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Objective:We explored the risk factors for intravenous immunoglobulin (IVIG) resistance

in children with Kawasaki disease (KD) and constructed a prediction model based on

machine learning algorithms.

Methods: A retrospective study including 1,398 KD patients hospitalized in 7 affiliated

hospitals of Chongqing Medical University from January 2015 to August 2020 was

conducted. All patients were divided into IVIG-responsive and IVIG-resistant groups,

which were randomly divided into training and validation sets. The independent

risk factors were determined using logistic regression analysis. Logistic regression

nomograms, support vector machine (SVM), XGBoost and LightGBM prediction models

were constructed and compared with the previous models.

Results: In total, 1,240 out of 1,398 patients were IVIG responders, while 158 were

resistant to IVIG. According to the results of logistic regression analysis of the training set,

four independent risk factors were identified, including total bilirubin (TBIL) (OR = 1.115,

95% CI 1.067–1.165), procalcitonin (PCT) (OR = 1.511, 95% CI 1.270–1.798), alanine

aminotransferase (ALT) (OR = 1.013, 95% CI 1.008–1.018) and platelet count (PLT)

(OR = 0.998, 95% CI 0.996–1). Logistic regression nomogram, SVM, XGBoost, and

LightGBM prediction models were constructed based on the above independent

risk factors. The sensitivity was 0.617, 0.681, 0.638, and 0.702, the specificity was

0.712, 0.841, 0.967, and 0.903, and the area under curve (AUC) was 0.731, 0.814,

0.804, and 0.874, respectively. Among the prediction models, the LightGBM model

displayed the best ability for comprehensive prediction, with an AUC of 0.874, which

surpassed the previous classic models of Egami (AUC = 0.581), Kobayashi (AUC

= 0.524), Sano (AUC = 0.519), Fu (AUC = 0.578), and Formosa (AUC = 0.575).
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Conclusion: The machine learning LightGBM prediction model for IVIG-resistant KD

patients was superior to previous models. Our findings may help to accomplish early

identification of the risk of IVIG resistance and improve their outcomes.

Keywords: machine learning, Kawasaki disease, intravenous immunoglobulin resistance, risk factors,

prediction model

INTRODUCTION

Kawasaki disease (KD) is an acute vasculitis disease with bilateral
conjunctival inflammation and atypical rash as the main clinical
features. It mainly occurs in infants under 5 years of age (1).
The main complication of KD patients is coronary artery lesions
(CALs), which are the main reason for the increase in the
incidence of acquired heart disease in children (2). Prompt
treatment with high-dose (2 g/kg) intravenous immunoglobulin
(IVIG) could significantly reduce the manifestations of KD
and CALs. However, 10–20% of KD patients are resistant to
IVIG (3, 4). After initial IVIG administration, recrudescent or
persistent fever may occur, and further treatment is required
at 48 h after the initial use of IVIG, such as the second
administration of IVIG and corticosteroids (5). Therefore, it
is of great significance to accurately detect IVIG-resistant KD
patients and implement appropriate regimens early. In the past
10 years, many scholars have conducted a large number of studies
on IVIG resistance. Egami (6), Kobayashi (7), and Sano (8)
constructed three scoring systems based on the characteristics
of the Japanese population. Fu (9) retrospectively analyzed 1,177
KD patients and established a prediction model for Beijing
children. In 2015, Lin et al. collected data from 248 KD children
and constructed the Taiwanese Formosa scoring system (10).
Although the abovementioned scoring systems have performed
well in their respective research populations, due to the existence
of genetic susceptibility, the prediction performance of these
systems in Chongqing city is not good (Table 1) (11, 12), which
precludes wide application in the early prediction of IVIG
resistance in Chongqing. It remains a challenge to develop a new
prediction model with better predictive performance for children
in Chongqing city, one of the largest cities in western China.

