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Abstract: The organic extract of liquid cultures of the marine-derived Penicillium sp. was investigated.
Fractionation of the extracts of the fungus led to the purification and identification of two new
compounds, penicillatides A (1) and B (2), together with the previously reported cyclo(R-Pro–S-Phe)
(3) and cyclo(R-Pro–R-Phe) (4). The structures of compounds 1–4 were assigned by extensive
interpretation of their NMR and high-resolution mass spectrometry (HRMS). The antiproliferative
and cytotoxic activities of the compounds against three human cancer cell lines as well as their
antimicrobial activity against several pathogens were evaluated. Compounds 2–4 displayed variable
cytotoxic and antimicrobial activities.
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1. Introduction

Members of the genus Penicillium are among the most investigated fungi by natural products
chemists and are considered a major source for drug discovery. Prominent fungal-derived drugs
include the antibiotic penicillin, which was obtained from Penicillium chrysogenum, and the antifungal
griseofulvin from Penicillium griseofulvum. Nowadays, the genus Penicillium still represents a major
producer of secondary metabolites with diverse bioactivities, as reported in many recent reviews [1–5].

In the last decade, a significantly increased interest in secondary metabolites from marine microbes
has been reported [2]. 2,5-Diketopiperazines (2,5-DKPs) are obtained from different organisms,
including marine microbes. They represent an important group of cyclic dipeptides with diverse
structures and significant biological activities [2]. Since the number of reported compounds with
significant biological properties is increasing, several reviews covering the structural determinations,
biological activities, and proposed biosynthetic pathways of this class of compounds have been
reported [6–8]. Consequently, marine fungi appear to be a promising source of these interesting
dipeptides. Several members of the 2,5-DKP class displayed cytotoxic, anti-inflammatory, and
antimicrobial activities [9–12].

Our growing interest in identifying secondary metabolites from marine microbes resulted in the
identification of several compounds with different bioactivities [13–17]. The organic extract of the
fungus Penicillium sp. gave two new compounds, named penicillatides A and B (1 and 2), together with
cyclo(D-Pro–L-Phe) {cyclo(R-Pro–S-Phe)} (3) [18] and cyclo(R-Pro–R-Phe) (4) [19] (Figure 1). Structural
determinations of the compounds were supported by interpretation of their spectroscopic data as well
as comparison of available NMR data in the literature. In this paper, the structural determinations and
the cytotoxic and antimicrobial activities of the compounds are reported.
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Figure 1. Chemical structures of compounds 1–4. 
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2.1. Structure Elucidation of Compounds 1–4 

The high-resolution electrospray ionization mass spectrometry (HRESIMS) and NMR spectra 
(Figures S1–S4) of compound 1 (Figure 1) support the molecular formula of C11H18N2O3. The 13C-NMR 
(Figure S2) spectrum of 1 (Figure S2) displayed signals for 11 carbons, including two methyls, four 
methylenes, two aliphatic methines, one aldehydic methine, and two quaternary amidic carbonyls 
(Table 1). Tracing of the 1H–1H couplings in the COSY spectrum (Figure S3) allowed the assignment 
of two structural subunits in 1: N-formylleucine (subunit A) and 2-oxopyrrolidine (subunit B) 
moieties (Figure 1 and Table 1). The first 1H–1H COSY coupling system led to the assignment of the 
N-formyl-leucine moiety as established from the multiplicity-edited HSQC spectral data (Figure S4) 
at δH/C 6.10 (NH), 173.7 (qC, C-1), 5.81/49.9 (CH, H-2/C-2), 1.62, 1.42/41.5 (CH2, H2–3/C-3), 1.74/25.0 
(CH, H-4/C-4), 1.05/21.0 (CH3, H3–5/C-5), 0.92/23.5 (CH3, H3-6/C-6), and 8.21/160.6 (CH, H-11/C-11) 
(Table 1). The 1H/13C chemical shift at δH/C 8.21/160.6 is typical for an N-formyl moiety and in 
agreement with reported values [20]. The placement of the N-formyl moiety was supported by HMBC 
of H-2/C-11, H-11/C-2 as well as NOESY correlations of NH/H-2 and NH/H-11 (Figure 2). Further 
HMBC correlations (Figure S5) within the leucine moiety are shown in Table 1 and Figure 2.  
The second coupling system allowed the assignment of the 2-oxopyrrolidine subunit based on the 
continuous 1H–1H COSY coupling system of H2-8/H2-9/H2-10 and the 1H/13C NMR signals at δH/C 174.8 
(qC, C-7), 2.64, 2.61/33.4 (CH2, H2-8/C-8), 2.09/17.3 (CH2, H2-9/C-9), and 3.88, 3.77/45.6 (CH2, H2-10/C-10). 
The HMBC correlations of H2-8/C-7, H2-9/C-7, and H2-10/C-7 supported the assignment of subunit B 
(Figure 2). Finally, the connection between the two subunits of 1 at C-1 and the amidic nitrogen of 
the 2-oxopyrrolidine moiety was secured from the HMBC correlation from H2-10 to C-1 (Figure 2), 
supporting the assignment of 1 as N-(N-formylleucyl)-2-oxopyrrolidine. 
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Figure 2. Key COSY and HMBC correlations of 1 and 2. 

