 + A−1B

(
I−CHA−1B

)−1
CHA−1 (26)

and the inverse of H̃SH̃H
S can be calculated as

(H̃SH̃H
S )
−1

= (H̃S′H̃
H
S′ )
−1

+ (H̃S′H̃
H
S′ )
−1

H̃S

(
I− H̃H

S (H̃S′H̃
H
S′ )
−1

H̃S

)−1
H̃H

S (H̃S′H̃
H
S′ )
−1

(27)

Using (27), β̃2
S of (18) can be rewritten as

β̃2
S =

1

Tr
[
(H̃S′H̃

H
S′)
−1
]
+ Tr

(
Ψ̃S
) (28)

where
Ψ̃S = ṼZF,S′H̃S

(
I− H̃H

S ṼZF,S′H̃S

)−1
H̃H

S ṼZF,S′ (29)
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ṼZF,S′ = (H̃S′H̃
H
S′)
−1

(30)

Since Ψ̃S > 0, we have
PZF,S β̃2

S = β̃2
S′ (31)

where PZF,S denotes the SNR penalty of TAS selection, which is defined as the increase
in the received SNR for S to achieve the same SNR as that of S′. The SNR penalty can be
expressed as

PZF,S ,
β̃2

S′

β̃2
S

=
Tr
(
ṼS′
)
+ Tr

(
Ψ̃S
)

Tr
(
ṼS′
) (32)

If Tr
(
ṼS′
)

is assumed to be fixed, the SNR penalty can be minimized for the minimum
value of Tr

(
Ψ̃S
)
. Therefore, we obtain

Sopt = arg min
S ∈ {Sn, n = 1, 2, · · · , C(NT , NS)}
S = S′ − S

Tr
(
Ψ̃S
)

= arg min
S ∈ {Sn, n = 1, 2, · · · , C(NT , NS)}
S = S′ − S

Tr
[

ṼS′H̃S

(
I− H̃H

S ṼS′H̃S

)−1
H̃H

S ṼS′

] (33)

The idea of the proposed TAS selection algorithms with lower complexity is to con-
struct a TAS by removing one by one with a decremental manner from the full channel
matrix H. The SNR-based decremental TAS selection algorithm for the ZF-precoded
MU–STLC system is shown in Algorithm 3, which begins with a full channel matrix and
eliminates one transmit antenna in each decremental step. Note that the initial matrix of

ṼS′ is computed by (H̃NT
H̃H

NT
)
−1

, where H̃NT =
[
H QT

2KH∗
]
. The matrix dimension of

H̃NT−k+1 used in computing ṼNT−k+1 becomes smaller at each iteration.

Algorithm 3 SNR-based decremental TAS selection algorithm.

Inputs: H, Q2K , NT , NS
1: HS′ = H
2: for k = 1, 2, · · · , NT − NS
3: HQ = QT

2KH∗S′
4: H̃NT−k+1 =

[
HS′ HQ

]
5: ṼNT−k+1 =

(
H̃NT−k+1H̃H

NT−k+1

)−1

6: for q = 1, 2, · · · , (NT − k + 1)

7: H̃S =
[
HS′ (:, q)HQ(:, q)

]
8: Θ̃k,q = ṼNT−k+1H̃S

9: λk,q = Tr
[

Θ̃k,q

(
I2 − H̃H

S Θ̃k,q

)−1
Θ̃H

k,q

]
10: end
11: q̂ = arg min

q
λk,q

12: HS′ = HS′ (:, [1 : (q̂− 1) (q̂ + 1) : end])
13: end
14: HS = HS′

Output: HS

To reduce the complexity of Algorithm 3 further, a ZF-based efficient decremental
TAS selection algorithm summarized in Algorithm 4 can be developed by using (27). The
first step starts with a full channel matrix and removes one transmit antenna in each
decremental step. After taking k decremental steps, k transmit antennas are removed, and
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then the corresponding remained channel submatrix is denoted by HNT−k ∈ C2K×(NT−k),
where 1 ≤ k ≤ (NT − NS), and can be expressed as