In recent years, with the rapid development of machine
learning algorithms and model interpretation methods, machine
learning has been applied in many different fields and has shown
great potential in assisting clinical diagnosis (13–15). This study
retrospectively analyzed the clinical data of 1,398 KD patients on
the medical big data platform of Chongqing Medical University
from January 2015 to August 2020 and applied machine learning
algorithms to the construction of IVIG-resistant prediction
models for exploration. A more suitable prediction model for
IVIG-resistant KD in the Chongqing area was developed.

MATERIALS AND METHODS

Patients
The data come from the medical big data platform of Chongqing
Medical University, which contains the electronic medical

record data of 7 medical institutions affiliated with Chongqing
Medical University. According to the inclusion and exclusion
criteria, the inpatient electronic medical records data of 1,398
patients diagnosed with KD who received treatment on the
platform from January 2015 to August 2020 were selected.
Inclusion criteria: (1) Comply with the diagnostic criteria
for KD in the diagnostic guidelines of Kawasaki Disease
Version 5 (16); (2) Receive IVIG (2 g/kg) during the acute
period treatment; (3) Complete clinical data. Exclusion criteria:
(1) Incomplete KD and other confusing diseases, such as
toddler’s idiopathic arthritis; (2) Rehospitalized due to recurrence
of KD; (3) Diagnosed with KD outside the hospital and
receiving IVIG treatment; (4) Incomplete clinical data. This
study was approved by the Ethics Committee of Chongqing
Medical University.

Definition and Data Collection
IVIG-resistant KD was defined as KD patients with a persistent
or recurrence of fever ≥38◦C at any time from 36 h to 2 weeks
after initial IVIG treatment accompanied by one or more of the
main symptoms (17).

The presence of coronary artery lesions was defined as
coronary artery diameter≥2.5mm in patients aged 0–3 years old,
≥3.0mm in patients aged 3–9 years old and≥3.5mm in patients
aged older than 9 years (18).

All demographic characteristics, clinical features, imaging
data and laboratory data prior to the initial use of IVIG
were collected. The demographic characteristics included
age (month) and sex; clinical features included days of
illness at the initial treatment, maximum body temperature
and cervical lymphadenopathy, conjunctival hyperemia, lip
changes, rash, perianal changes, and edema of the hands and
feet; imaging data prior to the initial use of IVIG included
the presence of CALs. The laboratory data included blood
cell analysis: neutrophil count, white blood cell (WBC),
lymphocyte count, platelet count (PLT), hemoglobin (HB),
percentage of neutrophils, neutrophil-to-lymphocyte ratio
(NLR), platelet-to-lymphocyte ratio (PLR); biochemical
examination: lactic dehydrogenase (LDH), total bilirubin
(TBIL), globulin, albumin, alanine transaminase (ALT), gamma-
glutamyl transpeptidase (GGT), aspartate aminotransferase
(AST), procalcitonin (PCT), serum sodium, serum potassium,
C-reactive protein (CRP), and erythrocyte sedimentation rate
(ESR) (Table 2).

Statistical Analysis
Statistical analysis was performed by SPSS version 25.0.
We used frequency (percentage) to describe categorical
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TABLE 1 | Effectiveness and validation of previous prediction models in Chongqing city.

Scoring systems Study population Predictive effectiveness

in the literature

Validation effectiveness in Chongqing

Xiao Ye

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

Egami Japan 0.780 0.760 0.346 0.806 0.364 0.857

Kobayashi Japan 0.860 0.670 0.580 0.855 0.443 0.843

Sano Japan 0.846 0.870 0.283 0.913 0.207 0.957

Fu Beijing, China 0.541 0.712 0.519 0.660 0.457 0.750

Formosa Taiwan, China 0.714 0.810 0.827 0.286

variables, and a χ
2-test was used to analyze the difference

between IVIG-responsive and IVIG-resistant groups. Since
all continuous variables were non-normally distributed, the
median (interquartile range) was used to present and compare
results by the Mann-Whitney U test. P < 0.05 was considered
statistically significant. The statistically significant variables in
the univariate analysis were included in the logistic regression
analysis to further screen out independent risk factors for IVIG
resistance, and the selected risk factors were incorporated into
the machine learning models to establish the IVIG-resistant KD
prediction model. Sensitivity, specificity, and area under the
curve (AUC) were used to evaluate the prediction performance of
the models.