Figure 1. Chemical structures of compounds 1–4.

2. Results and Discussion

2.1. Structure Elucidation of Compounds 1–4

The high-resolution electrospray ionization mass spectrometry (HRESIMS) and NMR spectra
(Figures S1–S4) of compound 1 (Figure 1) support the molecular formula of C11H18N2O3. The 13C-NMR
(Figure S2) spectrum of 1 (Figure S2) displayed signals for 11 carbons, including two methyls, four
methylenes, two aliphatic methines, one aldehydic methine, and two quaternary amidic carbonyls
(Table 1). Tracing of the 1H–1H couplings in the COSY spectrum (Figure S3) allowed the assignment
of two structural subunits in 1: N-formylleucine (subunit A) and 2-oxopyrrolidine (subunit B)
moieties (Figure 1 and Table 1). The first 1H–1H COSY coupling system led to the assignment
of the N-formyl-leucine moiety as established from the multiplicity-edited HSQC spectral data (Figure
S4) at δH/C 6.10 (NH), 173.7 (qC, C-1), 5.81/49.9 (CH, H-2/C-2), 1.62, 1.42/41.5 (CH2, H2–3/C-3),
1.74/25.0 (CH, H-4/C-4), 1.05/21.0 (CH3, H3–5/C-5), 0.92/23.5 (CH3, H3-6/C-6), and 8.21/160.6 (CH,
H-11/C-11) (Table 1). The 1H/13C chemical shift at δH/C 8.21/160.6 is typical for an N-formyl moiety
and in agreement with reported values [20]. The placement of the N-formyl moiety was supported by
HMBC of H-2/C-11, H-11/C-2 as well as NOESY correlations of NH/H-2 and NH/H-11 (Figure 2).
Further HMBC correlations (Figure S5) within the leucine moiety are shown in Table 1 and Figure 2.
The second coupling system allowed the assignment of the 2-oxopyrrolidine subunit based on the
continuous 1H–1H COSY coupling system of H2-8/H2-9/H2-10 and the 1H/13C NMR signals at
δH/C 174.8 (qC, C-7), 2.64, 2.61/33.4 (CH2, H2-8/C-8), 2.09/17.3 (CH2, H2-9/C-9), and 3.88, 3.77/45.6
(CH2, H2-10/C-10). The HMBC correlations of H2-8/C-7, H2-9/C-7, and H2-10/C-7 supported the
assignment of subunit B (Figure 2). Finally, the connection between the two subunits of 1 at C-1 and
the amidic nitrogen of the 2-oxopyrrolidine moiety was secured from the HMBC correlation from
H2-10 to C-1 (Figure 2), supporting the assignment of 1 as N-(N-formylleucyl)-2-oxopyrrolidine.
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Table 1. NMR data of compound 1 (CDCl3, 850 and 213 MHz).