HNT−k =
[

HNT−k−1hk
]

(34)

where hk is the column vector of HNT−k corresponding to the (k + 1)-th deleted antenna.
Then, based on (33), the proposed ZF-based efficient decremental TAS selection problem
can be rewritten as

Sk = arg min
Sk

Tr
[

ṼNT−kH̃k

(
I2 − H̃H

k ṼNT−kH̃k

)−1
H̃H

k ṼNT−k

]
(35)

where Sk denotes the antenna subset remained at the k-th decremental step and

ṼNT−k =
(

H̃NT−kH̃H
NT−k

)−1
(36)

H̃NT−k ,
[
HNT−k QT

2KH∗NT−k

]
=
[
HNT−k−1 hk QT

2KH∗NT−k−1 QT
2Kh∗k

]
(37)

H̃k ,
[
hk QT

2Kh∗k
]
∈ C2K×2 (38)

In Algorithm 4, the computation of ṼNT using matrix inverse operation is carried
out only once in the beginning, and then the matrix ṼNT−k+2 is updated using ṼNT−k+1
obtained at the previous iteration. This procedure is different from Algorithm 3 and thus
makes a contribution to have lower complexity.

Algorithm 4 Proposed ZF-based efficient decremental TAS selection algorithm.

Inputs: H, Q2K , NT , NS
1: HQ = QT

2KH∗

2: H̃S′ =
[
H HQ

]
3: ṼNT =

(
H̃S′H̃

H
S′
)−1

4: for k = 1, 2, · · · , NT − NS
5: for q = 1, 2, · · · , (NT − k + 1)

6: H̃k,q =
[
H(:, q) HQ(:, q)

]
7: Θ̃k,q = ṼNT−k+1H̃k,q

8: λk,q = Tr
[

Θ̃k,q

(
I2 − H̃H

k,qΘ̃k,q

)−1
Θ̃H

k,q

]
9: end
10: q̂ = arg min

q
λk,q

11: ṼNT−k+2 = ṼNT−k+1 + Θ̃k,q̂

(
I2 − H̃H

k,q̂Θ̃k,q̂

)−1
Θ̃H

k,q̂
12: H = H(:, [1 : (q̂− 1)(q̂ + 1) : end])
13: HQ = HQ(:, [1 : (q̂− 1)(q̂ + 1) : end])
14: end
15: HS = H
Output: HS

In the MMSE-precoded MU–STLC systems, the mean square error (MSE) criterion can
be adopted for the proposed efficient decremental TAS selection. For a channel matrix HS,
the MSE derived in [14] for MMSE-precoded MU–STLC systems is given as

JS = 2Kσ2
z Tr
(

ṼS
)

(39)

Similar to the ZF-precoded MU–STLC systems, we want to see how TAS selection
affects the MSE. By denoting S and S′ by two TASs to be satisfied with S ⊂ S′ ⊆
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{ 1, 2, · · · , NT} and S = S′ − S, the MSE difference between two sets of S′ and S in
MMSE-precoded MU–STLC systems can be written as

JS = JS′ − JS = 2Kσ2
z Tr
(
ṼS′ − ṼS

)
= 2Kσ2

z Tr
(

ṼS′ −
(

H̃S′H̃
H
S′ − H̃SH̃H

S

)−1
)

= −2Kσ2
z Tr
(

ṼS′H̃S

(
I2K − H̃H

S ṼS′H̃S

)−1
H̃H

S ṼS′

) (40)

where

ṼS′ =

(
H̃S′H̃

H
S′ +

2Kσ2
z

σ2
x

I2K

)−1

(41)

ṼS =

(
H̃SH̃H

S +
2Kσ2

z
σ2

x
I2K

)−1

(42)

H̃S′ ,
[
HS′ QT

2KH∗S′
]

(43)

H̃S ,
[
HS QT

2KH∗S
]

(44)

Since Tr
(

ṼS′H̃S

(
I2K − H̃H

S ṼS′H̃S

)−1
H̃H

S ṼS′

)
> 0, JS of (40) becomes negative. Thus,

it can be concluded that when the transmit power constraint and the number NT of transmit
antennas are fixed, the MSE is monotonically decreasing with the number NS of active
transmit antennas in MMSE-precoded MU–STLC systems.