Machine Learning Algorithm Prediction
Model Construction
We used the computer-generated random number method
to divide 1,398 KD patients into a training set (979 cases)
and a test set (419 cases) at a ratio of 7:3. The training
set was used for model training, and the test set was
used to verify the generalization ability of the models.
Using the “univariate analysis + logistic regression analysis”
method to screen variables from the training set, we built
a logistic regression nomogram, support vector machine
(SVM), XGBoost, and LightGBM machine learning algorithm
prediction models.

The rms package of R language (R version 3.6.3) was used to
build a logistic regression nomogram.

The Scikit-learn package was adopted in the Python 3.6.5
environment to implement the SVM and XGBoost prediction
models. SVM training process: the penalty term coefficient C was
set to 0.5, the original dimension was expanded by a linear kernel
function, and the hyperplane thatmaximizes the separation of the
two groups in the high-dimensional space was found to obtain
the best prediction model. XGBoost model training process: the
learning rate was set to 0.2, and the depth of the tree was set to
3. The Python language LightGBM package was used to build the
LightGBM prediction model. The learning rate was set to 0.02,
and themaximumdepth of the tree was 6 (The training process of
model parameters has been uploaded in the form of attachment).

TABLE 2 | Clinical information as features.

Categories Number of

variables

Variables

Basic

information

2 Age in monthsa,b, Sex

Clinical

features

8 Days of illness at the initial treatmenta,b,d,

Maximum temperature, Cervical

lymphadenopathye, Conjunctival

hyperemia, Lip changes, Rashd, Perianal

changesd, edema of the hands and feet

Imaging data 1 Presence of CALs

Biochemical

examination

12 LDH, TBILc, Globulin, Albumine, ALTb,

GGT, ASTa,c, Serum potassium, Serum

sodiuma, CRP a,b,c,d, ESR, PCT

Blood cell

analysis

8 Neutrophil count, WBC, Lymphocyte

count, PLT a,b, HB, Percentage of

neutrophils a,d,e, NLR, PLR

aVariables used in Kobayashi score.
bVariables used in Egami score.
cVariables used in Sano score.
dVariables used in Fu score.
eVariables used in Formosa score.

Due to the severe imbalance between IVIG-responsive and
IVIG-resistant groups, we used the class_weight parameter to
adjust the weight of the positive and negative samples in the
classifier (19) to increase the importance of a small number of
sample categories and improve the classification performance of
the model.

RESULTS

Demographic Features
A total of 1,398 KD patients were included in this study. There
were 158 cases in the IVIG-resistant group (accounting for
11.3%), including 64 female children (40.5%), 94 male (59.5%),
and 28.5 months of onset (18, 44.25); 1,240 cases were in the
IVIG-responsive group (88.7%), with 472 cases of female children
(38.1%), 768 cases of male children (61.9%), and age of onset of
29 (17.00, 48.00).
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TABLE 3 | Univariate analysis comparison of clinical indexes in the training set.

Variable IVIG responsive IVIG responsive x2/Z P

(n = 111) (n = 868)

