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Abstract

Each new virus introduced into the human population could potentially spread and cause a worldwide epidemic. Thus,
early quantification of epidemic spread is crucial. Real-time sequencing followed by Bayesian phylodynamic analysis has
proven to be extremely informative in this respect. Bayesian phylodynamic analyses require a model to be chosen and prior
distributions on model parameters to be specified. We study here how choices regarding the tree prior influence quantifica-
tion of epidemic spread in an emerging epidemic by focusing on estimates of the parameters clock rate, tree height, and re-
productive number in the currently ongoing Zika virus epidemic in the Americas. While parameter estimates are quite ro-
bust to reasonable variations in the model settings when studying the complete data set, it is impossible to obtain
unequivocal estimates when reducing the data to local Zika epidemics in Brazil and Florida, USA. Beyond the empirical in-
sights, this study highlights the conceptual differences between the so-called birth–death and coalescent tree priors: while
sequence sampling times alone can strongly inform the tree height and reproductive number under a birth–death model,
the coalescent tree height prior is typically only slightly influenced by this information. Such conceptual differences to-
gether with non-trivial interactions of different priors complicate proper interpretation of empirical results. Overall, our
findings indicate that phylodynamic analyses of early viral spread data must be carried out with care as data sets may not
necessarily be informative enough yet to provide estimates robust to prior settings. It is necessary to do a robustness check
of these data sets by scanning several models and prior distributions. Only if the posterior distributions are robust to rea-
sonable changes of the prior distribution, the parameter estimates can be trusted. Such robustness tests will help making
real-time phylodynamic analyses of spreading epidemic more reliable in the future.
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1. Introduction

In February 2016, the WHO declared the current Zika virus (ZIKV)
epidemic ongoing in the Americas to be a public health emer-
gency of international concern (World Health Organization 2016).
This emergency level was reached because of a possible link be-
tween ZIKV infection and an increased number of microcephaly
in newborns as well as between ZIKV infection and other neuro-
logical disorders such as the Guillian-Barré syndrome (Oehler

et al. 2014; Pan American Health Organization and World Health
Organization Regional Office for the Americas 2015; Ventura et al.
2016; Zika Situation Report 2016). Although the ZIKV public health
emergency ended in November 2016, the ZIKV epidemic remains
‘a highly significant and long-term problem’ according to the
WHO (World Health Organization 2016).

Bayesian phylodynamic approaches have proven very help-
ful in quantifying the spread of the ZIKV outbreak (Faria et al.
2016, 2017; Grubaugh et al. 2017; Metsky et al. 2017). Such

VC The Author(s) 2018. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/
licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
For commercial re-use, please contact journals.permissions@oup.com

1

Virus Evolution, 2018, 4(1): vex044

doi: 10.1093/ve/vex044
Research article

http://orcid.org/0000-0003-1125-2783
https://academic.oup.com/


analyses revealed that the current epidemic in the Americas
most likely goes back to one Asian lineage and was introduced
between May and December 2013 (Faria et al. 2016) first in
Brazil, from where it spread to other countries in the Americas
(Metsky et al. 2017). The latter hypothesis is confirmed by the
observation that the epidemic in Florida, USA, seems to have
started from several introductions, most of these introduced
lineages clustering with Carribean ZIKV sequences, inter-
spersed within the bigger cluster of Brazilian sequences
(Grubaugh et al. 2017).

In an emerging epidemic, sequence data might be limited
and may not have yet accumulated enough information in order
to unequivocally quantify the phylodynamics, i.e. identify the
underlying phylogenetic tree and the evolutionary and epidemi-
ological parameters. In fact, the following two aspects play a
role in the outcome of such analysis. First, the tree prior may be
very important when inferring the phylogeny using a Bayesian
framework. In particular, the impact of treating sampling times
as given a priori vs. as part of the data has not been investigated
in a thorough analysis. Second, the interplay of the tree height
and the clock rate prior in the case of limited empirical data
may impact the tree inference in an unpredictable fashion. This
effect too, has not been explored in detail so far (but see Möller
(2017) for a thorough simulation study).

In the present work, we explore the relevance of these two
points for the estimation of the tree height based on data from
the ZIKV outbreak in the Americas, and compare the results ob-
tained with the Bayesian phylogenetics tool BEAST 2 to simpler
regression-based and least squares-based techniques for tree
height inference. The tree height can be used to estimate the
start of the epidemic. A robust estimate of when the epidemic
started is in particular necessary to investigate whether the in-
crease of microcephaly cases in Brazil coincides with the
ongoing ZIKV epidemic. Furthermore, we discuss the appropri-
ateness of interpreting the reproductive number—a key epide-
miological quantity describing the intensity of epidemic
spread—which is co-estimated with the tree height using the
so-called birth–death model.

For the remainder of this section, we provide some back-
ground regarding phylodynamics, introduce common tree priors,
and discuss their conceptual differences. These insights will be
important for interpreting the results presented in this paper.

1.1 Phylodynamics and tree priors

The main idea of phylodynamic approaches is to quantify popu-
lation dynamic parameters based on the phylogenetic tree ob-
tained from sequencing data (Grenfell et al. 2004). In practice,
when using a Bayesian framework, the phylogenetic tree is not
fixed either, but co-inferred with the population dynamic as
well as the evolutionary parameters based on the sequencing
data (Drummond and Rambaut 2007; du Plessis and Stadler
2015). More formally, the Bayesian phylodynamic approach
aims at inferring the posterior distribution P½tree; parjseq;data�
where par is the vector of all parameters of the population dy-
namic and evolutionary models, seq is the sequencing data, and
data denotes other potential sources of data. We can re-write,

P½tree;parjseq;data�¼P½seqjtree;par;data�P½tree;datajpar�P½par�=P½seq;data� :

The normalizing constant P½seq; data� cannot be calculated di-
rectly, and thus Markov chain Monte Carlo methods are employed

to sample from the posterior distribution P½tree; parjseq; data�.
Typically, we assume that seq is independent of data such that
P½seqjtree; par; data� ¼ P½seqjtree; par�. The distribution P½seqjtree;par�
is referred to as the phylogenetic likelihood and is specified by an
evolutionary model, and the distribution P[tree, datajpar] is referred
to as the phylodynamic likelihood and is specified by a population
dynamic model. In the application of phylodynamics to epidemiol-
ogy, the sequencing data comes from pathogens obtained from dif-
ferent hosts, and the population dynamic model is an
epidemiological model. The term P½par� is the prior distribution on
the parameters of the population dynamic and evolutionary
models.

If the sequence data contains a strong phylogenetic signal,
the inferred tree topology will be independent of the prior speci-
fications, i.e. the tree topology will be purely determined by dif-
ferences in the sequences. In addition to the tree topology, we
are typically interested in the tree height, i.e. the age of the
most recent common ancestor (MRCA) of all samples, and in all
other branching times of the tree. The clock rate is the parame-
ter of the evolutionary model that specifies how many substitu-
tions a sequence accumulates per calendar time unit. It thereby
translates the branches in the tree from units of substitutions to
units of calendar time. If all sequences are sampled at the same
time point, we can only estimate the product of the tree height
and the clock rate. If the data is sampled through time, i.e. the
tips of the tree are at different time points, we can in principle
tease the two parameters apart (Korber et al. 2000). However, if
there is not enough temporal signal in the data, it might not be
possible to separate the clock rate from the tree height robustly.
Little temporal signal will result in high sensitivity of the tree
height (and all tree branch lengths) to prior assumptions on the
clock rate and the tree height.