Then, the optimal TAS selection algorithm based on the MSE criterion for the MMSE-
precoded MU–STLC system can be formulated as [14].

Sopt = arg min
S ∈ { Sn, n = 1, 2, · · · , C (NT , NS) }

S = S′ − S

∣∣ JS

∣∣
= arg min

S ∈ {Sn, n = 1, 2, · · · , C (NT , NS)}
S = S′ − S

Tr
[

ṼS′ H̃S

(
I2K − H̃H

S ṼS′ H̃S

)−1
H̃H

S ṼS′

] (45)

which is the same as that for the ZF-precoded MU–STLC system, except for ṼS′ given as
(41). Therefore, for MSE-based efficient decremental TAS selection in MMSE-precoded
MU–STLC systems, line 3 in Algorithm 4 is replaced with the following:

ṼNT =

(
H̃S′H̃

H
S′ +

2Kσ2
z

σ2
x

I2K

)−1

(46)

On the other hand, the received SINR penalty in MMSE-precoded MU–STLC systems
can be defined as

PMMSE,S ,
γS′

γS
(47)

where the received SINRs for two TASs of S′ and S in MMSE-precoded MU–STLC systems
are given as [14].

γS′ =
σ2

x
σ2

z Tr
(

ṼS′
) − 1 (48)

γS =
σ2

x
σ2

z Tr
(

ṼS
) − 1 (49)
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The asymptotic received SINR penalty for large values of SNR in the MMSE- precoded
MU–STLC systems can be obtained as

lim
SNR→∞

PMMSE,S = lim
SNR→∞

1
Tr( ṼMMSE,S′)

− 1
SNR

1
Tr( ṼMMSE,S)

− 1
SNR

= lim
SNR→∞

Tr( ṼMMSE,S)
Tr( ṼMMSE,S′)

= lim
SNR→∞

Tr
((

H̃SH̃H
S + 2K

SNR I2K

)−1
)

Tr
((

H̃S′ H̃
H
S′+

2K
SNR I2K

)−1
) =

Tr( ṼZF,S)
Tr( ṼZF,S′)

=
Tr( ṼS′)+Tr( Ψ̃S)

Tr( ṼS′)

(50)

where SNR = σ2
x /σ2

z . The asymptotic received SINR penalty of (50) has the same expression
as that of (32) in the ZF-precoded MU–STLC systems.

4. Complexity Analysis

For complexity analysis of TAS selection algorithms, we consider the number of
real multiplications (RMs) and the number of real summations (RSs) [24,27]. Given arbi-
trary matrices A ∈ CN×M and B ∈ CM×P, the number of complex multiplications (CMs)
and complex summations (CSs) required for three matrix-related operations is given in
Table 1 [27], which is utilized in the following complexity analysis. Here, a CM requires
four RMs and two RSs, whereas a CS uses two RSs.

Table 1. Computational complexity of complex multiplications and complex summations in three
matrix-related operations.

Expressions CMs CSs

AB NPM NP(M− 1)

D = AAH 0.5MN(N + 1) 0.5(M− 1)N(N + 1)

D−1 0.5N3 + 1.5N2 0.5N3 − 0.5N2

Recall that this work has employed an NT−by−2K MU–STLC system with NT avail-
able transmit antennas, NS selected transmit antennas, and K users, where the receiver of
each user has two receive antennas for STLC. Thus, it is assumed that the total number of
receive antennas is 2K.