Basic information

Age in months (month) 30 (18–41) 29 (17–45) −0.249 0.803

Sex (male) 64 (57.6%) 529 (60.9%) 0.445 0.505

Clinical features

Days of illness at the initial treatment (day) 6 (5–7) 6 (5–7) −2.670 0.008

Maximum temperature (◦C) 39.8 (39.5–40.1) 39.7 (39.3–40.0) −1.684 0.092

Cervical lymphadenopathy (positive) 91 (81.9%) 759 (87.4%) 2.565 0.109

Conjunctival hyperemia (positive) 90 (81%) 746 (85.9%) 1.866 0.172

Lip changes (positive) 107 (96.3%) 857 (98.7%) 3.561 0.059

Rash (positive) 70 (63.0%) 572 (65.8%) 0.351 0.554

Perianal changes (positive) 52 (46.8%) 333 (38.3%) 2.968 0.085

Edema of the hands and feet (positive) 78 (70.2%) 565 (65.0%) 1.171 0.279

Laboratory examination

Neutrophil count (10∧9/L) 10.67 (7.35–12.71) 9.61 (7.10–11.70) −1.758 0.079

WBC (10∧9/L) 14.39 (10.84–18.54) 14.69 (11.23–18.14) −0.652 0.514

Lymphocyte count (10∧9/L) 3.11 (1.82–3.75) 3.36 (2.53–3.94) −3.326 0.001

PLT (10∧9/L) 343.00 (271.00–403.00) 376.00 (295.00–469.00) −3.657 <0.01

HB (g/dL) 103.00 (99.00–111.00) 107.00 (100.00–113.00) −2.230 0.026

Percentage of neutrophils (%) 76.00 (63.00–83.00) 68.00 (54.00–79.00) −4.209 <0.01

LDH (U/L) 258.40 (230.00–295.50) 268.50 (226.00–307.95) −0.179 0.858

NLR 3.34 (2.23–5.54) 2.86 (1.94–4.21) −3.762 <0.01

PLR 115.79 (82.09–179.72) 115.62 (84.29–160.25) −0.625 0.532

TBIL (µmol/L) 8.6 (5.2–20) 6.70 (4.00–8.58) −5.421 <0.01

Globulin (g/L) 21.4 (17.7–24.7) 22.5 (19.2–25.4) −2.564 0.010

Albumin (g/L) 35.2 (31.7–38.4) 36.7 (33.7–39.6) −3.476 0.001

ALT (U/L) 70.1 (21.8–127.3) 32.60 (17.15–46.15) −5.887 <0.01

GGT (U/L) 81.7 (16.9–147.20) 35.25 (15.93–78.25) −4.136 <0.01

AST (U/L) 36.5 (26–44.1) 29.35 (22.50–34.4) −5.094 <0.01

PCT (µmol/L) 2.33 (0.49–4.71) 0.91 (0.25–1.81) −6.517 <0.01

Serum potassium (mmol/L) 4.11 (3.72–4.45) 4.16 (3.81–4.54) −1.801 0.072

Serum sodium (mmol/L) 136.4 (133.8–138.5) 137.3 (135.5–139.1) −3.654 <0.01

CRP (mg/L) 49 (27–82) 45.00 (24.25–68.00) −1.332 0.183

ESR (mm/h) 70 (49–85) 69.90 (48.25–90.00) −0.273 0.785

Imaging data

Presence of CALs (positive) 40 (36.0%) 289 (33.2%) 0.331 0.565

Analysis of Risk Factors for IVIG
Resistance in the Training set
Among the 979 patients in the training set, 111 patients were
in the IVIG-resistant group, and 868 patients were in the IVIG-
responsive group. According to univariate analysis (Table 3), 14
variables were significantly different between the two groups (P
< 0.05), including the days of illness at the initial treatment,
lymphocyte count, PLT, HB, percentage of neutrophils, NLR,
TBIL, globulin, albumin, ALT, GGT, AST, PCT, and serum
sodium. There was no significant difference in the remaining 17
variables (P > 0.05).

The 14 variables with statistical significance in the univariate
analysis were used as independent variables, and the occurrence
of IVIG resistance was used as the dependent variable (Yes =
1, No = 0). Logistic regression analysis was performed (αin =

0.05, αout = 0.10). The results showed that the four variables
TBIL, PCT, ALT, and PLT were statistically significant (P < 0.05)

and were independent risk factors for IVIG-resistant KD patients
(Table 4).

Logistic Regression Nomogram and
Machine Learning Model Construction
Logistic regression analysis results were used to screen variables,
including TBIL, PCT, ALT, and PLT, to construct a logistic
regression nomogram, SVM, XGBoost, and LightGBM machine
learning prediction models. The results of the logistic regression
nomogram prediction model are shown in Figure 1, and
Figure 2 shows the consistency analysis of the logistic regression
nomogram prediction model. The results show that the model
has good stability.

