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ABSTRACT

Coronavirus disease 2019 (COVID-19) vaccination may non-specifically alter the host immune 
system. This study aimed to evaluate the effect of COVID-19 vaccination on hepatitis B surface 
Ag (HBsAg) titer and host immunity in chronic hepatitis B (CHB) patients. Consecutive 
2,797 CHB patients who had serial HBsAg measurements during antiviral treatment were 
included in this study. Changes in the HBsAg levels after COVID-19 vaccination were 
analyzed. The dynamics of NK cells following COVID-19 vaccination were also examined 
using serial blood samples collected prospectively from 25 healthy volunteers. Vaccinated 
CHB patients (n=2,329) had significantly lower HBsAg levels 1–30 days post-vaccination 
compared to baseline (median, −21.4 IU/ml from baseline), but the levels reverted to baseline 
by 91–180 days (median, −3.8 IU/ml). The velocity of the HBsAg decline was transiently 
accelerated within 30 days after vaccination (median velocity: −0.06, −0.39, and −0.04 log10 
IU/ml/year in pre-vaccination period, days 1–30, and days 31–90, respectively). In contrast, 
unvaccinated patients (n=468) had no change in HBsAg levels. Flow cytometric analysis 
showed that the frequency of NK cells expressing NKG2A, an NK inhibitory receptor, 
significantly decreased within 7 days after the first dose of COVID-19 vaccine (median, −13.1% 
from baseline; p<0.001). The decrease in the frequency of NKG2A+ NK cells was observed 
in the CD56dimCD16+ NK cell population regardless of type of COVID-19 vaccine. COVID-19 
vaccination leads to a rapid, transient decline in HBsAg titer and a decrease in the frequency 
of NKG2A+ NK cells.
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INTRODUCTION

Chronic hepatitis B (CHB) is the most prevalent chronic viral infection globally (1). When 
hepatitis B virus (HBV) replication is suppressed with antivirals, the serum hepatitis B surface 
Ag (HBsAg) titer gradually decreases, and HBsAg-seroclearance can be achieved, though it is 
estimated to take 40 years in principle (2,3). In some cases, antiviral treatment precipitates 
HBsAg clearance, which may be induced by immune activation, leading to a functional cure. 
Patients who achieve HBsAg-seroclearance have a more favorable prognosis with a lower risk 
of developing hepatocellular carcinoma (HCC) than those who do not (3,4).

The use of coronavirus disease 2019 (COVID-19) vaccines was approved in December 2020 
(5), and more than 12 billion doses have been administered globally (6). Neutralizing 
antibodies and memory T cells elicited by COVID-19 vaccination have been shown to play a 
pivotal role in protecting against COVID-19 infection and progression to severe disease (7).

COVID-19 vaccines have been the most commonly delivered vaccine worldwide since 
2020, but the influence of COVID-19 vaccination on various chronic liver diseases is still 
unclear. Recent case reports and series suggest that COVID-19 immunization may enhance 
intrahepatic immune responses and lead to a decrease in HBsAg in CHB patients (8). Several 
cases of autoimmune hepatitis flare-up have been reported, which implicates COVID-19 
vaccination in enhanced autoimmunity (9-11). Several cases of acute flare-up following 
COVID-19 vaccination have also been reported in patients with CHC or CHB who were not 
treated with antiviral agents (12,13), suggesting that COVID-19 vaccination may stimulate 
the inflammatory response against pre-existing hepatitis viruses. In the same context, we 
hypothesized that COVID-19 vaccination could affect the HBsAg titer of CHB patients who 
have suppressed serum HBV DNA with antiviral therapy by changing host immune responses.

In this study, we aimed to evaluate the dynamic change in HBsAg titer following COVID-19 
vaccination in CHB patients whose HBV replication is suppressed by oral nucleos(t)
ide analogues (NAs). In addition, we explored alterations in the NK cell population after 
COVID-19 vaccination.