While we can specify a clock rate prior directly through any
probability distribution, we can only indirectly specify the tree
height prior through the population dynamic model. In phylo-
dynamics, each population dynamic model is described by a so-
called tree prior. There are two classes of tree priors that have
proven especially useful: the coalescent (Kingman 1982;
Drummond et al. 2005), and the birth–death process (Nee 2006;
Stadler 2010). In the following paragraphs, we describe their
main assumptions and point out why the tree height cannot be
directly controlled through setting of the model priors.

The coalescent describes the dynamics of the population
giving rise to the tree backward in time, i.e. going from the tips
to the root. It is parameterized by the effective population size.
The sampling times of sequences are assumed to be given a pri-
ori. Given such a priori sampling times samp and an effective
population size Ne as a parameter par, the coalescent induces a
distribution of phylogenetic trees and a distribution of tree
heights,

Psamp½treejpar ¼ Ne�:

Given the sampling times, we therefore indirectly control
the tree height via the effective population size.

Birth–death models describe the dynamics of a population
forward in time. They are parameterized by the birth (trans-
mission) rate k, the death (become uninfectious) rate d, the
sampling probability p, and the time of the start of the popula-
tion (outbreak; also called origin time) T. Note that the repro-
ductive number, a key epidemiological quantity (Anderson
and May 1991), can be directly extracted from these
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parameters by simply dividing the birth rate by the death rate.
The birth–death models give rise to a distribution of phyloge-
netic trees and in particular a distribution of sampling times
and tree heights,

P½tree; data ¼ sampjpar ¼ ðk; d; p;TÞ�:

Thus, the upper limit of the tree height can be controlled, as it
is strictly smaller than the origin time T, while the precise tree
height is influenced by the birth, death and sampling parameters.

Notice that while the coalescent conditions on the sampling
times when the tree is induced by the population size parame-
ter, in the birth–death model the sampling times along with the
tree are induced by the birth–death parameters. This different
conceptual usage of the sampling times samp under the two
approaches has important implications towards assessing the
amount of information in the data regarding the tree height
with popular Bayesian phylodynamics softwares. A Bayesian
phylogenetic analysis sampling from the posterior distribution
of trees tree and parameters par using the coalescent conditions
on the sampling times samp:

Psamp½tree;parjseq� / P½seqjtree; par�PCoal
samp½treejpar�P½par�;

where PCoal
samp½treejpar� is the probability density of a coalescent

tree tree given the sampling times samp. On the other hand, the
birth–death model uses the number of samples together with
the associated sampling times samp and the sequence align-
ment seq as data:

P½tree;parjseq; samp� / P½seqjtree;par�PBD½tree; sampjpar�P½par�;

where PBD½tree; sampjpar� is the probability density of the sam-
pling times samp together with the birth–death tree tree.

Common practice for investigating the signal in the data is to
run the Bayesian method ‘under the prior’ and then compare the
results to those obtained from the full Bayesian analysis. In the
strict sense, running an analysis ‘under the prior’ would mean
running the analysis when all data is ignored. With the coalescent
approach, this means that sequencing data is ignored, while the
number and the time of sequence samples is used, as it is not
considered to be a part of the data but rather a priori information.
In contrast, with the birth–death model, the sequences, the num-
ber of sequences as well as the sequence sampling times are ig-
nored when running the Bayesian method ‘under the prior’. This
stems from the fact that the birth–death model parameters in-
duce a distribution of the number of sequences as well as the se-
quence sampling times, meaning any information we have in
that respect during the analysis is data.

Many users perform phylodynamic analyses with the soft-
ware package BEAST 2 (Bouckaert et al. 2014). The graphical
user interface BEAUti allows the specification of model priors
and input data. It also allows the user to specify if ‘sampling
from prior’ should be performed. If this option is chosen, the se-
quencing data, but not the sampling times, are ignored. For the
coalescent models this means that one obtains the prior distri-
butions. However, for the birth–death models this means that
one obtains a posterior distribution of trees and parameters us-
ing sampling times data, while only the sequencing data is ig-
nored. The analysis with the birth–death model when opting for
‘sampling from prior’ in BEAST 2 is therefore not equivalent to
the analysis ‘under the prior’ in the usual Bayesian sense.

2. Methods
2.1 Data sets

On 3 November 2016 we gathered 252 full genome ZIKV consen-
sus sequences. These consensus sequences stem from various
sources: we obtained 185 sequences from GenBank, 33 sequences
from the Zibra project (https://github.com/zibraproject/zibrapro
ject.github.io/tree/master/data/consensus), 17 sequences from the
Andersen et al. github page (https://github.com/andersen-lab/
zika-florida/tree/master/consensus_sequences), and 17 sequences
from Ladner et al. github page (https://github.com/jtladner/ZIKA_
Florida/tree/master/sequences). From this set, we removed
sequences isolated before 2014, sequences isolated from other or-
ganisms than humans, sequences with missing date of isolation,
i.e. year and/or month information missing, sequences resulting
from vertical (mother to child) transmissions and sequences
which appeared to be duplicates, i.e. sequences that seemed to
have been isolated from the same individual on the same date
but had different passaging histories or were sequenced by differ-
ent labs. This resulted in a set of 139 sequences. We refer to this
data set as the ‘ALL’ data set, because it includes sequences from
different parts of the Americas. We also separately analysed a
subset (sixty-seven sequences) of this full data set which only
contained the sequences coming from Brazil (abbreviated as
BRAZIL). Additionally, we separately analysed a set of sequences
from Florida, USA (twenty-three sequences, abbreviated USA).
These sequences formed a monophyletic cluster within the maxi-
mum clade credibility (MCC) trees of the ‘ALL’ data set upon re-
moval of one sequence from the Dominican Republic (Fig. 1 and
Supplementary Figs S1 and S2, see figure legend for a description
of the model settings with which we obtained the MCC tree). For
the sake of simplicity, we refer to this cluster as monophyletic in
the following.

2.2 Phylogenetic and phylodynamic analyses

We aligned the sequences using MUSCLE v3.8.31 (Edgar 2004).
We constructed trees with a maximum likelihood (ML) method
PhyML v3.1 (Guindon et al. 2010) under the HKY substitution
model, estimating the equilibrium frequencies, and starting the
ML tree search using ten different random seeds. We assessed
the clock-like behaviour of the data using TempEst v1.5
(Rambaut et al. 2016), by looking at the correlation of the sam-
pling times with the root-to-tip divergence, optimising the posi-
tion of the root of the ML tree by maximising the correlation
metric. From the ML trees, we also estimated the time of the
MRCA in calendar time units using LSD v0.3 (To et al. 2015), us-
ing options -c (constrained mode, i.e. imposing that the node is
always older than any of its descendants) and -r as (searching
for root node on all branches, using constraints). Finally, we
analysed the sequences using the Bayesian phylogenetic soft-
ware tool BEAST v2.4.2 (Bouckaert et al. 2014). For all analyses,
the tip dates were fixed to the dates found in the sequence an-
notation. For those sequences with the day-of-sampling infor-
mation missing, we simply set the date to be year/month/15
(total of 6/139 sequences). The results are consistent with those
obtained from the analyses where the samples with incomplete
sampling date information were excluded.