No. δC (mult.) δH (mult., J (Hz)) HMBC NOESY

1 173.7, qC H-2, H2-10
2 49.9, CH 5.81 (dt, 11.5, 3.0) H-11 NH
3 41.5, CH2 1.62 (m), 1.42 (m) H-2, H3-5, H3-6
4 25.0, CH 1.74 (m) H3-5, H3-6
5 21.0, CH3 1.05 (d, 6.5) H3-6
6 23.5, CH3 0.92 (d, 6.5) H3-5
7 174.8, qC H2-8, H2-9, H2-10

8 33.4, CH2
2.64 (dd, 9.5, 1.5)
2.61 (dd, 9.5, 7.0) H2-9, H2-10

9 17.3, CH2 2.09 (m) H2-7, H2-8
10 45.6, CH2 3.83 (m), 3.77 (m) H2-8, H2-9
11 160.6, CH 8.21 (s) H-2 NH

NH 6.10 (brs) H-2, H-11

The absolute configuration of C-2 of the leucine residue was determined by Marfey’s method
(Scheme 1) [21]. HPLC analysis of the derivative of 1-fluoro-2,4-dinitrophenyl-5-L-alanine amide
(FDAA, Marfey’s reagent) with the hydrolytic product of 1 gave the same retention time as the
derivative prepared from an authentic L-leucine, and therefore the L-configuration was assigned to
the leucine residue. Thus, compound 1 was assigned as (S)-N-(4-methyl-1-oxo-1-(2-oxopyrrolidin-
1-yl)pentan-2-yl)formamide. The name penicillatide A was given to 1, and it is reported here as a new
natural compound.
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Scheme 1. Reaction of 1-fluoro-2,4-dinitrophenyl-5-L-alanine amide (FDAA) with the hydrolytic
product of compound 1 (L-leucine).

Compound 2 (Figure 1) exhibited a molecular formula of C14H16N2O3 as established by HRESIMS.
The 1H/13C NMR signals (Figures S6 and S7, Table 2) at δH/C 6.13 (1H, brs, NH-1), 166.9 (qC,
C-2), 2.85/59.6 (CH, H-3/C-3), and 166.1 (qC, C-5) suggested a diketopiperazine moiety as part
of a cyclic dipeptide skeleton. The NMR data of compound 2 (Table 2) are very close to those of 3.
However, compound 2 displayed a signal for an oxygenated quaternary carbon at δC 83.4 and 1H
singlet at δH 4.36 (1H, OH) instead of the methine of H-6/C-6 at δH/C 4.20/59.1 in 3, suggesting the
presence of a hydroxyl moiety at C-6 in 2. The placement of the OH at C-6 was supported by HMBC
correlations of H2-10/C-6, H2-10/C-5, and OH/C-5 (Figure 2 and Table 2). Furthermore, the COSY
(Figure S8), HSQC (Figure S9) and HMBC experiments (Figure S10) supported the assignment of
the structure of 2 as cyclo(Pro–2-OH–Phe) (Table 2 and Figure 2). The absolute configuration of
C-3 of the proline residue was determined by Marfey’s method [21]. HPLC analysis of the FDAA
derivative of the hydrolytic product of 2 gave the same retention time as the derivative prepared
from an authentic (L)-proline, and therefore the L-configuration was assigned to the proline residue
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(Scheme 2). The absolute configuration at C-6 of the phenylalanine residue was not determined by
Marfey’s method, because the hydroxyphenylalanine residue decomposed under acidic conditions.
The relative configuration at C-6 was established by comparing the chemical shift values of C-6 and
H2-10/C-10 with a similar compound containing the α-hydroxylated phenylalanine moiety, namely
(3R,6S)-3-benzyl-3-hydroxy-1,4-dimethyl-6-((4-nitro-1H-indol-3-yl)methyl)piperazine-2,5-dione [22].
The δH/C of 3.14, 3.05/47.8 (H2-10/C-10), and 83.4 (C-6) in 2 were very close to the values in the
literature [22], supporting the configuration of OH at C-6, as shown in Figure 1. Furthermore, the
configuration of the OH at C-6 in 2 was also confirmed by the NOESY experiment, in which a strong
correlation between H-3 (δH 2.85) and 6-OH (δH 4.36) was observed (Figure 3). Further studies
are needed to determine the absolute configuration at C-6 in 2. Thus, the relative configuration
at C-6 was assigned as R*. Accordingly, compound 2 was assigned as (3R*,8aS)-3-benzyl-3-
hydroxyhexahydropyrrolo[1,2-a]pyrazine-1,4-dione. The name penicillatide B was given to compound 2,
and it is reported here as a new natural product.