MATERIALS AND METHODS

Study population
This study consisted of 2 parts: an investigation of the kinetics of HBsAg (the HBsAg kinetics 
study) and an analysis of immune cells after vaccination (the NK cell study). For the HBsAg 
kinetics study, consecutive patients with CHB negative for hepatitis B envelope antigen with 
serum HBV DNA suppressed below 1,000 IU/ml with NAs (e.g., tenofovir or entecavir) and 
whose HBsAg levels were measured at least 3 times between January 2019 and January 2022 
at Seoul National University Hospital (Seoul, Korea) were eligible for inclusion. Patients were 
recommended to vaccinate in accordance with Korea Disease Control and Prevention Agency 
(KDCA) national vaccination guidelines, but some patients had not been vaccinated against 
COVID-19. Patients were classified into vaccinated and unvaccinated groups. The vaccinated 
group included patients who received one of the 4 most commonly used COVID-19 vaccines 
in Korea: BNT162b2 (Pfizer, New York, NY, USA), AZD1222 (AstraZeneca, Cambridge, UK), 
mRNA-1273 (Moderna, Cambridge, MA, USA), and JNJ-78436735 (Janssen, Beerse, Belgium). 
The date and type of COVID-19 vaccine were collected from the KDCA vaccination registry. 
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The unvaccinated group included patients who were never immunized with a COVID-19 
vaccine. The study protocol was approved by the Institutional Review Boards of Seoul 
National University Hospital (No. H-2206-096-1332). Informed consent was waived because 
of the retrospective and anonymized nature of the data.

For the NK cell study, a pre-established prospective cohort of healthy volunteers who donated 
peripheral blood samples, which were drawn once on the day of vaccination and every 3–16 
days for 3 months after vaccination, was used. The study protocol was approved by the 
Institutional Review Boards of Korea Advanced Institute of Science and Technology (Daejeon, 
Korea; No. 21-379), Samsung Medical Center (Seoul, Korea; No. 2021-01-165), and Korea 
University Guro Hospital (Seoul, Korea; No. 2021GR0099). Informed consent was obtained 
from all participants before enrollment.

HBsAg measurement
HBsAg levels were measured using the Elecsys HBsAg II assay (Roche Diagnostics, Basel, 
Switzerland) with the Modular Analytics E170 system (Roche Diagnostics) and/or ARCHITECT 
HBsAg Qualitative assays (Abbott Diagnostics, Chicago, IL, USA) with the Architect i2000SR 
analyzer (Abbott Laboratories, Chicago, IL, USA). When the output value was given in a signal-
to-cutoff ratio, the relevant conversion formula was employed to convert the units to IU/ml (14).

Day 0 (index date) was defined as the day on which the first COVID-19 vaccination was 
received by the vaccinated patients. For the unvaccinated patients, day 0 was allocated as 
June 17, 2021, which was the median date of the first dose of COVID-19 vaccine among the 
vaccinated patients. The difference in HBsAg levels at set timepoints from baseline (i.e., 
HBsAg value last obtained before day 0) was determined for each patient. To interpret the 
kinetics of HBsAg, changes in median HBsAg values at specific timepoints (i.e., days −360 
to −180, days −180 to −1, days +1 to +30, days +31 to +90, and days +91 to +180) were evaluated 
and compared to baseline values. Negative and positive values presented in the expression of 
time intervals indicate before and after day 0, respectively.

Isolation of PBMC
We used Lymphocyte Separation Medium (Corning Inc., Corning, NY, USA) to isolate 
PBMCs by density gradient centrifugation. After isolation, PBMCs were cryopreserved in FBS 
(Corning Inc.) containing 10% DMSO (Sigma-Aldrich, St. Louis, MO, USA) until use.

Multi-color flow cytometry
Multi-color flow cytometry was performed to examine the phenotypes of NK cells. Thawed 
PBMCs were stained with fluorochrome-conjugated antibodies against surface markers for 
15 min at room temperature. LIVE/DEAD red fluorescent reactive dye (Invitrogen, Waltham, 
MA, USA) was used to exclude dead cells. Stained cells were analyzed using the BD LSR II 
Flow Cytometer (BD Biosciences, Franklin Lakes, NJ, USA) and data analyzed using FlowJo 
software (FlowJo LLC, San Francisco, CA, USA). Supplementary Table 1 list all of the 
antibodies used for flow cytometry.