4.1. Complexity of SINR-Greedy-Based TAS Selection Algorithm

From Algorithm 1, the computational complexities of the SINR-greedy-based TAS
selection scheme in terms of RMs and RSs, respectively, can be evaluated line by line as

Line 1:

• RM in Cn = ‖H(:, n)‖F ⇒ 8KNT ,
• RS in Cn = ‖H(:, n)‖F ⇒ 8KNT − 2NT ,

Line 9:

• RM in Φ̃ = H̃tempH̃H
temp + (2Kσ2

z /σ2
x)I2K ⇒ (16K2 + 8K)(k + 1) + 3 ,

• RS in Φ̃ = H̃tempH̃H
temp + (2Kσ2

z /σ2
x)I2K ⇒ (4K2 + 2K)(4k + 3) + 2K ,

• RM in Φ̃−1 ⇒ 16K3 + 24K2 ,
• RS in Φ̃−1 ⇒ 16K3 + 8K2 ,

Line 10:

• RS in Tr
[

Ṽk,q

]
⇒ 4K ,

Thus, the overall complexities of the SINR-greedy-based TAS selection algorithm
(called greedy) in terms of RMs and RSs, respectively, are given as

NRM
greedy = K3(16NT NS + 8NS − 16NT − 8N2

S
)
+ K2

(
8NT N2

S + 32NT NS +
52
3 NS − 40NT − 12N2

S −
16
3 N3

S

)
+K
(
4NT N2

S + 4NT NS +
8
3 NS − 8

3 N3
S
)
+ 3NT NS +

3
2 NS − 3NT − 3

2 N2
S

(51)
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NRS
greedy = K3(16NT NS + 8NS − 16NT − 8N2

S
)
+ K2

(
8NT N2

S + 12NT NS +
22
3 NS − 20NT − 2N2

S −
16
3 N3

S

)
+K
(

4NT N2
S + 8NT NS +

14
3 NS − 4NT − 2N2

S −
8
3 N3

S

)
− 2NT

(52)

4.2. Complexity of Proposed SNR-Based Efficient Incremental TAS Selection Algorithm

From Algorithm 2 with (23) in lines 6 and 7, the numbers of RMs and RSs for the
proposed SNR-based efficient incremental TAS selection algorithm can be calculated as

Line 6:

• RM in Ṽk−1H̃k,q ⇒ 32K2 ,
• RS in Ṽk−1,

Line 7:

• RM in µ = H̃H
k,qΘ̃k,q ⇒ 32K ,

• RS in µ = H̃H
k,qΘ̃k,q ⇒ 24K− 6 ,

• RM in ∆ = (I2 − µ)−1 ⇒ 40 ,
• RS in ∆ = (I2 − µ)−1 ⇒ 26 ,
• RM in α = ∆Θ̃H

k,q ⇒ 32K
• RS in α = ∆Θ̃H

k,q ⇒ 24K ,

• RM in ψ = Θ̃k,qα⇒ 16K2 + 8K ,
• RS in ψ = Θ̃k,qα⇒ 28K2 + 14K
• RS in Ṽk−1 −ψ⇒ 4K ,
• RS in Tr[ψ]⇒ 4K ,

Thus, the overall computational complexities of the proposed SNR-based incremental
TAS selection algorithm (called proposed incremental) are given by

NRM
proposed−incremental =

(
24K2 + 38K + 20

)(
2NT NS + NS − N2

S

)
(53)

NRS
proposed−incremental =

(
30K2 + 29K + 10

)(
2NT NS + NS − N2

S

)
(54)

4.3. Complexity of Proposed MMSE-Based Decremental TAS Selection Algorithm

From Algorithm 4 with (46) in line 3, the numbers of RMs and RSs for the proposed
MMSE-based decremental TAS selection algorithm can be obtained as

Line 3: RMs and RSs can be computed in a similar manner used in line 9 of Section 4.1.
Line 7:

• RM in Θ̃k,q = ṼNT−k+1H̃k,q ⇒ 32K2 ,
• RS in Θ̃k,q = ṼNT−k+1H̃k,q ⇒ 32K2 − 8K ,

Line 8: RMs and RSs are the same as those, except for RS in Ṽk−1 −ψ, in line 7 of
Section 4.2.

