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Abstract 

Genome-wide association studies (GWAS) have reported 45 single-nucleotide polymorphisms 
(SNPs) that may contribute to the susceptibility of lung cancer, with the majority in non-coding 
regions. However, no study has ever systematically evaluated the association between SNPs in 
physical chromatin interaction regions and lung cancer risk. In this study, we integrated the 
chromatin interaction information (Hi-C data) of lung cancer cell line and conducted a meta-analysis 
with two Asian GWASs (7,127 cases and 6,818 controls) to evaluate the association of potentially 
functional SNPs in chromatin interaction regions with lung cancer risk. We identified four novel lung 
cancer susceptibility loci located at 1q21.1 (rs17160062, P=4.00×10-6), 2p23.3 (rs670343, 
P=4.87×10-7), 2p15 (rs9309336, P=3.24×10-6) and 17q21.2 (rs9252, P=1.51×10-5) that were 
significantly associated with lung cancer risk after correction for multiple tests. Functional 
annotation result indicated that these SNPs may contribute to the development of lung cancer by 
affecting the availability of transcription factor binding sites. The HaploReg analysis suggested that 
rs9309336 may affect binding motif of transcription factor Foxp1. Expression quantitative trait loci 
analysis revealed that rs9309336 and rs17160062 could regulate the expressions of cancer-related 
genes (PUS10 and CHD1L). Our results revealed that variants in chromatin interaction regions could 
contribute to the development of lung cancer by regulating the expression of target genes, which 
providing novel implications for the understanding of functional variants in the development of lung 
cancer. 

Key words: lung cancer; single-nucleotide polymorphisms (SNPs); chromatin interactions; Genome-wide 
association studies (GWAS); expression quantitative trait loci. 

Introduction 
Lung cancer is the leading cause of 

cancer-related deaths all over the world [1]. The 
estimated incidence of lung cancer in Asian is more 
than 1.04 million and the mortality is 0.94 million 

according to the international project GLOBOCAN 
2012 [2]. Cigarette smoking is considered as the major 
cause of lung cancer; however, less than 20% of 
smokers develop lung cancer. Inherited genetic factor 

 
Ivyspring  

International Publisher 



 Journal of Cancer 2020, Vol. 11 

 
http://www.jcancer.org 

1076 

may also play an important role in the development of 
lung cancer [3,4]. 

Recently, genome-wide association studies 
(GWASs) have become the most widely used 
technique to identify susceptibility loci associated 
with diseases. For lung cancer, a total of 45 genomic 
loci have been identified that contribute to lung 
cancer risk [5]. However, most of these SNPs lie in 
noncoding regions of the genome with the causal ones 
remain unknown [6-9]. Some studies have identified 
that gene expression is often influenced by regulatory 
elements in kilobases (kb) to megabases (Mb) 
upstream or downstream [10] which are brought in 
close proximity to one another through chromatin 
interactions, defining the chromatin architecture of 
the genome [11]. These findings and the development 
of high-throughput technology enable researchers to 
pinpoint causal variants and genes. For example, by 
combining DNA proximity ligation with 
high-throughput sequencing, Hi-C technology have 
allowed the capture of genome-wide chromatin 
interactions [12,13], which highlight the importance of 
chromatin interactions between regulatory elements 
and their target genes in GWAS interpretation. 
Recently, several studies have performed Hi-C 
experiments in many cancers [14,15], which provide 
important support to systematically investigate causal 
variants in regulatory elements and the risk of human 
cancer. By integrative analysis of the expression 
quantitative trait loci (eQTL) and Hi-C data, we were 
able to define risk SNPs in regulatory elements which 
may contribute to the risk of cancer by modulating the 
expression of candidate genes. For example, Li Q et al. 
conducted a eQTL-based analysis and identified that 
several breast cancer risk SNPs in enhancers could 
contribute to the risk of breast cancer by modulating 
the expression of critical cancer-associated genes [16]. 
Therefore, the integration of chromatin interaction 
information and eQTL analyses can efficiently 
identify candidate causal loci and genes associated 
with the development of cancer. These findings 
provide further support for the hypothesis that 
chromatin interaction links SNPs in regulatory 
elements to target genes, thus affecting tumorigenesis 
by modulating target gene expression. It was 
therefore possible to delineate SNPs with evidence for 
being causative on the basis of their profiles for 
chromatin state and eQTL analysis. 