Intracellular cytokine staining (ICS)
ICS assays were performed to examine HBV-specific T-cell responses using PBMC samples 
from 2 HBV-infected donors (one vaccinated with BNT162b2 and the other with AZD1222). 
Thawed PBMCs were stimulated with the 1 μg/ml overlapping peptides of HBsAg (PM-
HBV-LEP) or HBcAg (PM-HBV-CP) (JPT, Berlin, Germany) and 1 μg/ml anti-human CD28 
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and CD49d monoclonal antibodies for 6 h at 37°C. Although HBV in South Korea is mostly 
genotype C (15), we used overlapping peptide pools of genotype A2 in the current study. 
Amino acid sequences of HBsAg and HBcAg exhibit 92.5% and 94.6% homology between 
genotype A2 and C, respectively. One hour after the initial stimulation, brefeldin A (GolgiPlug; 
BD Biosciences) and monensin (GolgiStop; BD Biosciences) were added. Negative controls 
were cultured with DMSO and anti-CD28/CD49d. The cells were collected and stained with 
fluorochrome-conjugated antibodies for surface markers. Cells were permeabilized with the 
FoxP3 staining buffer kit (Invitrogen), and then further stained for cytokines.

Statistical analysis
Statistical analysis was performed with the Student’s t-test, Mann-Whitney U test, ANOVA, 
and Kruskal-Wallis test to analyze quantitative variables, whereas the χ2 test and Fisher test 
were used for qualitative variables. Univariable analysis included baseline characteristics 
(age and sex) and clinical characteristics (liver cirrhosis, current or previous HCC, and 
comorbidities). Nonparametric continuous variables are presented as medians with 
interquartile range (IQR) unless otherwise specified. Categorical variables are presented as 
absolute cases and/or percentages. Odds ratios (ORs) are presented with 95% confidence 
intervals (CIs). All data were analyzed using SPSS version 26 (IBM, Armonk, NY, USA), R 
statistics version 4.2.0 (The R Foundation, Vienna, Austria), and GraphPad Prism version 
8.4.2 (GraphPad Software, San Diego, CA, USA). Two-sided p-values were determined in all 
analyses. The p<0.05 was considered significant.

RESULTS

Baseline characteristics
A total of 2,797 patients were enrolled in the study (Supplementary Fig. 1), and their baseline 
characteristics are presented in Table 1. Among 2,329 patients who received a COVID-19 
vaccination, 994 patients were immunized with BNT162b2, 298 with AZD1222, 174 with 
mRNA-1273, and 3 with JNJ-78436735. Heterologous boosting vaccines were administered to 
842 patients, the majority of whom were immunized with 2 doses of AZD1222 and received 
a third dose as mRNA vaccine (i.e., BNT162b2 and mRNA-1273) (Table 2). Eighteen patients 
received only the first shot of BNT162b2, AZD1222, or mRNA-1273 without a recommended 
second shot. A total of 468 patients were not vaccinated against COVID-19 throughout the 
observation period and were classified as the unvaccinated group (Supplementary Table 2). 
HBsAg kinetics were studied between January 2019 and January 2022. During this time span, 
the cumulative rate of COVID-19 infection, as evaluated by positivity for anti-nucleocapsid 
antibody, was <1% in South Korea (16,17), indicating that cases of unreported infection were 
rare among the population.

HBsAg kinetics after COVID-19 vaccination
A total of 21,519 serum HBsAg measurements from 2,797 CHB patients were obtained and 
changes in HBsAg titers analyzed at multiple timepoints compared to baseline levels. In the 
vaccinated group (Fig. 1A), HBsAg levels decreased significantly in the period +1 to +30 days 
(median, −21.4 [IQR, −65.8 to +3.8] IU/ml from baseline; p<0.001), +31 to +90 days (median, 
−13.2 [IQR, −57.2 to +10.3] IU/ml from baseline; p<0.001), and +91 to +180 days (median, 
−4.4 [IQR, −48.7 to +30.3] IU/ml from baseline; p<0.001) compared to baseline. There was 
a tendency for gradual recovery to baseline HBsAg levels in the period +91 to +180 days. In 
contrast, in the unvaccinated group, no significant change occurred in HBsAg titer between +1 
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to +30 days (median, −0.01 [IQR, −0.08 to +0.03] log10 IU/ml from baseline; p=1.00; Fig. 1B). 
The velocity of HBsAg decline was accelerated between +1 to +30 days after the first dose of 
COVID-19 vaccine (median, −0.39 [IQR, −0.88 to +0.12] log10 IU/ml/year vs. −0.06 [IQR, −0.16 
to +0.01] log10 IU/ml/year; p<0.001), then gradually reverted to the velocity of pre-vaccination 
periods (median, −0.17 [IQR, −0.55 to +0.11] log10 IU/ml/year at days +31 to +90; −0.04 
[IQR, −0.18 to +0.08] log10 IU/ml/year at days +91 to +180; p<0.001 by Kruskal-Wallis test). 
The rate of HBsAg decline between +91 to +180 days was comparable to previous studies 
in patients with low HBV viral load (18,19). In addition, similar changes were maintained 
when comparing all measured HBsAg values (median, −0.39 [IQR, −0.88 to +0.12] log10 
IU/ml at days +1 to +30; p<0.001; Supplementary Fig. 2). In subgroups classified by the 
type of vaccine received, similar trends in HBsAg decline at +1 to +30 days and following 
recovery were observed. However, the trend toward faster HBsAg recovery with the mRNA 
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Table 1. Characteristics of patients with CHB
Characteristic Value (n=2,797)
Age (years), median (IQR) 62.0 (55.0–68.0)
Male 1,872 (66.9)
Liver cirrhosis 1,132 (40.5)
HCC 1,393 (49.8)
Anti-HBV antivirals