For the Bayesian analyses, we need to specify two modelling
components, namely the sequence evolution model and the
tree prior model, which we specified as follows.
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2.2.1 Sequence evolution model settings
For all analyses we chose the HKY substitution model as the se-
quence evolution model with substitution rate fixed to 1, LNð1;
1:25Þ prior and 0 as the lower limit for the j parameter, and esti-
mated base frequencies and C-distributed variation between
sites, using four categories, the shape parameter prior being set to
Exp(1). We allowed for between-branch rate variation using a re-
laxed clock model (Drummond et al. 2006). We used the log-nor-
mal relaxed clock model with ucldMean prior being LNð0:001; 2Þ in
real space. Furthermore, the ucldStdev prior was set to Cð0:5396;
0:3819Þwith 0 as the lower limit. This resulted in an effective prior
on the clock model’s rate.mean to have mean of 0.001 and me-
dian of 0.0001. This prior was chosen to reflect the estimates of
previous studies, where the substitution rate was estimated to be
between 0:98� 1:06� 10�3 subst/site/year (note that this unit cor-
responds to ‘substitutions per site and year’ or subst� site�1� -
year–1) (Faria et al. 2016) but was suspected to vary between
2.6�10–4 and 4.4�10–3 subst/site/year depending on the host or-
ganism (virological.org 2016). We also performed analyses using
a strict clock with prior LNð�9:2; 2:3Þ for the rate parameter. Note
that in the Bayesian framework, the product of the substitution
rate from the substitution model and the clock rate from the clock
model is the overall substitution rate of the process. Since we
fixed the substitution rate in the substitution model to 1, and we
only estimate the clock rate, the clock rate we report effectively
refers to the overall substitution rate.

2.2.2 Tree prior model settings
For the tree prior, we used the birth–death skyline model
(Stadler et al. 2013) and the coalescent Bayesian skyline plot
(Drummond et al. 2005). The birth–death skyline model is a
birth–death model with constant parameters within intervals
through time while parameters may change across intervals.
We used one interval for the become uninfectious rate (i.e. the
‘death’ rate) and fixed its value to 14.26, 18.25, or 23.40 (corre-
sponding to the inverse of the lower 95-percentile, mean and
upper 95-percentile of the estimates of the mean ZIKV genera-
tion time obtained by Ferguson et al. (2016)). The become unin-
fectious rate is the inverse of the time period of being
infectious. All the values of the become uninfectious rate here
are in units per year. Furthermore, we used five equidistant in-
tervals between the first and last sample for the sampling prob-
ability. For each interval we set the prior distribution to
Beta(1, 700). The sampling probability before the first sample
was set to 0. For the effective reproductive number, Re (which is
the ‘birth’ rate divided by the ‘death’ rate), we used three, four,
or six equidistant intervals between the root and the last sam-
ple with LN(0, 1) prior distribution and 0 as the lower and 50 as
the upper bound. For the origin parameter, the prior was LNð5;
0:5Þ in real space and lower and upper bounds of 0 and 15, re-
spectively. The coalescent Bayesian skyline model is based on a
coalescent with constant effective population sizes within in-
tervals through time while the effective population size may

Figure 1. MCC tree of the 139 ZIKV sequences included in this study. The posterior clade support is displayed at each branching point. The names of all virus sequences

that were isolated in Florida, USA, are highlighted in green and all sequences from Brazil are highlighted in magenta. The cluster of sequences highlighted in green rep-

resents the twenty-three strains of the USA data set that form one monophyletic cluster upon exclusion of one non-USA sequence. The MCC tree was obtained using

the BDSKY model in BEAST 2 with d¼18.25, three intervals for Re and a relaxed clock (see Supplementary Figs S1 and S2 for other model parametrizations).
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change across intervals. In the coalescent Bayesian skyline plot
we set the prior for the effective population size to a Markov-
chained distribution, i.e. the prior value of the parameter in the
interval follows a Gamma distribution with mean being set to
the value in the previous interval. We set the prior distribution
of the population size in the first interval to Unif ð0;107Þ. We set
the number of intervals for the effective population size and
group size to 3, 4, or 6.

In summary, for the three ZIKV data sets, we performed
analyses under relaxed and strict clock models, using the coa-
lescent and birth–death models with a range of settings as sum-
marized in Table 1. We ran the chain for 109 steps both with and
without sequencing data (sampling from prior). We sampled pa-
rameters every 104 steps and trees every 106 steps. The log files
were inspected in Tracer (Rambaut et al. 2014). All parameters
in all the runs mixed well (ESS>200) with one exception,
namely strict clock, all data, birth–death (BD): 4�Re � LN(0, 1),
without sequences, in Supplementary Fig. S3B (tree height and
origin had ESS of only 159 and 187, respectively).

For the analyses investigating the evolution of Re over time
in Florida, USA, we used the sequences of the Florida monophy-
letic cluster. We fixed the ucldMean parameter to l ¼ 9� 10�4

subst/site/year, which was the mean and the median estimate
of the clock rate (rate.mean parameter in BEAST 2) we obtained
when analysing the ALL data set without Florida, USA se-
quences (see Supplementary Fig. S4, w/o Florida). Furthermore,
in these analyses we varied the number of intervals for Re to be
3, 4, or 6 and the number of intervals for sampling probability p
to be 1 or 5.

Post-processing of Bayesian analyses was done by first dis-
carding the initial 10% of the MCMC samples as burn-in. Results
were then analysed in R (R Core Team 2013) using custom-made
scripts with the R packages boa (Smith 2007) for calculating the
highest posterior density (HPD) intervals, and RColorBrewer
(Neuwirth 2014) for plotting. To obtain the lineages-through
time (LTT) plot, the R package ape (Paradis, Claude, and
Strimmer 2004) was used in combination with the function
LTT.plot.gen in the R package TreeSim (Stadler 2011). To extract
the node (tree) height from the tree necessary for plotting the
LTT along with the Re plots, we used R package phytools (Revell
2012). We used the R package beanplot for plotting the probabil-
ity densities of time of the MRCA and clock rate estimates

(Kampstra 2008). Lastly, MCC trees were obtained using
TreeAnnotator v2.3.0 (Rambaut and Drummond 2015), removing
initial 10% of samples as burn-in, setting posterior probability
limit to 0.1 and reconstructing node height based on Common
Ancestor heights criterium. The MCC trees were visualised us-
ing FigTree v1.4.0 (Rambaut 2012). The BEAST 2 source files and
analysis scripts can be found in the Supplementary Materials
and Methods zip file.