In this study, we conducted a GWAS 
meta-analysis of 7,127 lung cancers and 6,818 healthy 
controls with Asian ancestry (GWAS from Nanjing 
Medical University (NJMU) and Female Lung Cancer 
Consortium in Asia (FLCCA)). By integrating 
whole-genome chromatin interaction maps and eQTL 
analysis, we systematically investigated the functional 

variants and candidate genes that contribute to the 
susceptibility of lung cancer risk.  

Materials and methods 
Study populations 

Two previously published lung cancer GWAS 
data sets were included in this study, including one 
from NJMU and one from FLCCA. NJMU GWAS was 
consistent of 2,383 lung cancers and 3,160 healthy 
controls from the Han Chinese population as 
previously reported [17]. Briefly, The cases were 
newly diagnosed and histopathologically or 
cytologically confirmed lung cancer by at least two 
local pathologists. We enrolled patients with primary 
lung cancer and previously untreated. Patients with 
any prior cancer history were not recruited. All 
cancer-free controls were selected from a 
community-based screening program for 
non-infectious disease and frequency-matched for 
age, gender to the lung cancer cases. FLCCA data was 
obtained from the NCBI database of Genotypes and 
Phenotypes (dbGaP) [18], which included 4,922 lung 
cancer cases and 3,959 controls from 14 lung cancer 
studies in East Asia (https://www.ncbi.nlm. 
nih.gov/projects/gap/cgi-bin/study.cgi?study_id=p
hs000716.v1.p1). All samples from the FLCCA GWAS 
were females and non-smokers and details were 
described in a previous study [17]. All lung cancer 
cases were histologically confirmed. Each study was 
approved by local institutional review board and all 
study participants provided informed consent prior to 
participation.  

Quality control and imputation of GWAS data 
The subjects from the NJMU GWAS and FLCCA 

GWAS were separately genotyped using the 
Affymetrix Genome-Wide Human SNP Array 6.0 and 
the Illumina Human660W-Quad v1.0 DNA Analysis 
BeadChip platform. We performed a stringent quality 
control procedure for both NJMU and FLCCA GWAS 
data. Individuals satisfied any of the following criteria 
will be removed: (1) call rate <95%; (2) gender 
discordance; (3) samples with familial relationships; 
(4) an extreme heterozygosity rate; (5) outliers 
according to a principal component analysis (PCA). 
For the FLCCA study, we also excluded the 
overlapped subjects between FLCCA GWAS and 
NJMU GWAS. SNPs with call rate < 95%, Hardy–
Weinberg equilibrium (HWE) P-value< 1×10-6 or a 
minor allele frequency (MAF) < 5% were excluded 
from the following analysis. Imputation was 
conducted by using the IMPUTE2 software, and the 
1000 Genomes Project Phase II data (version 3) was set 
as the reference. We conducted the pre-phasing 
strategy with SHAPEIT (version 1), and the phased 
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haplotypes were set as the input for IMPUTE2. A 
post-imputation QC was further conducted to filter 
unqualified SNPs, and only SNPs with call rate >95%, 
MAF >0.05, P>0.05 for HWE in all samples and high 
imputation quality (Imputation score≥0.8) were 
included. Finally, 7,569,840 SNPs in 2,331 lung cancers 
and 3,077 controls from NJMU GWAS and 7,608,635 
SNPs in 4,796 lung cancers and 3,741 controls from 
FLCCA GWAS were remained for further analysis. 

Selection of genetic variants 
We obtained the Hi-C data of A549 cell line from 

the Encyclopedia of DNA Elements (ENCODE) 
Consortium resources 
(https://www.encodeproject.org/experiments/ENC
SR662QKG/) as it was the only one lung-related cell 
line with long range chromatin interactions data 
available. The genomic coordinates were lifted over 
from NCBI human genome build 38 to build 37 using 
the UCSC LiftOver tool. A total of 363,334 SNPs in 
25,666 chromatin interaction regions from both 
FLCCA and NJMU GWASs were included in the 
analysis. 