Table 2. NMR data of compound 2 (CDCl3, 600 and 150 MHz).

No. δC (mult.) δH (mult., J (Hz)) HMBC

1 (NH) 6.13 (brs)
2 166.9, qC H-1, H-3, H2-9
3 59.6, CH 2.85 (dd, 10.2, 6.8) H-1, H2-8, H2-9
5 166.1, qC H-1, H2-7, H2-10
6 83.4, qC H2-10

7 45.5, CH2
3.63 (m)

3.41 (ddd, 12.8, 8.5, 2.5) H-3, H2-9

8 22.1, CH2 1.98 (m), 1.71 (m) H2-7
9 28.7, CH2 2.17 (m), 1.83 (m) H-3, H2-8

10 47.8, CH2
3.14 (d, 13.6)
3.05 (d, 13.6) H-12/H-16

11 133.1, qC H2-10, H-12/H-16, H-13/H-15
12 130.6, CH 7.29 (m) H-14
13 129.4, CH 7.40 (m) H-14
14 128.1, CH 7.30 (m) H-12/H-16, H-13/H-15
15 129.4, CH 7.40 (m) H-14
16 130.6, CH 7.29 (m) H-14

OH 4.36 (brs)
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Scheme 2. Reaction of FDAA with the hydrolytic product of compound 2 (L-proline).

Compounds 3 and 4 were assigned as cyclo(D-Pro–L-Phe) {cyclo(R-Pro–S-Phe)} (3) [18] and
cyclo(R-Pro–R-Phe) (4) by interpretation of their NMR (Figures S11–S20) and HRMS data.
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2.2. Biological Activities of Compounds 1–4

Compounds 2–4 were evaluated for their cytotoxic and antiproliferative activities against
colorectal carcinoma (HCT 116), hepatocellular carcinoma (HepG2), and breast cancer (MCF-7) using a
sulforhodamine assay, as previously described [23]. Compounds 2 and 3 showed significant activity
against HCT-116, with IC50 of 23.0 and 38.9 µM, while compound 4 was weakly active against this cell
line. Compounds 3 and 4 were weakly active against MCF-7, with IC50 of 102 and 104 µM, respectively.
Finally, none of the compounds showed activity against HepG2 (≥50 µM).

In addition, 2–4 were evaluated for their antimicrobial activity against several microbes: S. aureus,
Vibrio anguillarum, and C. albicans. Compounds 2–4 showed significant activity against V. anguillarum,
with inhibition zones of 20, 24, and 25 mm, respectively. Similarly, compounds 2–4 showed moderate
activity against both S. aureus and C. albicans, with inhibition zones between 10 and 19 mm (Table 3).

Table 3. Cytotoxic and antimicrobial activities of compounds 2–4.

Compound
IC50 (µM) Inhibition Zone (mm)@100 µg/disc

HCT-116 HepG2 MCF-7 S. aureus V. anguillarum C. albicans

2 23.0 ≥50 ≥50 19 20 10
3 38.9 ≥50 102.0 14 24 11
4 94.0 ≥50 114.0 16 25 15

Doxorubicin a 0.789 0.621 0.415
Ciprofloxacin b 22 26
Ketoconazole c 30
a Positive cytotoxic control; b positive antibacterial control (5 µg/disc); c positive antifungal control (50 µg/disc).