3. Results
3.1 Robustness analysis of the tree height and the
clock rate

First, we set out to estimate the start of the epidemic and the
clock rate of the ZIKV epidemic for (1) the complete data set
containing 139 ZIKV sequences sampled in the Americas (ALL),
(2) 67 sequences sampled only in Brazil (BRAZIL), and (3) 23 se-
quences belonging to the locally contained outbreak in Florida,
USA (USA). All data sets contain sequentially sampled se-
quences and therefore should in principle allow for calibration
of the molecular clock (i.e. estimating the clock rate) and reli-
able estimation of the tree height. We used three methods for
estimation of the clock rate and the tree height: a regression
model correlating sampling time to the root-to-tip divergence
(PhyML combined with TempEst), a least squares-based ap-
proach (PhyML combined with LSD) and Bayesian phylody-
namic approaches (BEAST 2). For the latter, we used two
different models, the birth–death skyline model (Stadler et al.
2013) and the coalescent Bayesian skyline plot (Drummond
et al. 2005).

The start of the epidemic is parameterized in the BD model
as T, and the tree height T0 is the age of the MRCA. As in the
Bayesian coalescent (Coal) framework and the two non-
Bayesian frameworks, only the tree height T0 rather than T is es-
timated, we compare the estimated tree height, T0, under all
methods, using it as an approximation for the start of the epi-
demic, T. In what follows, we will refer to the ‘time of the MRCA’
(tMRCA) as the ‘date when the epidemic started’. This quantity
is derived by subtracting the tree height from the date of the
most recent tip in the data set. The rationale for comparing
non-Bayesian to Bayesian estimates of the tree height (or of the
date when the epidemic started) and the clock rate is to assess

Table 1. Overview of models used in this study.

Phylodynamic model Parameter Value Evolutionary
model

Clock model

Birth–death skyline model with
serial sampling (BD)

Effective reproductive
number (Re)

Estimated; 3, 4, 6 intervals (3 � Re, 4 �
Re, 6 � Re) with LN prior with various

parameterizations

HKYþC Relaxed clock

Become uninfectious rate (d) Fixed;
d 2 f14:26; 18:25; 23:40g

Strict clock

Sampling probability (P) Estimated; with prior Beta(1, 700)

Coalescent Bayesian skyline
plot (Coal)

Effective population size (Ne) Estimated;
3, 4, 6 intervals

(3 � Ne, 4 � Ne, 6 � Ne); with prior on
first interval Unif ð0; 107Þ, following
intervals: C with mean population

size of previous interval

HKYþC Relaxed clock

Strict clock

The abbreviations used in Figs 3 and 4 and Supplementary Figs S3 and S4 refer to this scheme. For example, BD: 3�Re�LN(0, 1), d ¼ 18:25 refers to the birth–death

skyline model with serial sampling which allows for three intervals for Re, each with LN(0, 1) distributed prior, and the become uninfectious rate d¼ 18.25.
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the amount of information available in the data without adding
prior information.

3.1.1 Regression analysis of the tree height and the clock rate
To obtain the estimate of the phylogenetic tree, we applied the
ML method PhyML v3.1 (Guindon et al. 2010) to the sequences.
We assessed the clock signal in the data using TempEst v1.5
(Rambaut et al. 2016) (Fig. 2). All three data sets show a positive
correlation between genetic divergence (root-to-tip divergence)
and sampling time, yielding estimates of clock rate of 1.57� 10–3

subst/site/year for the ALL data set, 1.76� 10–3 subst/site/year
for the BRAZIL data set, and 6.42� 10–3 subst/site/year for the
USA data set. The ALL data set exhibits the strongest associa-
tion between the genetic divergence and the sampling time
(R2 ¼ 0:32). The BRAZIL and USA data sets show more diffuse
patterns with lower R2-values: BRAZIL: R2 ¼ 0:19, USA: R2 ¼ 0:26.

The samples in the ALL and BRAZIL data sets range over more
than 1.37 years whereas the sequences in the USA data set were
only collected during less than four months. The x-intercept of
the regression line between the calendar time (x-axis) and the
root-to-tip divergence (y-axis) can be used as an approximation
of the date when the epidemic started. This way, the start of the
epidemic in the Americas was estimated to be 12 June 2013. The
Brazilian epidemic was estimated to start 1.6 years earlier, i.e.
30 October 2011. The epidemic in Florida was estimated to have
started on 31 May 2016, i.e. three years after the tMRCA of the
ALL data set (see Fig. 2). These results indicate that the clock sig-
nal may not be strong enough in (some of) the data sets, as the
ALL data set cannot have a younger tMRCA than any of its sub-
data sets. In addition, the estimates for the ALL and USA data
sets are very close to the earlier obtained estimates of the intro-
duction of ZIKV into the Americas; however, the estimate for

A

B

C

Figure 2. TempEst estimates of tree heights and clock rates. The tree height and the clock rate (i.e. slope) estimates obtained using TempEst for the three data sets:

(A) the complete data set (ALL), (B) the sequences isolated in Brazil (BRAZIL), and (C) the (monophyletic cluster of) sequences isolated in Florida (USA). The tree for each

data set was reconstructed using the ML method.
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the BRAZIL data set seems to be much older than estimated be-
fore (Faria et al. 2016, 2017; Grubaugh et al. 2017).

3.1.2 Least squares analysis of the tree height and the clock rate
The ML tree was also analysed with the least squares dating
tool LSD v0.3 (To et al. 2015), in order to estimate the tree height
and the clock rate in the ZIKV epidemic. The inferred tree height
for the ALL data set resulted in the estimated date when the epi-
demic started to be 8 January 2012. For the Brazilian data set,
the start of the epidemic was estimated to be 28 July 2010. The
oldest tree and thus the most ancient start of the epidemic, dat-
ing to 18 October 1980 was estimated for the USA data set. The
clock rate estimates for the ALL, BRAZIL, and USA data sets
were 5.21� 10–4, 5.62� 10–4, and 3.46� 10–5 subst/site/year, re-
spectively. Again, these results indicate that the clock signal is
weak in (some of) our data sets.

3.1.3 Bayesian phylodynamic analysis of the tree height and the
clock rate
In the next step, we used phylodynamic analysis to overcome
the problem of point estimates imposed by PhyML combined
with TempEst and LSD. In a nutshell, we used two different
models, the birth–death skyline model (Stadler et al. 2013) and
the coalescent Bayesian skyline plot (Drummond et al. 2005).
The term ‘skyline’ refers to the parameters (birth, death, sam-
pling, or effective population size) changing in a piecewise con-
stant fashion through time. As laid out in the introduction, the
two models differ conceptually in how data is used, and as a
common practice, the models are run without sequence data as
well as with all sequence data to determine how much informa-
tion the sequence data contains. Therefore, we will first explain
the estimation of the tree height and the clock rate without se-
quences and then include the sequence data.

Since in the BD model the effective reproductive number,
the become uninfectious rate, and the sampling probability are
simultaneously unidentifiable (Stadler et al. 2013; Boskova,
Bonhoeffer, and Stadler 2014), we fixed the become uninfectious
rate in all analyses. Ferguson et al. (2016) estimated the inverse
of this rate, i.e. the mean ZIKV generation time with its lower
and upper 95-percentile. For our main analyses, we used their
mean estimate translating to the become uninfectious rate of
18.25, and for the Supplementary analyses we used the upper
95-percentile and the lower 95-percentile of the Ferguson et al.
estimates, i.e. we set the become uninfectious rate to d ¼ 14:25
and 23.40, respectively.