Figure 3 shows the ROC curves and AUC results of the
four prediction models. Table 5 shows the specific evaluation
indicators of the model. The LightGBM model had the highest
sensitivity and AUC value, with 0.702 and 0.874, respectively.
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TABLE 4 | Logistic regression analysis in the training set.

Risk factors OR 95% CI P

Days of illness at the initial treatment 0.946 0.782–1.143 0.564

Serum sodium 0.965 0.884–1.054 0.431

Globulin 1.008 0.946–1.074 0.813

TBIL 1.115 1.067–1.165 <0.01

Albumin 0.971 0.915–1.03 0.328

PCT 1.511 1.270–1.798 <0.01

GGT 0.997 0.992–1.001 0.178

ALT 1.013 1.008–1.018 <0.01

AST 1.011 0.995–1.026 0.168

HB 0.986 0.961–1.011 0.271

PLT 0.998 0.996–1 0.028

Percentage of neutrophils 6.474 0.877–47.804 0.067

Lymphocyte count 1.129 0.905–1.408 0.283

NLR 0.98 0.906–1.06 0.609

FIGURE 1 | Logistic regression nomogram.

FIGURE 2 | Consistency analysis of the logistic regression nomogram.

The model with the highest specificity was the XGBoost
model (specificity = 0.967). Combining the three indicators of
sensitivity, specificity, and AUC value, the LightGBM model
achieved a significantly better predictive performance.

FIGURE 3 | ROC curves of four models in the test set.

TABLE 5 | Comparison of prediction efficiency of four models in the test set.

Model Sensitivity Specificity AUC

Logistic 0.617 0.712 0.731

SVM 0.681 0.841 0.797

XGBoost 0.638 0.967 0.804

LightGBM 0.702 0.903 0.874

TABLE 6 | Comparison between the new model and five other IVIG resistance KD

prediction models.

Model Sensitivity Specificity AUC

LightGBM 0.702 0.903 0.874

Egami 0.234 0.931 0.581

Kobayashi 0.134 0.911 0.524

Sano 0.272 0.773 0.519

Fu 0.234 0.841 0.578

Formosa 0.762 0.393 0.575

Comparison With the Previous Scoring
Systems
Compared with the previous IVIG-resistant scoring systems, the
AUC value of the LightGBM model (AUC = 0.874) was higher
than those of Egami (AUC = 0.581), Kobayashi (AUC = 0.524),
Sano (AUC = 0.519), Fu (AUC = 0.578), and Formosa (AUC =

0.575). The Formosa scoring system had the highest sensitivity
(sensitivity= 0.762) but low specificity (specificity= 0.393). The
model with the highest specificity was the Egami scoring system
(specificity = 0.931). With comprehensive sensitivity, specificity,
and AUC values, the LightGBMmodel had the highest predictive
performance (Table 6).

Frontiers in Pediatrics | www.frontiersin.org 5 November 2021 | Volume 9 | Article 756095

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Liu et al. Machine Learning Research of IVIG-Resistance

DISCUSSION

The main complication of KD is coronary artery lesions,
which have gradually replaced rheumatic fever and become
the main cause of childhood acquired heart disease. Currently,
the treatment of KD mainly depends on high-dose IVIG;
however, IVIG-resistant KD is not sensitive to IVIG, and
additional treatment cannot quickly and effectively reduce
vascular inflammation after the initial use of IVIG.

Therefore, there is an urgent need to build a prediction
model for IVIG-resistant KD with high predictive ability for
specific populations in Chongqing areas. Here, we reviewed 1,398
KD patients in 7 medical institutions affiliated with Chongqing
Medical University. The logistic regression method with strong
interpretability was used to screen variables, and four risk factors
for IVIG resistance were screened out, including TBIL, PCT, ALT,
and PLT. A variety of machine learning algorithms have been
applied to build prediction models with high complexity. These
models performed well in sensitivity, specificity and AUC and
appear to be superior to previous models when applied to the
Chongqing KD population.