ETV 1,402 (49.8)
TDF 1,085 (38.8)
TAF 115 (4.1)
Others* 195 (7.0)

COVID-19 vaccine
Fully vaccinated with

BNT162b2 994 (35.5)
AZD1222 298 (10.7)
mRNA-1273 174 (6.2)
JNJ-78436735 3 (0.1)
Heterologous vaccinated† 842 (30.1)

Not fully vaccinated 18 (0.6)
HBsAg >100 IU/ml‡ 1,618 (57.8)
Values are number (%) unless otherwise noted.
ETV, entecavir; TDF, tenofovir disoproxil fumarate; TAF, tenofovir alafenamide; BNT162b2, COVID-19 vaccine from 
Pfizer; AZD1222, COVID-19 vaccine from AstraZeneca; mRNA-1273, COVID-19 vaccine from Moderna; JNJ-78436735, 
COVID-19 vaccine from Janssen.
*Including cases taking a combination of several antivirals or changing the antivirals during the observation period.
†Two or more inoculations with 2 or more vaccines.
‡Based on initial values measured during the observation period.

Table 2. Type of vaccine use for each COVID-19 vaccination dose
Dose Value
1st dose 2,329

AZD1222 1,110 (47.7)
BNT162b2 1,006 (43.2)
mRNA-1273 177 (7.6)
JNJ-78436735 36 (1.5)

2nd dose 2,309
BNT162b2 1,083 (46.9)
AZD1222 1,014 (43.9)
mRNA-1273 176 (7.6)
JNJ-78436735 36 (1.6)

3rd dose 1,511
BNT162b2 1,041 (68.9)
mRNA-1273 470 (31.1)

Values are presented as number (%).
BNT162b2, COVID-19 vaccine from Pfizer; AZD1222, COVID-19 vaccine from AstraZeneca; mRNA-1273, COVID-19 
vaccine from Moderna; JNJ-78436735, COVID-19 vaccine from Janssen.



vaccine was not statistically significant (Supplementary Fig. 3). In addition, in subgroups of 
patients with liver cirrhosis (median, −0.23 [IQR, −0.78 to +0.31] log10 IU/ml +1 to +30 days 
from baseline), HCC (median, −0.28 [IQR, −0.61 to +0.05] log10 IU/ml +1 to +30 days from 
baseline), and liver transplantation (median, −0.24 [IQR, −0.65 to +0.18] log10 IU/ml +1 to +30 
days from baseline) also maintained similar trends as the HBsAg kinetics of the entire cohort 
(all p<0.001 by Wilcoxon signed-rank test). A total of 11 patients received tyrosine-kinase 
inhibitors (TKIs) or immune checkpoint inhibitors (ICIs) within 3 months prior to COVID-19 
vaccination. In a subgroup of patients without a history of liver transplantation, patients 
who were not treated with a TKI or ICI also maintained comparable HBsAg kinetics (median, 
−0.44 [IQR, −0.98 to +0.11] log10 IU/ml +1 to +30 days from baseline; p<0.001 by Wilcoxon 
signed-rank test).