To further filter SNPs with less functional 
evidence, we performed functional annotation with 
RegulomeDB (http://www.regulomedb.org/) [19] 
and retained 36,249 potentially functional SNPs 
(RegulomeDB score ≤ 3) for further analysis. 
Additionally, we used PriorityPruner software 
(version 0.1.4) and dropped 12,506 SNPs from further 
analysis because they are in high linkage 
disequilibrium (R2≥0.8) with the remaining SNPs. The 
detailed workflow chart was shown in Fig. S1. 

Functional annotations of promising SNPs 
We performed functional annotation based on 

ENCODE project from UCSC Genome Bioinformatics 
website (http://genome.ucsc.edu/) to explore the 
potential function of the candidate SNPs. Chromatin 
biofeatures including transcription factor bites of 161 
transcription factors from ENCODE Factorbook 
Motifs, DNaseI Hypersensitivity Clusters in 125 cell 
types from ENCODE and histone modifications of 
epigenetic markers H3K4me1, H3K4me3, H3K9ac and 
H3K27ac on NHLF andA549 cell lines. We used 
HaploReg v4.1 ( 
https://pubs.broadinstitute.org/mammals/haploreg
/haploreg.php ) to evaluate the effect of identified 
SNPs on transcription factor binding site motifs [20]. 

eQTL and differential expressed analyses 
Our study previously performed whole-genome 

sequencing (WGS) and RNA-sequencing (RNA-seq) 
on 90 tumor/blood/adjacent pairs of lung cancer 
patients from China [21]. The expression data was 
quantified as FPKM. Paired Wilcoxon rank sum test 

was performed to evaluate the differential expression 
of target genes in 90 tumor/adjacent pairs. A linear 
regression model was used to perform the eQTL 
analysis with adjustment for age, gender, smoking 
status and PCAs in 90 adjacent samples. The 
expression was log2-transformed. Characteristics and 
clinical features of the patients are shown in Table S1. 

Statistical analysis 
Differences in the distribution of baseline 

characteristics including continuous variable like age 
was compared by Welch's t-test and classified 
variables like gender and smoking status were 
evaluated by χ2 test. Multivariate logistic regression 
model was used to evaluate the association of SNPs 
with lung cancer with adjustment for age, sex, 
smoking status and principal components. 
Fixed-effects meta-analysis was used to combine 
individual association estimates from FLCCA and 
Nanjing GWAS. The BH-FDR procedure 
(Benjamini-Hochberg false discovery rate) method 
was applied to account for multiple comparisons. 
P values were two sides and corrected P 
(PFDR-BH) <0.05 was considered as statistically 
significant. Meanwhile, these SNPs have the same 
direction of effect in two GWASs and Pheterogeneity> 0.05 
in meta-analysis. These statistical analyses were 
performed with R software (version 3.3.2). 

Results 
Association between genetic variants in 
chromatin interaction regions and lung cancer 
risk  

A total of 7,127 cases and 6,818 controls were 
enrolled in this study, and the baseline characteristics 
and clinical features of the participants were shown in 
Table S2. The NJMU GWAS was consisted of 2,331 
cases and 3,077 controls, while the FLCCA GWAS 
included 4,796 cases and 3,741 controls. 36,249 SNPs 
located in the chromatin interaction regions with 
RegulomeDB score ≤ 3 were included for further 
analysis. We used LD (linkage disequilibrium) 
analyses to select those SNPs with lowest P values 
among multiple SNPs in high LD (R2≥ 0.8) and 
performed logistic regression analysis. We then 
carried out a meta-analysis based on the results of 
NJMU and FLCCA GWAS. The result revealed that 
five SNPs reached the significance level (PFDR<0.05), 
including rs4946258 (adjusted OR=0.88, P=4.16×10-7), 
rs670343 (adjusted OR=0.88, P=4.87×10-7), rs9309336 
(adjusted OR=0.89, P=3.24×10-6), rs17160062 (adjusted 
OR=0.84, P=4.00×10-6) and rs9252 (adjusted OR=0.85, 
P=1.51×10-5) (Table 1). Among those, rs4946258 was in 
strong linkage disequilibrium with a previously 
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reported susceptibility SNP rs9387478 (R2 = 0.777) 
[18]. The genotype distributions of four novel SNPs 
and their association with lung cancer risk were 
shown in Table 1. 