The results in Table 3 clearly show that compounds 2–4 were selective against HCT-116 without
any activity against HepG2. In comparison to 3 and 4, the hydroxylation of C-6 (in 2) potentiated
the cytotoxic activity against HCT-116. In the antimicrobial screen, 2–4 were almost identically active
against S. aureus and C. albicans, suggesting no effect for the OH at C-6. In addition, 2 and 3 were more
active than 2 against V. anguillarum and showed similar activity to the positive control ciprofloxacin.
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3. Materials and Methods

3.1. General Experimental Procedures

One- and two-dimensional NMR spectra (chemical shifts in ppm, coupling constants in Hz) were
recorded on Bruker Avance DRX 600 MHz (Bruker, Rheinstetten, Germany) and Bruker Ascend™ 850
(850 MHz) (Bruker BioSpin, Billerica, MA, USA) spectrometers using CDCl3 as solvent. NMR spectra
were referenced to the residual protonated solvent signals (CHCl3: 7.26 ppm for 1H and 77.0 ppm).
Positive ion HRESIMS data were obtained with a Micromass Q-ToF equipped with leucine enkephalin
lockspray, using m/z 556.2771 (M + H)+ as a reference mass. For column chromatography, silica gel
(Merck, 70–230 mesh ASTM, Sigma-Aldrich, Darmstadt, Germany) and Sephadex LH-20 (0.25–0.1 mm,
Pharmacia, Piscataway, NJ, USA) were used. Precoated silica gel 60 F-254 plates (Merck) were used
for TLC. HPLC purifications were performed on a semipreparative HPLC column (RP18, 5 µm, ARII
Cosmosil, 250 × 10 mm, Waters, Nacalai, Inc., San Diego, CA, USA).

3.2. Biological Materials

The marine-derived fungus Penicillium sp. was isolated from the Red Sea tunicate Didemnum sp.,
and the fungus was identified as previously described [13].

3.3. Culture Condition and Extraction

Large-scale culture of the fungus Penicillium sp. was carried out in 20 flasks (each 2 L). Each flask
contained 500 mL of Sabouraud Dextrose (HiMedia Laboratories, Vadhani Ind. Est., LBS Marg,
Mumbai, India) Broth (SDB) liquid medium. The prepared liquid cultures were shaken on an orbital
shaker at 28 ◦C continuously for 14 days. After 2 weeks of shaking and incubation, the cultures were
filtered using clean gauze to separate the formed fungal mycelia from the broth. The culture broth
from each flask was extracted with EtOAc (3 × 300 mL). The mycelia formed during the shaking were
lyophilized and extracted with MeOH. The ethyl acetate and methanolic extracts were combined and
evaporated under vacuum, and the resulting extracts were used for fractionation and purification of
the compounds.

3.4. Isolation and Purification of Compounds 1–4

The combined extracts of the broth and mycelia (0.76 g) were flash chromatographed on
reverse-phase SiO2 using H2O-MeOH gradients, giving 6 subfractions (A–F). Fraction B (120 mg),
eluted with 25% MeOH in H2O, was fractionated on Sephadex LH-20 column using MeOH as eluent,
giving 6 main subfractions (B1–B6). Fraction B3 (56 mg) was purified on C18 HPLC column using 50%
CH3CN to give compounds 3 (5.5 mg) and 4 (3.5 mg). Similarly, subfraction B4 (30 mg) was purified
on C18 HPLC column using 45% CH3CN to give compounds 1 (2.7 mg) and 2 (2.3 mg).