The vaccinated group experienced significantly frequent HBsAg-seroclearance during the 
24-wk post-vaccination period compared to the pre-vaccination period (0.5% [12 of 2,326] 
vs. 0.1% [3 of 2,329]; OR, 4.02 [95% CI, 1.13 to 14.27]; p=0.03; Table 3). In particular, 7 of 
12 cases of post-vaccination HBsAg-seroclearance occurred after administration of the first 
vaccine dose. Rapid HBsAg decline (defined as >0.5 log10 IU/ml/year) occurred more frequently 
during the 24-wk post-vaccination period than during the pre-vaccination period (15.5% 
[361 of 2,329] vs. 10.5% [244 of 2,329]; OR, 1.57 [95% CI, 1.32 to 1.86]; p<0.001; Table 3). 
Supplementary Table 3 shows the rapid decline in HBsAg compared to subgroups divided 
according to the presence of HCC (Supplementary Fig. 4A), presence of HCC and baseline 
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Figure 1. Median HBsAg differences from baseline in each patient following COVID-19 vaccination in vaccinated patients or after the index date in unvaccinated 
patients. HBsAg titers were measured and compared to baseline values in each patient. (A) Plot of the differences in HBsAg from baseline and the time interval 
between the date of the test and the date of the vaccination for each vaccinated patient. The length of the time following vaccination was grouped into 5 
periods: days −360 to −181, −180 to −1, +1 to +30, +31 to +90, and +91 to +180. (B) Plot of the differences in HBsAg from baseline and test date from the index 
date in each unvaccinated patient. Time after index date was grouped into 5 periods: days −360 to −181, −180 to −1, +1 to +30, +31 to +90, and +91 to +180. If time 
groups included multiple samples from the same patient, the median value was used in the analysis. Dots and error bars represent median and IQR. 
***p<0.001 according to a Wilcoxon signed-rank test for paired groups and Mann-Whitney U test for unpaired groups.



HBsAg level >100 IU/ml (Supplementary Fig. 4B), and fibrosis as measured by transient 
elastography (Supplementary Fig. 4C). The distribution of patients within each category of 
HBsAg titer over time is shown in Supplementary Fig. 5.

NK cell dynamics after COVID-19 vaccination
Next, we examined if COVID-19 vaccination induces immunological changes that might be 
related to the transient decrease in HBsAg levels. We examined the frequency and phenotype of 
NK cells, which can exert direct effector functions against HBV (20,21), using 166 serial PBMC 
samples from 25 healthy participants (11 participants vaccinated with BNT162b2 and 14 with 
AZD1222). After the initial COVID-19 vaccination, PBMC samples were obtained every few 
days (median interval, 6 [IQR, 3 to 16] days) from day 0 to day 72. We examined the frequency 
of CD56+CD3− NK cells by flow cytometry (Supplementary Fig. 6). We also examined the 
frequency of CD56dimCD16+ and CD56brightCD16− NK cells, which are known as cytolytic and 
cytokine-producing NK cells, respectively (22-24). We found that their frequencies among total 
lymphocytes were not significantly changed by COVID-19 vaccination (Fig. 2A-C).

Next, we examined the expression of inhibitory NK cell receptors (i.e., NKG2A, killer-cell 
immunoglobulin-like receptors [KIRs], and T cell immunoreceptor with immunoglobulin 
and ITIM domain [TIGIT]) and activating NK cell receptors (i.e., NKp30, NKp46, and 
NKG2C). The frequency of NKG2A+ cells among NK cells was significantly reduced at +1 to +7 
days (median, −13.1% from baseline [IQR, −25% to 0%]; p=0.0009) and recovered to baseline 
levels at +8 to +30 days (median, −5.7% from baseline [IQR, −22% to +22.4%]; p=0.96) and 
+31 to +72 days (median, −9.8% from baseline [IQR, −30.4% to +18.8%]; p=0.11; Fig. 2D, 
Supplementary Fig. 7A). However, there was no significant change in the frequency of NK cells 
expressing KIRs, TIGIT, NKp30, NKp46, or NKG2C (Fig. 2E-I, Supplementary Fig. 7B-F).