Stratified analyses according to age, gender, 
smoking status and histology subtypes were further 
used to examine the associations of the four novel 
SNPs and lung cancer risk. Interestingly, we 
identified that the protective effect of rs9309336 was 
significantly stronger in smokers than that in 
non-smokers (Pheterogeneity = 0.033) (Table 2). 

Functional annotation of four novel SNPs 
We then performed functional annotation of four 

novel variants with ENCODE regulatory data 
downloaded from the UCSC Genome Bioinformatics 
website (http://genome.ucsc.edu/) to estimate the 
potential function. Rs670343 at 2p23.3 resided in an 
enhancer element in NHLF and A549 cell lines, while 
rs9309336 at 2p15 fell into the promoter histone marks 
(Fig. S2). Rs17160062 was located in a genomic region 
with transcription factor (CEBPB) binding loci 
(ChIP-seq peaks). Rs9252 at 17q21.2 was located in the 
DNaseI Hypersensitivity cluster and overlapped with 

H3K4me1 modified region on both NHLF and A549 
cell lines (Fig. S2). Moreover, the HaploReg analysis 
showed that rs9309336 affect binding motifs of 
important transcription factors such as Foxp1. 
Rs9309336 was highly enriched for promoters and 
DNase hypersensitive regions across multiple cell 
lines. 

To further evaluate the function of the candidate 
genes, we conducted differential expression analyses 
and eQTL analysis with data from our previous study. 
The results showed that rs17160062 at 1q21.1 was a 
cis-eQTL for CHD1L, and the C-allele was associated 
with an increased expression of CHD1L in adjacent 
lung tissues (P=1.44×10-3, Fig. 1A). The expression 
level of CHD1L was significantly higher in lung tumor 
tissues than that in adjacent normal controls (P= 
5.95×10-9, Fig. 1B). Additionally, the T allele of 
rs9309336 was significantly associated with a 
decreased PUS10 expression in adjacent lung tissues 
(P= 0.032, Fig. 2A), and PUS10 has a significantly 
increased expression in lung tumor tissues than that 
in adjacent tissues (P= 1.92×10-3, Fig. 2B). 

 

Table 1. Summary of associated variants identified by the meta-analysis. 

Position Locus SNP Allelea NJMU(n=5408) FLCCA(n=8537) Meta-analysis RegulomeDB Scored 
EAFb BETA P EAFb BETA P EAFb BETA P PFDR-BH Phetc 

chr1:146731367 1q21.1 rs17160062 C/T 0.12 0.15 1.55E-02 0.12 0.18 7.95E-05 0.12 0.17 4.00E-06 8.63E-03 0.687 3a 
chr2:25744731 2p23.3 rs670343 A/G 0.55 -0.17 3.87E-05 0.52 -0.10 1.26E-03 0.53 -0.13 4.87E-07 1.65E-03 0.156 3a 
chr2:61763165 2p15 rs9309336 C/T 0.6 0.13 3.60E-03 0.61 0.12 2.74E-04 0.61 0.12 3.24E-06 7.69E-03 0.833 3a 
chr6:117803538 6q22.1 rs4946258 T/C 0.45 -0.1 2.65E-02 0.44 -0.15 3.35E-06 0.45 -0.13 4.16E-07 1.65E-03 0.339 1b 
chr17:40554849 17q21.2 rs9252 A/G 0.14 -0.21 1.74E-03 0.14 -0.14 1.98E-03 0.14 -0.16 1.51E-05 2.98E-02 0.424 2b 
a Effect allele/other allele. b Effect allele frequency.c P value for heterogeneity. d Regulome DB score is a kind of functional prediction scores that evaluate SNPs functionality 
based upon experimental data, such as its existence in a DNAaseI hypersensitive site or transcription factor binding site.  

 

 
Fig 1. SNP rs17160062 as a possible eQTL for CHD1L. A, The boxplot shows the associations between genotypes of rs17160062 and CHD1L expression in 90 
normal lung tissue from our previous study. The P-value was derived from linear regression analysis. B, The boxplot shows the expression level of CHD1L was 
increased in 90 tumor tissues compared with paired adjacent samples. The P-value was derived from Wilcoxon rank sum tests. Expression of CHD1L were log2 
transformed. The boxplot displays the first and third quartiles (top and bottom of the boxes), the median (band inside the boxes), and the lowest and highest point 
within 1.5 times the interquartile range of the lower and higher quartiles (whiskers). 
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Table 2. Stratified analyses of association between identified variants and lung cancer. 