Line 11: RSs are evaluated as in line 7 of Section 4.1.
Thus, the overall complexities of the proposed MMSE-based decremental TAS selec-

tion algorithm (called proposed MMSE incremental) in terms of RMs and RSs, respectively,
are given as

NRM
proposed−MMSE−decremental = 16K3 + K2(24N2

T + 40NT + 24− 24N2
S − 24NS

)
+K
(
36N2

T + 44NT − 36N2
S − 36NS

)
+ 20

(
N2

T + NT − N2
S − NS

) (55)

NRS
proposed−MMSE−decremental = 16K3 + K2(30N2

T + 46NT + 4− 30N2
S − 30NS

)
+K
(
27N2

T + 39NT − 27N2
S − 31NS − 2

)
+ 10

(
N2

T + NT − N2
S − NS

) (56)
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4.4. Complexity Comparison

In this work, (NT , NS, K) indicates that NT transmit antennas, NS selected transmit
antennas, and K users are used as system parameters. Remember that each user has two
receive antennas, even for the MU–STLC systems. In Figure 1, the complexity of the
proposed incremental and decremental TAS selection algorithms is compared with that of
the greedy algorithm as a function of the number of selected transmit antennas for NT = 8,
where the number of users is assumed to be the same as that of the selected transmit
antennas. It is deduced that for the small number of NS(= 2, 3) in the (8, NS, K) MU–
STLC system with NS = K, the complexity of the conventional greedy-based algorithm is
comparable to the proposed algorithms. As NS gets higher, the complexity of the greedy
algorithm significantly increases and the proposed incremental algorithm obtains a much
smaller complexity than the greedy one. On the other hand, the decremental algorithm
achieves the smallest complexity for large NS.
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Figure 1. The complexity of the proposed transmit antenna subset (TAS) selection algorithms as a
function of NS for (8, NS, K) multiuser space–time line code (MU–STLC) system with NS = K.

Figure 2a–d illustrate the complexity of three TAS selection algorithms as a function of
varying NS for (8, NS, 4), (16, NS, 4), (32, NS, 8) and (200, NS, 32), and MU–STLC systems,
respectively, where the number of users is invariant. For the small number of NS(= 4, 5) of
the (16, NS, 4) MU–STLC system in Figure 2b, the conventional greedy-based algorithm has
lower complexity than the proposed MMSE decremental algorithm but higher complexity
than the proposed incremental algorithm. Meanwhile, it can be observed that the proposed
incremental algorithm significantly reduces the complexity of the greedy algorithm for
larger NS. In addition, the rate of increase for the proposed incremental algorithm is
much smaller than that of the greedy algorithm. On the other hand, the complexity of
the decremental algorithm becomes lower as NS increases. It is mainly due to reduction
of C(NT , NS). Furthermore, it is found that the decremental algorithm can attain lower
complexity than the proposed incremental algorithm when is greater than half of NT . It
should be noted that the proposed algorithms conduct 2× 2 matrix inverse operations in
each incremental/decremental step, which is the main reason to offer a low complexity for
large antenna dimensions, compared to the conventional greedy-based algorithm requiring
2K× 2K matrix inverse operations.
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5. Simulation Results

In this section, several TAS selection algorithms for the MU–STLC system with NT
transmit antennas and K users are evaluated through Monte Carlo simulations over static
Raleigh flat-fading channels. Each user has two receive antennas. The SNR is defined
as σ2

x /σ2
z . In the case of NS = NT , there is no TAS selection. We assume that the CSI

is perfectly known at the transmitter of the MU–STLC system. The quadrature phase
shift keying (QPSK) modulation is assumed. In the simulations, the BER performance
of the linear precoded MU–STLC system is compared using the following TAS selection
algorithms:

(a) SINR-greedy-based TAS selection [14] (greedy);
(b) Proposed SNR-based efficient incremental TAS selection (proposed incremental);
(c) Proposed ZF-based efficient decremental TAS selection (proposed ZF decremental);
(d) Proposed MMSE-based efficient decremental TAS selection (proposed MMSE decre-

mental);
(e) Optimal ZF-based TAS selection (optimal ZF);
(f) Optimal MMSE-based TAS selection (optimal MMSE).