In the past decade, logistic regression has been the first
choice to build IVIG prediction models due to its simple
model and strong interpretability. The Kobayashi score, Egami
score, Formosa score and most other predictive scores were
based on logistic regression. When the classification boundary
is linear, the logistic regression model has a better prediction
effect (20), but when processing high-latitude, large-volume data,
the effect is often not good. With the development of artificial
intelligence algorithms, an increasing number of machine
learning algorithms have been developed, including traditional
K-nearest neighbors, decision trees, SVM algorithms, and the
emerging XGBoost and LightGBM models. These machine
learning models offer excellent performance in processing high-
latitude and large-volume data. An increasing number of scholars
are applying machine learning algorithms to clinical research
(21–23). In this study, logistic regression nomograms and SVM,
XGBoost, and LightGBM algorithms were used to construct
IVIG resistance prediction models. Among the constructed
models, the LightGBM model had the best comprehensive
predictive performance, with a sensitivity of 0.702, a specificity
of 0.903, and an AUC value of 0.874. The LightGBM algorithm
is a gradient boosting framework based on the decision
tree algorithm released by Microsoft Research Asia in 2017.
It uses the leafwise algorithm with depth restrictions and
discards the levelwise algorithm used by XGBoost. More
errors can be reduced with the same number of splits, so
the LightGBM algorithm achieves better accuracy than other
models (24).

In terms of variable screening, TBIL was included in our
study as a high-risk factor for IVIG resistance. This is consistent
with the findings of Sano et al. (8), who used total bilirubin
≥0.9 mg/dL as a predictor of IVIG resistance. The increase
in TBIL in KD patients in the IVIG-resistant group may be
related to acute hepatic vascular inflammation leading to hepatic
vascular congestion and hepatic vascular inflammation leading
to liver cell damage. Several large-scale cross-sectional studies

have revealed a strong correlation between the presence of
cardiovascular disease and the concentration of serum total
bilirubin. Schwertner et al. (25) observed for the first time
that there was a significant negative correlation between serum
total bilirubin and the prevalence of coronary ischemic disease.
Subsequently, experiments by Hopkins (26) and Breimer (27)
successively confirmed this conclusion. Egami (6) hypothesizes
that ALT≥80 IU/L is an important risk factor for IVIG resistance.
Liu (28) also showed that KD patients with higher ALT levels
are more likely to develop IVIG resistance. This is consistent
with our research results. PCT is a common serum marker
of inflammation, and it increases in severe bacterial infections.
The latest research by some scholars has shown that PCT
concentrations below 0.25 ng/ml may help distinguish KD from
sepsis, and PCT concentrations of 0.25–0.50 ng/ml may help
predict IVIG resistance (29). PLTs are the first responders
to vascular injury and endothelial rupture, but studies have
shown that PLTs are also inflammatory effector cells, with
various activities ranging from acute inflammation to adaptive
immunity (30). There are a large number of receptors on
the surface of PLTs, and these receptors often interact with
other cells (WBCs and endothelial cells). In vitro experiments
showed that human neutrophils partially rely on platelets to
enhance fibrin deposition in the bloodstream (31). In this study,
thrombocytopenia in KD patients in the IVIG-resistant group
may be related to the continuous consumption of platelets due
to coronary artery lesions.

In summary, this study was based on the interpretability
of logistic regression to screen independent risk variables and
construct logistic regression nomogram, SVM, XGBoost, and
LightGBM prediction models for IVIG resistance. The new
models exhibited better prediction efficiency than the previous
models and can be widely used in theory, but this study also
presents some limitations. First, this study was a retrospective
analysis, and the results need to be further verified by prospective
studies. Second, some data items were missing, which might
result in bias in the statistical analysis. In future studies,
we will conduct prospective studies and collect more data
to improve the screening of IVIG-resistant risk factors and
model construction to further evaluate the effectiveness of
new models.
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