3.1.3.1 What can we learn about the tree height and the clock rate
when ignoring the sequencing data? When analysing the data sets
using the BD model with information on sampling times and
number of samples only, i.e. ignoring the sequence data, we ob-
tain very peaked tree height distributions (gray distributions in
Fig. 3). Thus, the number of samples and sampling times con-
tain a lot of information regarding the tree height. The medians
of these distributions depend on different model specifications.
When analysing the data sets using the Coal model ignoring the
sequence data, i.e. running the analysis under the prior, the tree
height distributions are very wide as expected since the sam-
pling times are conditioned upon under the coalescent (gray
distributions in Fig. 3).

We performed all analyses shown in Fig. 3 using a relaxed
molecular clock that allows for variation of the clock rates be-
tween the different branches of the phylogenetic tree
(Drummond et al. 2006). The clock rate for the relaxed clock
model is defined as the mean clock rate averaged over all

branches (in BEAST 2, this is the rate.mean parameter). Ignoring
the sequences, we obtain the chosen prior distribution for the
clock rate under both the BD and the Coal framework as ex-
pected (gray distributions in Fig. 4).

3.1.3.2 How much additional information do the sequences contain
concerning the tree height and the clock rate? When performing
phylogenetic analyses for the ALL data set including the se-
quence data, we obtain relatively consistent estimates of the
median tree heights and clock rates in all models and model
specifications (thick green lines in Fig. 3 and thick red lines in
Fig. 4, respectively). The median estimates of the tree heights
translate to the estimated start of the epidemic ranging from 25
August 2013 to 22 December 2013. The range of median esti-
mates of the clock rate is 1:01� 10�3 � 1:24� 10�3 subst/site/
year.

In the BD analyses with various numbers of intervals for the
effective reproductive number Re, all 95% HPD intervals of the
tree height include the tree height estimate obtained by
TempEst (12 June 2013)—Fig. 3. This finding is robust also when
we assume a slower become uninfectious rate, but not for other
variations of priors for BD model parameters that we tested, i.e.
when assuming a faster become uninfectious rate or when set-
ting a strong prior on very large or an unrealistically low Re in
the BD model (Supplementary Fig. S3A, BD: 3�Re�LN(2, 0.2),
d¼ 18.25 and BD: 3�Re�LN(–2, 0.2), d¼ 18.25). In the Coal analy-
ses with various numbers of intervals for the effective popula-
tion size Ne, all 95% HPD intervals of the tree height include the
tree height estimate obtained by TempEst (12 June 2013). This
finding is robust for different priors on the effective population
size (Supplementary Fig. S3A). Only an extremely small coales-
cent population size priors in the Coal model (Supplementary
Fig. S3A, Coal: 3�Ne �LN(–2, 0.2)) produce HPDs not including
the TempEst estimates.

Neither the BD nor the Coal 95% HPD intervals of the clock
rate estimates contain the TempEst estimate of 1.57� 10–3

subst/site/year (Fig. 4), although they are in the same order of
magnitude (10�3 subst/site/year). This is consistent for all mod-
els (Supplementary Fig. S4A). The median clock rates estimated
in a Bayesian framework are consistently lower than the
TempEst estimate (Fig. 4 and Supplementary Fig. S4A). Only a
prior for extremely small coalescent population size pushes the
clock rate estimate to a higher rate (Supplementary Fig. S4A,
Coal: 3�Ne �LN(–2, 0.2)).

None of the HPD intervals contain the estimates of the tree
height and the clock rate provided by LSD for any of the prior set-
tings. The LSD clock rate estimates are consistently lower than
the BD and the Coal estimates. The LSD tree height estimates are
always above the BD/Coal tree height estimates (see Figs 3 and 4,
and Supplementary Figs S3 and S4).

In contrast to the ALL data set, the analysis of the BRAZIL
and USA data sets including the sequence data leads to distribu-
tions of the tree height and the clock rate that varied strongly
amongst the models (Figs 3 and 4 and Supplementary Figs S3A
and S4A). In particular, the 95% HPD intervals of the tree height
distributions for the BRAZIL and the USA data sets are very
broad (Fig. 3). For the Coal model, the posterior distribution re-
mains very flat (i.e. does not change much from the prior).
These results indicate that the BRAZIL and USA data sets gath-
ered in November 2016 do not contain a strong enough signal to
ultimately estimate the tree height reliably using phylodynamic
analysis.

When analysing the BRAZIL and USA data sets separately,
we obtain very different estimates for the clock rate from the BD
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models and the Coal models (Fig. 4). In the BD models, the se-
quence data is able to bring the clock rate estimates closer to
the TempEst estimates although the posterior distributions re-
main quite diffuse. We do not see a consistent pattern of the
clock rate estimates getting closer to the LSD estimates how-
ever. Adding sequence data to the Coal models leads to clock
rate estimates that are even lower than expected from the prior
(Fig. 4) and thus further away from the TempEst and LSD
estimates.

In our main analyses we used the relaxed clock model.
Further, we repeated the analyses with a strict clock model
(Supplementary Figs S3B,C and S4B,C). Employing the strict
clock models, we estimated the clock rates and tree heights to
be very similar to those inferred by the relaxed clock models.

From our analyses we conclude that the signal contained in
the ALL data set is sufficient to relatively consistently estimate
the tree height and the clock rate using Bayesian methods, if
the priors on the tree height are not too strongly biased towards
extremely early or late introductions. Therefore, one can date
the introduction of ZIKV into the Americas around late 2013.
The posterior distributions of the time of introduction are in

agreement with the TempEst analyses. It remains to be investi-
gated though why LSD produce outliers. However, the BRAZIL
and the USA data sets do not contain enough information to
perform reliable estimation of tree height and clock rate param-
eters of these sub-epidemics.

Through the inclusion of the sequence data in the analysis,
the clock rate and the tree height priors are allowed to interact.
If the data contains enough signal, the clock rate and the tree
height can be teased apart. However, if the data has a weak sig-
nal for calibrating the clock, then both the clock rate and the
tree height estimates may be biased, and the nature of this bias
would be influenced by the interaction of the two prior
distributions.

If there is very little signal in the data for separation of the
clock rate and the tree height, only their product can be estimated
reliably. The median of the product of the clock rate and the tree
height for the BD analyses with three intervals for Re for the ALL
data set is 0.00291 (95% HPD¼(0.00250, 0.00335)), for BRAZIL
0.00270 (95% HPD¼(0.00192, 0.00347)) and for USA 0.00127 (95%
HPD¼(0.00081, 0.00170)). For the Coal analyses with three intervals
for Ne, we obtain following median estimates of this product: ALL

Figure 3. The effect of addition of sequence data on the tMRCA estimates in the Bayesian analysis. The probability distribution of the estimates of the tMRCA resulting

from the analysis with (green) and without (gray) sequences is shown. The figure shows estimates obtained under various model assumptions (labels on the x-axis

summarize the models as explained in Table 1) and the three different data sets (header). The median date of MRCA is indicated with a thick solid line and the 95%

HPD intervals are marked with thin solid lines. The black dashed, dotted, and dashed-dotted lines represent the tMRCA estimates based on the TempEst analysis

(Fig. 2) for the ALL, BRAZIL, and USA data sets, respectively. The gray dashed, dotted, and dashed-dotted lines represent the tMRCA of the LSD estimates for the ALL,