3.5. Determination of Configuration of the Amino Acids in 1 and 2

About 0.5 mg each of compounds 1 and 2 was heated separately in 1 mL of 6 N HCl at 100 ◦C for
16 h, followed by removal of the excess HCl under vacuum. To each dry hydrolysate, 200 µL of 1%
solution of FDAA [21] in acetone and 40 µL of 1.0 M NaHCO3 were added. The reaction mixture was
heated at 45 ◦C for 1.5 h, cooled, and acidified with 20 µL of 2.0 M HCl. Similarly, standard amino acids
(D and L) of leucine and proline were derivatized separately. The derivatized standard amino acids and
hydrolysates of 1 and 2 were subjected to HPLC on Nova-Pak C18 reverse-phase column (150 × 3.9 mm
i.d., 4 mm particle size; Waters, Milford, MA, USA) using the following gradient program. Solvent A
was a 50 mM triethylamine–phosphate buffer (pH 3.5) containing 25% (v/v) MeOH, and solvent B
was the same buffer containing 70% MeOH. The mobile phase was a linear gradient from 0 to 100%
B (100 to 0% A) in 40 min, at a flow rate of 0.65 mL/min at 25 ◦C. The eluted peaks were monitored
at 340 nm. The retention times for FDAA derivatives of standards and compounds 1 and 2 were
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as follows: (L)-leucine (tR 27.2 min), (D)-leucine (tR 36.0 min), (L)-proline (tR 15.4 min), (D)-proline
(tR 19.1 min), compound 1 (tR 27.2 min), and compound 2 (tR 15.4 min).

Penicillatide A (1): White amorphous powder; (α)D = −22◦ (c 0.05, MeOH); NMR data (Table 1);
HRESIMS m/z 227.1395 (calcd for C11H19N2O3, (M + H)+, 227.1396).

Penicillatide B (2): White amorphous powder; (α)D = 85◦ (c 0.08, MeOH); NMR data (Table 2); HRESIMS
m/z 261.1240 (calcd for C14H17N2O3, (M + H)+, 261.1239).

3.6. Biological Activities of the Compounds

3.6.1. Evaluation of the Cytotoxic Activities of the Compounds

The cytotoxicity of compounds 2–4 against 3 tumorous cell lines—colorectal carcinoma, breast
cancer, and hepatocellular carcinoma—were evaluated using sulforhodamine assay [23]. Briefly, before
adding the compounds, the cells were grown in 96-well plates for 24 h. After adding the compounds,
incubation of the cells was carried out for another 48 h. The IC50 values of the compounds were
obtained from the log dose–response curve. The reported IC50 values were obtained from the means
of 3 experiments.

3.6.2. Antibacterial Evaluation of the Compounds

A disc diffusion assay was used to determine the antimicrobial activity of the compounds [24]
with replication (n = 3). Staphylococcus aureus, Vibrio anguillarum, and Candida albicans served as target
models for bacteria and fungi. A total of 100 µg of each compound was loaded onto 6-mm sterile
circular filter-paper discs. The paper discs were left to air-dry. The dried paper discs were placed onto
nutrient agar plates that had already been inoculated with a lawn of target microorganisms. After 24 h
of incubation, the antimicrobial activity of the compounds was calculated.

4. Conclusions

Investigation of the marine-derived fungus Penicillium sp. gave two new compounds, penicillatides A
and B (1 and 2), together with the known compounds cyclo(R-Pro–S-Phe) (3) and cyclo(R-Pro–R-Phe)
(4). The structures of 1–4 were assigned by interpretation of their spectroscopic data by NMR and
high-resolution mass spectroscopy (HRMS). Compounds 2 and 3 displayed significant and selective
activity against HCT-116, with IC50 of 6.0 and 9.57 µg/mL, respectively, while they were inactive
against HepG2 and MCF-7. These results suggest a selective effect of 2 and 3 against HCT-116. Also,
2–4 showed potent antimicrobial activity against V. anguillarum, with inhibition zones of 20, 24, and
25 mm, respectively. On the other hand, 2–4 were moderately active against S. aureus and C. albicans.

Supplementary Materials: Supplementary materials are available online. Figures S1–S20 (1D and 2D NMR
spectra of compounds 1–4).
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