Next, we examined the frequency of NKG2A+ cells in CD56dimCD16+ and CD56brightCD16− NK 
cell populations. In the CD56dimCD16+ NK cell population, the frequency of NKG2A+ cells 
decreased at +1 to +7 days (median, −21% from baseline [IQR, −27.3% to −12.3%]; p<0.0001) 
and at +31 to +72 days (median, −15% from baseline [IQR, −32.7% to −1%]; p=0.0002), 
though this decrease transiently disappeared at +8 to +30 days (median, −10% from baseline 
[IQR, −19.5% to +10%]; p=0.43; Fig. 3A). In the CD56brightCD16− NK cell population, there was 
no significant change in the frequency of NKG2A+ cells (Fig. 3B).
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Table 3. Comparison of HBsAg-seroclearance and rapid HBsAg decline in vaccinated patients with or without HCC according to baseline HBsAg level and fibrosis 
score measured by transient elastography
Characteristic HBsAg-seroclearance Rapid HBsAg decline Number OR (95% CI) p

(+) (−) (+) (−)
Pre-vaccination 3 2,326 2,329
Post-vaccination

After 1st vaccination 7 2,319 2,326 2.34 (0.60 to 9.06) 0.220
After all vaccination 12 2,314 2,326 4.02 (1.13 to 14.27) 0.030

Total 2,329 1.57 (1.32 to 1.86) <0.001
Pre-vaccination 244 2,085
Post-vaccination 361 1,968

HCC (+) 1,146 1.32 (1.03 to 1.70) 0.030*

Pre-vaccination 122 1,024
Post-vaccination 156 990

HCC (−) 1,183 1.82 (1.43 to 2.32) <0.001*

Pre-vaccination 122 1,061
Post-vaccination 205 978

*pinteraction=0.43.



We analyzed the frequency of NKG2A+ cells in the CD56dimCD16+ NK cell population 
among subgroups of patients vaccinated with BNT162b2 (Fig. 3C) and AZD1222 (Fig. 3D). 
A significant decrease in the frequency of NKG2A+ cells was observed at +1 to +7 days 
in both subgroups (BNT162b2: median, −24.2% from baseline [IQR, −28% to −12.2%]; 
p=0.01 and AZD1222: median, −18.1% from baseline [IQR, −25.8% to −13.6%]; p=0.02). 
Similar changes were observed at +30 to +72 days in the BNT162b2 (median, −10.3% from 
baseline [IQR, −30.4% – −2%]; p=0.01) and AZD1222 (median, −15% from baseline [IQR, 
−31.7% to −2.8%]; p=0.048) subgroups. Given that NKG2A blocking antibodies reduce 
HBsAg titers in a mouse model of HBV infection (25), the current findings suggest that 
the significant decrease in the frequency of NKG2A+ cells may be related to the reduction 
in HBsAg after COVID-19 vaccination. Next, we examined the frequency of NKG2A+ cells 
using PBMC samples from 2 HBV-infected donors (one vaccinated with BNT162b2 and the 
other with AZD1222). The frequency NKG2A+ cells among total NK cells and CD56dimCD16+ 
NK cells tended to be reduced at +1 to +7 days (median, −13.1% from baseline in total NK 
cells, −22.5% from baseline in CD56dimCD16+ NK cells; Supplementary Fig. 8). This result 
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Figure 2. Frequency and phenotype of peripheral blood NK cells after COVID-19 vaccination. The frequency and phenotype of NK cells were examined using 166 
serial PBMC samples from 25 healthy participants (11 participants vaccinated with BNT162b2 and 14 with AZD1222). Time after vaccination was grouped into 3 
periods: days +1 to +7, +8 to +30, and +31 to +72. If time groups included multiple samples from the same participant, the median value was used in the analysis. 
(A) Changes in the relative frequency of CD56+CD3− NK cells, (B) CD56brightCD16− NK cells, and (C) CD56dimCD16+ NK cells among lymphocytes (n=25) compared 
to baseline. (D) Changes in the relative frequency of NK cells expressing NKG2A, (E) KIRs, (F) TIGIT, (G) NKp30, (H) NKp46, and (I) NKG2C among total NK cells 
(n=25) compared to baseline. Dots and error bars represent median and IQR. 
ns, not significant. 
***p<0.001 according to Wilcoxon signed-rank test for paired groups and Mann-Whitney U test for unpaired groups.



indicates that the frequency of NKG2A+ cells decreases early after COVID-19 vaccination 
irrespective of HBV infection.

We also examined HBV-specific T-cell responses before and after COVID-19 vaccination 
by performing IFN-γ ICS assays using PBMC samples from 2 HBV-infected donors (one 
vaccinated with BNT162b2 and the other with AZD1222). Prior to vaccination, IFN-γ+ cells 
against HBsAg and HBcAg were barely detected among CD4+ and CD8+ T cell populations 
in both donors, and the same result was obtained after vaccination (Supplementary Fig. 9), 
indicating that HBV-specific T-cell responses may not be related to the transient reduction in 
HBsAg following COVID-19 vaccination.