It should be pointed out that the linear precoded MU–STLC TAS systems with (a), (b),
(d), and (f) employ MMSE precoders at the transmitter, whereas the systems based on TAS
selection of (c) and (e) use ZF precoders.

The BER performance of the proposed TAS selection algorithms is given in Figure 3
in the scenario of (NT , NS, K) = (8, 4, 4). We observe that the proposed incremental TAS
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selection algorithm achieves a slightly worse performance than the greedy algorithm in
the high SNR regime with lower complexity (which is confirmed from Figure 1). It is also
shown that the proposed decremental TAS selection algorithm outperforms the greedy and
proposed incremental algorithms. The performance of the latter may be poorly affected by
an initially selected antenna. Furthermore, the proposed MMSE decremental TAS selection
algorithm can achieve better BER performance compared to that of the proposed ZF
decremental TAS selection one. In addition, the BER results of the proposed ZF and MMSE
decremental selection algorithms are close to those of the optimal exhaustive search-based
ZF and MMSE TAS selection algorithms, respectively.

Sensors 2021, 21, x FOR PEER REVIEW 17 of 23 
 

 

The BER performance of the proposed TAS selection algorithms is given in Figure 3 

in the scenario of ( , , ) (8,4,4)T SN N K . We observe that the proposed incremental TAS 

selection algorithm achieves a slightly worse performance than the greedy algorithm in 

the high SNR regime with lower complexity (which is confirmed from Figure 1). It is also 

shown that the proposed decremental TAS selection algorithm outperforms the greedy 

and proposed incremental algorithms. The performance of the latter may be poorly af-

fected by an initially selected antenna. Furthermore, the proposed MMSE decremental 

TAS selection algorithm can achieve better BER performance compared to that of the pro-

posed ZF decremental TAS selection one. In addition, the BER results of the proposed ZF 

and MMSE decremental selection algorithms are close to those of the optimal exhaustive 

search-based ZF and MMSE TAS selection algorithms, respectively. 

 

Figure 3. Bit error rate (BER) of the proposed TAS selection algorithm and optimal selection algo-

rithm for (8, 4, 4)  MU–STLC system. 

Figure 4 depicts the BER results of the proposed TAS selection algorithms for the 

(8, , )SN K  MU–STLC system when SN  is equal to K . It is assumed that the values of K  

are given as 2, 4, and 8K  . Note that (8,8,8)  indicates no TAS selection case. It is ob-

served that the BER performance of all the TAS selection algorithms improves as K  de-

creases. The good performance for small K  results from the decreased multiuser inter-

ference. Especially, the proposed MMSE decremental TAS selection algorithm is shown 

to provide the best BER performance. In this scenario, the computational complexity of 

the greedy, the proposed incremental, and the proposed MMSE decremental algorithms 

is shown in Figure 1. For 2SN , the complexity of the greedy algorithm is the smallest, 

while the BER performance of the greedy algorithm is slightly less than that of the pro-

posed MMSE decremental algorithm and similar to that of the proposed incremental al-

gorithm. We can observe that the BER performance difference between the proposed ZF 

and MMSE decremental algorithms becomes smaller as the diversity gain gets larger. It 

should be noted that the diversity gain of the (8,2,2)  MU–STLC system is larger than 

Figure 3. Bit error rate (BER) of the proposed TAS selection algorithm and optimal selection algorithm
for (8, 4, 4) MU–STLC system.