Variables rs670343 Phetb rs9309336 Phetb 
Case 
AA/AG/GG 

Control 
AA/AG/GG 

Adjusted OR a 

(95%CI) 
Pa Case 

CC/CT/TT 
Control 
CC/CT/TT 

Adjusted OR a 

(95%CI) 
Pa 

Age, yr           
≤60 271/571/300 446/743/332 1.23 (1.10-1.39) 4.74E-04 0.467 466/532/144 544/749/228 0.86 (0.76-0.97) 1.27E-02 0.569 
＞60 327/602/260 499/752/305 1.16 (1.03-1.30) 0.014   456/552/181 552/760/244 0.90 (0.80-1.02) 0.088   
Sex           
Females 151/312/157 312/469/210 1.27 (1.08-1.50) 3.72E-03 0.368 254/278/88 363/494/134 0.95 (0.80-1.12) 0.514  0.348 
Males 447/861/403 633/1026/427 1.17 (1.06-1.28) 1.93E-03  668/806/237 733/1015/338 0.86 (0.78-0.95) 3.29E-03  
Smoking           
Never 210/409/206 529/863/376 1.17 (1.03-1.33) 0.019  0.571 316/396/113 657/859/252 0.99 (0.87-1.13) 0.892  0.033 
Ever 388/764/354 416/632/261 1.23 (1.10-1.36) 2.09E-04  606/688/212 439/650/220 0.82 (0.73-0.92) 4.17E-04  
Histology           
Squamous cell 
carcinoma 

229/419/174 945/1495/637 1.10 (0.97-1.24) 0.149  0.129 343/367/112 1096/1509/472 0.78 (0.68-0.88) 1.12E-04 0.098 

Adenocarcinoma 321/653/330 945/1495/637 1.25 (1.13-1.38) 8.00E-06  503/610/191 1096/1509/472 0.93 (0.84-1.03) 0.143   
Otherc 48/101/56 945/1495/637 1.36 (1.11-1.67) 3.41E-03   76/107/22 1096/1509/472 0.84 (0.68-1.05) 0.120    
a Derived from additive model using logistic regression analysis with an adjustment for age, sex, smoking status and PCA. b P for heterogeneity test based on χ2-based Q test. 

 

 
Fig 2. Expression quantitative trait loci (eQTL) analyses of rs9309336 with PUS10 mRNA expression levels. A, The boxplot shows the associations between 
genotypes of rs9309336 and PUS10 expression in 90 normal lung tissue from our previous study. The P-value was derived from linear regression analysis. B, The 
boxplot shows the expression level of PUS10 was increased in 90 tumor tissues compared with paired adjacent samples. The P-value was derived from Wilcoxon rank 
sum tests. Expression of PUS10 were log2 transformed. The boxplot displays the first and third quartiles (top and bottom of the boxes), the median (band inside the 
boxes), and the lowest and highest point within 1.5 times the interquartile range of the lower and higher quartiles (whiskers). 

 

Discussion 
To date, GWAS have identified 45 risk loci for 

lung cancer [5]; however, these variants explain only 
about 15.17% of the heritability of lung cancer [22]. 
Therefore, it is still a challenge to identify more 
susceptibility loci. Recently, Du M et.al. found that 
genetic variants in the regulatory elements could 
affect the risk of prostate cancer by regulating target 
gene expression through chromatin interactions [23], 
which revealing that leveraging the physical 
interaction information may help to prioritize the 
GWAS signals of human cancers. In this present 
study, we integrated the chromatin interaction 
information of lung cancer cell line and two GWA 
studies in Asian population to systematically 
investigate the association of variants located in the 
chromatin interaction regions with lung cancer risk. 

We found four novel SNPs (rs670343, rs9309336, 
rs17160062, rs9252) were significantly associated with 
the risk of lung cancer; and functional annotation 
indicated rs17160062 and rs9309336 might affect 
transcriptional regulation and the expression of 
certain important genes.  