BRAZIL, and USA data sets, respectively. The become uninfectious rate in the BD model is set to d¼18.25, which is the mean estimate in Ferguson et al. (2016). Notice

that the median estimates of the tMRCA for the BRAZIL and USA data sets analysed with the Coal model are beyond the limits of the figure, so we state the estimated

tree heights below. For the BRAZIL data set, the median tree height estimate of distributions resulting from analyses without sequence data for Coal: 3�Ne �C is

1.8�106 years, for Coal: 4�Ne �C is 1.0�106 years and for Coal: 6�Ne �C is 3.5�105 years. The median tree height estimate of the distribution when sequence data is

included for Coal: 3�Ne �C is 1026.7 years, for Coal: 4�Ne �C is 960.1 years, and for Coal: 6�Ne �C is 1039.8 years. For the USA data set, the median tree height estimate

of distributions resulting from analyses without sequence data for Coal: 3�Ne �C is 2.0�106 years, for Coal: 4�Ne �C is 1.2�106 years, and for Coal: 6�Ne �C is

5.3�105 years. The median tree height estimate of the distribution when sequence data is included for Coal: 3�Ne �C is 460.8 years, for Coal: 4�Ne �C is 449.1 years,

and for Coal: 6�Ne �C is 443.5 years.
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0.00362 (95% HPD¼(0.00299, 0.00441)), BRAZIL 0.00239 (95%
HPD¼(0.00157, 0.00360)), and USA 0.00117 (95% HPD¼(0.00079,
0.00163)). For both BD and Coal models, the ALL data set has the
highest product, followed by BRAZIL and finally USA. This order-
ing makes sense: the full data set has an underlying tree as old as,
or older than, the tree obtained from any subset of the full data
set. Assuming all the data sets share the same clock rate, the
product of tree height and clock rate should be largest for the ALL
data set. Also, the 95% HPD intervals of this product overlap for
the Coal and the BD analyses in all three data sets.

Having in mind that we can estimate this product from our
data, we can now understand better the inconsistencies ob-
tained when aiming to separate the clock rate and the tree
height using sequencing data. We illustrate the reason for the
inconsistencies using the BRAZIL data set. The BD: 3�Re model
produces a peaked estimate of the tree height when the tree
prior is combined with the sampling times only (gray distribu-
tion in Fig. 3). The median estimate of� 2.2 years (start of
epidemic�April 2014) is close to the previously reported esti-
mates of the start of the ZIKV epidemic in the Americas
(Faria et al. 2016). So why does adding sequence data shift the
estimated date of when the epidemic started further into the
past? The median estimate of the product of the clock rate
and the tree height is 0.00270 subst/site. If the true clock rate
was �1� 10�3 subst/site/year as estimated by Faria et al. (2016),
the tree height would be 2.7 years. Given the last sample in this

particular data set was isolated on 10 July 2016, the start of the
epidemic would then be (2016:52� 2:7 years)�October 2013.
However, our clock rate prior has a median of the rate.mean pa-
rameter set to 1.3� 10–4 subst/site/year, which, when combined
with the estimated product of the clock rate and the tree height,
would lead to tree height estimates of 0:00270

0:00013 ¼ 20:77 years, i.e.
the start of the epidemic would be�October 1995. Thus, if the
sequencing data does not contain enough information to cali-
brate the clock to the expected 1� 10–3 subst/site/year, the in-
ferred tree height will increase, i.e. the tMRCA will be pulled up
from April 2014 and beyond October 2013, upon inclusion of the
sequence data. This insight can explain our large tree height
(median estimate of 4.7 years, i.e. the start of the epidemic
being�October 2011), and the slow posterior clock rate (median
estimate of the rate.mean parameter being 5.8� 10–4 subst/site/
year which is much slower than estimates by other studies
(Faria et al. 2016)). The situation for the other prior settings for
the BRAZIL and USA data set analysed with the BD model is
analogous to what we have just described for the BRAZIL BD:
3�Re model.

When the BRAZIL data set is analysed under the Coal: 3�Ne

model, the median estimate of the product of the clock rate and
the tree height is 0.00239 subst/site, which is very similar to the
one obtained with the BD model. Again, if we assume the true
clock rate to be �1� 10�3 subst/site/year, as estimated before
(Faria et al. 2016), the tree height would be 2.4 years and the

Figure 4. The effect of addition of sequence data on the clock rate estimates in the Bayesian analysis. The probability distribution of the clock rate (rate.mean parame-

ter) estimates resulting from the analysis with (red) and without (gray) sequences is shown. The figure shows estimates obtained under various model assumptions (la-

bels on the x-axis summarize the models as explained in Table 1) and the three different data sets (header). The median clock rate is indicated with a thick solid line

and the 95% HPD interval marked with thin solid lines. The black dashed, dotted, and dashed-dotted lines represent the clock rate estimates based on the TempEst

analysis (Fig. 2) for the ALL, BRAZIL, and USA data sets, respectively. The gray dashed, dotted, and dashed-dotted lines represent the clock rate of the LSD estimates for

the ALL, BRAZIL, and USA data sets, respectively. The become uninfectious rate in the BD model is set to d¼ 18.25, which is the mean estimate in Ferguson et al. (2016).

The clock rate displayed is in units of s/s/y, i.e. subst/site/year.
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start of the epidemic would be estimated to be in � February
2014. Our clock rate prior has a median of the rate.mean param-
eter set to 1.4� 10–4 subst/site/year, leading to estimated me-
dian tree height of 17.07 years, i.e. a start of the epidemic being
in � June 1999. However, unlike in the BD model, the tree height
prior is very diffuse under the coalescent. The median prior tree
height is 1:8� 106 years. So if the data is unable to provide cali-
bration information for the clock rate, the inferred tree height
would increase a lot and the tMRCA will be pulled up from
February 2014 due to the tree prior. Indeed, when the sequence
data is included in the analysis, the median tree height estimate
turns out to be 1026 years. The tree height gets pulled down
from what would be dictated by the tree prior. This estimate is
however still higher than what would be expected under the
clock rate prior (or the clock rate estimates in other studies), re-
quiring the clock to be even slower than defined by the prior
(median estimate of the rate.mean parameter after inclusion of
sequences being 2:4� 10�6 subst/site/year). The situation for
other prior settings for BRAZIL and also when using the Coal
model with the Florida, USA data set is similar.

These findings show that the data sets of BRAZIL and USA
sequences do not contain enough information to calibrate the
molecular clock and thus fail to infer a proper tree height.

3.2 Estimates of the effective reproductive number for
the USA data set

The number of secondary cases induced by one index case, i.e.
the number of individuals infected by one infected individual
during his/her infectious period, in a totally susceptible popula-
tion is referred to as the basic reproductive number R0. It is a
very important parameter to be estimated at the start of an epi-
demic. If R0 < 1 the epidemic is prone to die out, if R0> 1 the
disease will spread amongst the population (Anderson and May
1991). During an ongoing epidemic, some individuals recover
from the disease and gain immunity such that the population is
not completely susceptible anymore. Further, the individuals
might change their behaviour and thus the number of second-
ary cases caused by a single infected individual might change.

The number of secondary cases caused by a single infected indi-
vidual at time t is referred to as the effective reproductive number,
Re, at time t. Similarly to R0, the effective reproductive number
provides important information on whether the epidemic is
able to spread further—this is the case if Re > 1, or whether it is
prone to die out—i.e. if Re < 1.