Figure 4 depicts the BER results of the proposed TAS selection algorithms for the
(8, NS, K) MU–STLC system when NS is equal to K. It is assumed that the values of K are
given as K = 2, 4, and 8. Note that (8, 8, 8) indicates no TAS selection case. It is observed
that the BER performance of all the TAS selection algorithms improves as K decreases. The
good performance for small K results from the decreased multiuser interference. Especially,
the proposed MMSE decremental TAS selection algorithm is shown to provide the best BER
performance. In this scenario, the computational complexity of the greedy, the proposed
incremental, and the proposed MMSE decremental algorithms is shown in Figure 1. For
NS = 2, the complexity of the greedy algorithm is the smallest, while the BER performance
of the greedy algorithm is slightly less than that of the proposed MMSE decremental
algorithm and similar to that of the proposed incremental algorithm. We can observe
that the BER performance difference between the proposed ZF and MMSE decremental
algorithms becomes smaller as the diversity gain gets larger. It should be noted that the
diversity gain of the (8, 2, 2) MU–STLC system is larger than that of the (8, 4, 4) case.
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In Figures 5 and 6, as the number of active transmit antennas decreases in the proposed
MMSE decremental TAS selection algorithm, the received SNR penalty increases. Here,
the number of users is fixed as K = 4. It is also seen in Figure 5 that the performance gap
between the proposed decremental selection algorithms and the greedy algorithm is bigger
as the number of selected antennas is smaller. It is observed in Figure 6 that when the
diversity gain is high, all the greedy, the proposed incremental, and the proposed MMSE
decremental algorithms offer similar BER performance. In Figure 5, the SNR penalties are
approximately given as 1 dB and 3.8 dB, respectively, for NS = 6 and NS = 4. In Figure 6,
they are approximated by 2.5 dB and 6.75 dB, respectively, for NS = 8 and NS = 4. They
are well agreed with analytical results in Figure 7, which is obtained from (50). Thus, we
can evaluate the received SNR penalty owing to TAS selection by using (50) for massive
MU–STLC MIMO systems. Figure 8 exhibits the asymptotic received SINR penalty as a
function of NS for the MU–STLC system with NT = 32 and K = 8. It is found that as the
number of selected transmit antennas increases, the SINR penalty decreases. Furthermore,
we can expect from the received SINR penalty analysis that without BER simulations, the
BER results of the proposed MMSE decremental and conventional greedy algorithms are
similar for the (32, NS, 8) MU–STLC system.
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Figure 8. Received SINR loss for MU–STLC system with TAS selection for (32, NS, 8)

Finally, Figures 9 and 10 illustrate the BER results of the proposed TAS selection
algorithms as a function of K for the (8, NS, K) MU–STLC system with NS = K when
SNR = 12 dB and SNR = 16 dB, respectively, are given. The BER performance worsens
for all TAS selection algorithms as NS(= K) increases. It is due to the increased multiuser
interference. Particularly, the proposed ZF decremental TAS selection algorithm for large
K achieves poor performance owing to large multiuser interference. On the other hand,
it is seen that the proposed MMSE decremental TAS selection algorithm achieves the
BER performance close to the optimal algorithm and outperforms the other TAS selection
schemes for NS < NT . This implies that the proposed MMSE decremental selection
algorithm is able to effectively suppress the multiuser interference. For this scenario,
the comparison of computational complexity has been given in Figure 1. Recall that
the proposed MMSE decremental TAS selection algorithm has the lowest complexity for
NS = {5, 6, 7}.
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6. Conclusions

This paper proposes incremental and decremental TAS selection algorithms with
low complexity to efficiently reduce the number of RF chains for the MU–STLC systems.
It is analyzed that the proposed algorithms achieve significantly reduced complexity
than the existing greedy algorithm for the MU–STLC systems. Thus, they achieve a
better tradeoff between BER performance and computational complexity for large antenna
dimensions. The proposed MMSE decremental TAS selection algorithm obtains better BER
performance than the existing greedy algorithm for the MU–STLC systems with relatively
low antenna dimensions. Its BER performance is close to that achieved by exhaustive
search-based optimal MMSE-based TAS selection algorithm for the (8, 4, 4) MU–STLC
system. Its complexity is significantly lower than the other algorithms especially for large
NS. Moreover, it is analytically shown that decreasing the number of active transmit
antennas in the MU–STLC systems damages the detection SINR. Its simulation results are
shown to agree with the asymptotic received SINR penalty. As possible future research, it
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would be worthwhile to consider the joint transmit/receive antenna subsets selection or
joint transmit antenna/user subset selection for the MU–STLC systems.
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