Rs17160062 was an Asian ancestry-specific 
causal variant of lung cancer (MAFAsain=0.09, 
MAFEuropean=0.008), which located in the fifth intron of 
CHD1L (chromodomain helicase/ATPase DNA 
binding protein 1-like gene). Functional annotation 
suggested the potential regulatory role of rs17160062 
and C allele of rs17160062 was associated with an 
increased expression of CHD1L, the expression of 
which was significantly higher in tumor samples 
compared with that in the adjacent tissues. CHD1L is a 
newly identified oncogene that is amplified in many 
solid tumors [24,25]. Functional studies suggested 
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that CHD1L plays an oncogenic role in the 
tumorigenesis of hepatocellular carcinoma [24], 
colorectal carcinoma [26] and other tumors through 
unleashed cell proliferation, G1/S transition and 
inhibition of apoptosis[27]. Chen M et.al found that 
CHD1L could facilitate DNA synthesis and G1/S 
transition through the up-regulation of Cyclin A, 
Cyclin D1, Cyclin E, CDK2, and CDK4, and 
down-regulation of Rb, p27(Kip1), and p53 in a 
transgenic mouse model [28]. In this study, we 
speculated that the variant of rs17160062 may play a 
role during the process of lung carcinogenesis 
through up-regulating the expression level of CHD1L 
and affecting the modification of chromatin structure.  

The eQTL analysis also showed that the variant 
genotypes of rs9309336 were associated with a 
decreased expression of PUS10 (pseudouridylate 
synthase 10). Rs9309336 was 500kb upstream of 
PUS10 and likely to modify the binding affinity of the 
promoter to transcription factors thereby regulating 
gene expression. PUS10 is a member of 
pseudouridylate synthases, and is required for the 
TRAIL-induced apoptotic signal to progress through 
the intrinsic pathway by RNAi-based phenotypic 
screening [29]. We supposed that rs9309336 may 
interfere with the expression of PUS10 and reduce the 
sensitivity of tumor cells to TRAIL, which in turn 
promoting tumor cells’ immortality and the 
occurrence of lung cancer. The result of functional 
annotation revealed that rs9309336 fell into the 
promoter histone marks and may affect binding 
motifs of transcription factor Foxp1. Foxp1 is a 
member of the broadly expressed Foxp subset of 
“forkhead” (Fox) transcription factors and has 
emerged as an important transcription factor in 
different organs such as lung, where it influences the 
balance between proliferation and differentiation [30]. 
Foxp1 plays a critical role in malignancy and it may 
serve as a tumor suppressor or oncogene in different 
cancers [31] [32]. 

Rs9252 was located in the 3’-untranslated region 
(3’-UTR) of PTRF(polymerase I and transcript release 
factor) which plays an important role in suppressing 
the progression of human tumors [33,34]. The 
overexpression of PTRF reduces the cell migration 
ability and the knockdown of PTRF promotes cell 
migration and invasion [35]. Several studies have 
revealed that the expression of PTRF was 
down-regulated in breast cancer [36], prostate cancer 
[37] and lung cancer [38]. Biochemical studies showed 
that overexpression of PTRF led to the suppression of 
the AKT/mTOR pathway and regulated cellular 
processes including survival, proliferation, growth, 
metabolism and metastasis [39]. rs9252 showed 
promoter histone marks and was located in the DNase 

Hypersensitivity cluster. We speculated that rs9252 
may contribute to the risk of lung cancer patients by 
influencing the function of PTRF. However, the 
molecular mechanisms of the progress remain 
unclear. 

However, several limitations to our study need 
to be acknowledged. First, no other lung cancer 
GWAS in Asian populations was available in dbGap, 
which may cap the meta sample sizes. Second, main 
findings in this this study were not validated by an 
independent cohort, partly due to the limited studies 
we can reach in dbGAP, and may yield detriment to 
the robust of the results. 

Overall, our study systematically evaluated the 
association of variants in chromatin interaction 
regions with the risk of lung cancer. The identification 
of four novel variants may provide a new insight into 
the mechanism of regulatory roles of functional 
variants in chromatin interaction regions during the 
development of tumors. Further studies for biological 
mechanism of these chromatin interactions will reveal 
the regulatory role of identified loci in the onset or 
progression of human cancers. 
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