The effective reproductive number during an ongoing epi-
demic is directly estimated under the birth–death skyline model
as the birth rate divided by the death rate at time t. One of the
assumptions of the birth–death skyline model is that the sam-
pling intensity may vary through time but it is distributed uni-
formly at random across the considered infected population at
any point in time. This assumption is violated for the ALL and
BRAZIL data sets, since they encompass a big geographic area,
with sampling and sequencing efforts being higher in some re-
gions than in others (Faria et al. 2017; Metsky et al. 2017). In con-
trast, the sequences in the Florida, USA data set were sampled
across a smaller area formed by three neighbouring counties
(Grubaugh et al. 2017) with the zone of transmission being esti-
mated within these counties for most individuals (only for three
of twenty-three sequences included in our data set had an un-
known zone of transmission). In addition, the infected individ-
uals in this region seemed to be sampled uniformly at random
at any point in time.

As we cannot estimate the clock rate for this data set, we set
it to the median (identical to mean) clock rate estimate we ob-
tained from analysing the full data set without the twenty-nine
Florida sequences (i.e. the sequences highlighted in green in
Fig. 1 and Supplementary Figs S1 and S2). Thus, we set the clock
rate to 9� 10–4 subst/site/year. We show the results in Fig. 5 us-
ing six intervals for the birth rate (and thus Re) and assuming a
constant sampling probability throughout the period of sample
collection. This analysis reveals that for up to the time of the
last sample, i.e. until October 2016, the ZIKV spread fastest in
Florida in mid-2016 and that the Re dropped below 1 around
August 2016. Allowing fewer intervals for the birth rate, mean-
ing only estimating a coarser pattern for Re, yields Re estimates
which are averages from the finer six interval analysis, as ex-
pected (Supplementary Fig. S5).

Figure 5. Birth–death skyline plot based on the USA data set. We used the BDSKY model allowing six intervals for Re and 1 mean value for the sampling probability.

Opaque coloring for the effective reproductive number, Re (orange), and the sampling probability (cyan), depict the results of analyses without sequence data, the

darker shades display estimates after the addition of sequence data. The vertical dashed magenta lines and crosses indicate the sampling time points of the viral se-

quences. The magenta curve summarizes the lineages-through-time plot averaged over all MCMC samples without the burn-in (first 10% of samples). For all parame-

ters we show the 95% confidence intervals and the median estimates (solid central line).
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We were interested to compare our Re estimates to the prev-
alence and incidence data reported by Pan American Health
Organization (2017) and the Florida Department of Health
(2017). However, these statistics on local transmissions only be-
gin on 18 August 2016 and 30 July 2016, respectively. Both sour-
ces report a drastic increase in new cases in the first half of
October 2016. Since in the Florida cluster we analysed here, the
sequences are sampled as early as in June 2016, we observe an
increase in Re before the first reports of local transmission from
PAHO/Florida Department of Health. Also, our last sample was
obtained on 11 October 2016 and we therefore do not capture
the potential peak in Re beyond (nor potentially slightly before)
this date. However, Grubaugh et al. (2017) provide an estimate
of the R0 in the Miami Dade county, one of the three counties
the sequence data included in our analyses comes from. Based
on the observed local transmission data and the total number
of introduction events (travel-associated cases), they estimated
the R0 to be 0.5–0.8. In our analyses, once we see the epidemic
spread taking off in early March 2016, we estimate median Re of
0.88, quickly rising above 1 as the epidemic progresses. Between
end of May and mid-July 2016 we consistently observe Re > 1:
median Re between 2.1 and 2.2 and 95% HPD¼(1.1, 3.1). Prior to
March 2016 we do not see the epidemic spread and estimate
median Re between 0.6 and 0.88 (95% HPD: 0.05–1.8), which
would be in line with Grubaugh et al. estimates. The discrep-
ancy between our Re estimates after March 2016 and the R0 esti-
mates of Grubaugh et al. could stem from the estimates of
Grubaugh et al. being based on the infected patient count data
reported by the public health agencies, which could have poten-
tially missed a lot of mild or asymptomatic ZIKV infections.

4. Discussion

As soon as a new virus starts to spread within the human popu-
lation, it is important to estimate the potential impact of this
epidemic on a global scale. To obtain trustworthy parameter es-
timates, the sequences must contain enough signal regarding
the quantities of interest. Testing the sequence data for a signal
on the molecular clock rate is therefore necessary.

4.1 Analyses using point estimate methods

Point estimate methods allow for dating the tree and obtaining
an estimate for the molecular clock rate. Here, we explored such
estimates using TempEst (Rambaut et al. 2016) and LSD tree dat-
ing (Guindon et al. 2010; To et al. 2015). Tools such as TempEst
(Rambaut et al. 2016) that visualise the regression of the root-to-
tip divergence with the calendar time can be helpful in deter-
mining the amount of clock signal in the data. There are only
few rules on how exactly these tools should be used. The au-
thors of the TempEst say that ‘[. . .] the estimation of a negative
evolutionary rate indicates that the data set contains little or no
temporal signal’ (Rambaut et al. 2016). They also point out that
the amount of signal in the data can be assessed visually or
through the correlation coefficient, R2, provided by the method.
However, guidelines that describe how to exactly perform this
visual inspection, or what the reasonable cutoff for R2 is to de-
termine if the information in the data is sufficient to allow for
the separation of the clock rate and the tree height signal are
lacking. Assessment of the clock signal in the data using this
tool is therefore very subjective.

Such regression methods as well as a molecular clock selec-
tion approach have been found to lead to wrong estimates of
the amount of clock signal in the data. This is especially the

case when the sampling periods are too short or when sampling
is biased, i.e. when sampling is confounded with the genetic
structure in the population (Murray et al. 2016). Repeating the
analyses by randomly permuting the sampling dates of the se-
quences, i.e. doing a Bayesian permutation test (Ramsden et al.
2008), can identify the latter but not the former bias (Duchêne
et al. 2015). In contrast, a version of the Bayesian permutation
test, the so-called clustered permutation test, which random-
ises the date assignment between sequences belonging to a
monophyletic cluster, rather than doing the assignment com-
pletely at random, can deal with both situations when assessing
the amount of clock signal in the data (Duchêne et al. 2015).

In our ZIKV data analyses, the tree height estimates from
TempEst are largely in agreement with the Bayesian estimates
for the ALL data set. Using LSD method, we obtain conflicting
tree height estimates compared to the Bayesian and TempEst
estimates already for the ALL data set, which may be due to LSD
needing stronger clock signal in the data to produce reliable
estimates.

Both TempEst and LSD provide only point estimates for the
clock rate and the tMRCA parameters. To explore the robustness
of these estimates, and to obtain the confidence intervals, indi-
rect approaches such as a bootstrap procedure has to be per-
formed. Furthermore, these estimates are based on a single
input tree. In case of limited data, the tree reconstruction
method and settings, e.g. evolutionary model, chosen can
strongly influence the results of these analyses (compare Fig. 2
where the input three is reconstructed using ML procedure, and
Supplementary Fig. S6, where the tree has been reconstructed
using another popular method, namely neighbour-joining algo-
rithm (Saitou and Nei 1987).

4.2 Analyses using Bayesian phylodynamic method

Bayesian methods are an alternative to the point estimate
methods. In the Bayesian framework, the uncertainty in the
tree topology can be naturally integrated out by sampling over
many plausible topologies. In addition, the result of a Bayesian
inference is a distribution of parameter values, rather than a
single point estimate, providing a measure of uncertainty in the
estimate. Furthermore, results can easily be tested for robust-
ness across models and across priors for parameters to investi-
gate the amount of signal contained in the data about any
particular parameter.

Bayesian phylodynamic analysis requires model choices and
decisions on prior settings before analysing the sampled se-
quence data. Making these choices is not trivial. Despite the fact
that prior distribution for in total four parameters, i.e. origin, be-
come uninfectious rate, effective reproductive number and the
sampling probability, needs to be specified in the birth–death
model, this task may be easier than specifying the prior distri-
bution on the single parameter, i.e. effective population size, of
the coalescent model. Epidemiological surveillance data often
provide information on the duration of the infection in the pa-
tient and also on the sampling probability. Furthermore, assum-
ing Re around 1 is reasonable for most infections. However,
there is usually no information on the effective infected popula-
tion size, which is in fact a different quantity than the infected
population size.

A good practice in Bayesian phylodynamics is to first run the
analysis without the sequence data and only add the sequence
data in a second run. Such analyses can be very revealing about
both the amount of information in the sequences and the as-
sumptions of the underlying models. Analysing just the
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sampling times of ZIKV data sets with the coalescent tree prior
led to wide distributions for the tree height parameter. When
the sequence data was included, the tree height distributions
peaked for the case of the ALL data set but remained very broad
for the BRAZIL and the USA sequences only, indicating a lack of
signal in the two latter data sets. Even though we assumed a
flat prior on the origin, the birth–death model analyses yielded
peaked estimates of the tree height already when just the infor-
mation on the sampling times was included. This is due to the
fact that the sampling process is part of the birth–death model
outcome. Thus, the sampling times already provide information
about the epidemiological dynamics. In this sense, the birth–
death models are very similar to classic epidemiology, where
the sampling times without sequences are used for estimation
of epidemiological parameters.

If the birth–death model is an appropriate model regarding
the dynamics of the (sampling and epidemiological) process,
sampling times provide useful information regarding the pa-
rameters of the process. However, if the birth–death model does
not describe the process correctly, a peaked distribution ob-
tained based on sampling times can be misleading, especially if
this distribution is shifted away from the true parameter value.
When sequence data is combined with such shifted distribu-
tions, and the information in the sequences is not strong
enough to push the distribution to the correct values, wrong
conclusions about important epidemiological parameters may
be drawn.

Sampling from an actual prior distribution under the birth–
death model involves sampling the number of samples and the
sampling times along with all other parameters. One option to
obtain such a prior distribution under the birth–death model
would be to simulate trees under a given set of epidemiological
parameters using, e.g. MASTER (Vaughan and Drummond 2013)
or TreeSim package in R (Stadler 2011). If such sampling was
carried out, one would obtain prior distributions on all parame-
ters together with prior distribution of the sample number and
sampling times. In such a case, if the prior distribution on the
origin parameter was specified to be uniform, sampling from
the actual prior will produce a uniform prior distribution for the
origin parameter. However, the prior distribution for the tree
height parameter would be defined by the exact combination of
the birth rate, the death rate and the sampling probability
parameter.

4.3 Analysis of limited sequence data using Bayesian
phylodynamics

Sequence data carry information for two distinct parameters:
the tree topology and the clock rate. If the sequences are not di-
vergent enough from one another, the topology will be hard to
estimate. If the sequences are sampled close to one another in
time, relative to the substitution rate, even if the topology is cor-
rectly resolved, it will be hard to tease apart the tree height and
the clock (substitution) rate. The former problem is dealt with
using the Bayesian analysis, since the tree topology can be
treated as a nuisance parameter and is integrated out. When se-
quences do not contain enough information to calibrate the mo-
lecular clock, only the product of the clock rate and the tree
height can be estimated reliably. Here, we have shown that
once we attempt to decompose this product into the clock rate
and tree height estimates using insufficient data, severe prob-
lems arise. Sequences with little information on the clock rate
may shift the estimates in a wrong direction (compared to the
estimates without sequences) as the clock rate and the tree

height distributions interact once the sequences are added. This
phenomenon has been also recently observed in simulations
(Möller 2017).

Only when we are guaranteed that the data contains enough
signal for the clock calibration, we can proceed with interpret-
ing phylodynamic parameters. In case of limited data, it is pos-
sible to carry out the analyses by fixing one of the parameters:
the clock rate or the tree height. Fixing the former is straightfor-
ward as the clock rate is a parameter for which a prior is chosen,
however, fixing the latter is more complex as the tree height
prior distribution is induced by the prior distributions on the
model parameters. One may simply fix the MRCA node height,
i.e. use a calibration node. However, superimposing of such
MRCA node age prior on top of the population dynamic prior
can lead to unexpected actual prior distributions (Heled and
Drummond 2015). In addition to the technical issue with fixing
the clock rate or the tree height parameters in the analyses,
availability of reliable estimates also influences which parame-
ter one chooses to fix. Clock rate estimates are often available
for many data sets. Fixing this value and assuming the sam-
pling process is unbiased across the population at any point in
time, we can infer epidemiological parameters using the birth–
death (skyline) model. It has been shown before, that if the sam-
pling process is mis-specified in the birth–death model, e.g. if it
is fixed to a high value, while the true value is low, then other
epidemiological parameters will be biased too (see effect of mis-
specification due to parameter correlations in Boskova,
Bonhoeffer, and Stadler (2014)). If the sampling process is biased
in such a way that certain parts of the transmission tree are
sampled more than others, and one fails to capture those varia-
tions in the model both the birth–death and the coalescent
model may produce biases as both of these models assume that
at each point in time, a random sample is taken from the full
process.

We performed a phylodynamic analysis on the Florida, USA
data set, by fixing the clock rate, and find evidence for the in-
crease in spread of the ZIKV in Florida in mid-2016 followed by
the decline in spread after August 2016. We used the birth–
death skyline model with up to 6 intervals for Re to analyse the
USA data. The reason for not increasing this number further
was that we did not want to over-parametrise the model. In
particular, the data set only consisted of 23 sequences and in-
cluding more parameters to estimate in the model would only
lead to wider posterior intervals. An ideal alternative to the
simple skyline model would be to use a smoothing prior, inform-
ing each next interval by the results gathered from the previous
one. In the future, we hope such prior will become available
for the birth–death skyline model, allowing for more detailed
analyses of small data sets such as the ZIKV Florida cluster ex-
plored here.

5. Conclusions

Based on our results presented here, we suggest to perform
Bayesian phylodynamic analyses during ongoing epidemics
with highest care with respect to model robustness. Instead of
using just one set of priors to perform an analysis, it is essential
to check the robustness of the estimates obtained with the cho-
sen models and different prior settings. If the data has enough
phylogenetic and clock signal, the posterior distributions will be
consistent over the range of models chosen. Only then, the pos-
terior distributions can reliably reflect important parameters
such as the effective reproductive number, the start or the size
of the epidemic.
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