DISCUSSION

In this study, we investigated the impact of COVID-19 vaccination on changes in HBsAg 
levels. After COVID-19 vaccination, HBsAg rapidly decreased to significantly lower levels 
within 30 days compared to the pre-vaccination value, but tended to revert to baseline 
91–180 days post-vaccination. In a longitudinal analysis of NK cell dynamics in COVID-19-
vaccinated healthy subjects, NKG2A+ NK cells decreased significantly within 7 days after the 
initial COVID-19 vaccination. Considering that NKG2A is an immune inhibitory immune 
checkpoint (26), these results may collectively suggest that COVID-19 vaccine-induced HBsAg 
decline may be related to the decrease in the frequency of NKG2A+ NK cells among CHB 
patients treated with antiviral agents.
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Figure 3. Frequency of NKG2A+ cells in CD56dimCD16+ and CD56brightCD16− NK cells after COVID-19 vaccination. Time 
after vaccination was grouped into 3 periods: days +1 to +7, +8 to +30, and +31 to +72. If time groups included 
multiple samples from the same participant, the median value was used in the analysis. (A) Changes in the 
relative frequency of NKG2A+ cells among CD56dimCD16+ NK cells and (B) CD56brightCD16− NK cells (n=25) compared 
to baseline. (C) Changes in the relative frequency of NKG2A+ cells in CD56dimCD16+ NK cells among subgroups of 
BNT162b2 (n=11) and (D) AZD1222 (n=14) compared to baseline. Dots and error bars represent median and IQR. 
ns, not significant. 
*p<0.05, ***p<0.001, ****p<0.0001 according to Wilcoxon signed-rank test for paired groups and Mann-Whitney U 
test for unpaired groups.



NK cells, which are at the forefront of innate immunity, are regarded as crucial antiviral 
effector cells against HBV or HCV (25,27,28), and the significance of NK cells in immune 
responses against COVID-19 has recently attracted attention (7,29-31). Our current study 
demonstrated that the decrease in HBsAg corresponded well with the decrease in the 
frequency of NKG2A+ NK cells. Several studies have demonstrated that mice infected 
with HBV or HCV have an increased proportion of NKG2A+ NK cells relative to total NK 
cells, and that anti-NKG2A antibodies may reduce the HBsAg titer or viral titers (25,28). 
In addition, there was a positive correlation between NKG2A expression and viral load 
in CHB patients, and blocking NKG2A+ CD56dim NK cells in vitro produces IFN-γ, which 
reduces viral replication (25,32). Recently, anti-NKG2A monoclonal antibodies have 
been applied in immuno-oncology and are expected to have a role in CHB treatments 
(25,33,34). The decrease in HBsAg (i.e., −21.4 IU/ml or −0.39 log10 IU/ml/year at 1–30 days) 
following COVID-19 vaccination may not be clinically significant, although statistically 
significant. It will be interesting to study if anti-NKG2A monoclonal antibodies can block 
the inhibitory effect of NKG2A and decrease HBsAg titers. In the current study, a decreased 
frequency of NKG2A+ cells was observed in the CD56dimCD16+ NK cell population but not 
in the CD56brightCD16− NK cell population. In humans, CD56dimCD16+ NK cells are more 
abundant than CD56brightCD16− NK cells, and CD56dimCD16+ and CD56brightCD16− NK cells 
were originally known as cytolytic and cytokine-producing NK cells, respectively (22-24). 
However, CD56dimCD16+ NK cells can also produce large amounts of IFN-γ (35). With reduced 
NKG2A expression, CD56dimCD16+ NK cells may exert enhanced effector functions, including 
cytotoxicity and IFN-γ production. Considering a non-cytolytic HBV control mechanism 
of IFN-γ (36), IFN-γ may be responsible for a decrease in HBsAg without acute flare-up of 
hepatitis after COVID-19 vaccination, which was observed in the current study.

The absence of acute flare-up can be explained by another way. Notably, serum HBV replication 
was well suppressed already at the index date in all included patients, which may prevent acute 
flare-up of CHB after COVID-19 vaccination. However, as noted in the previous case reports 
and series (11-13,37,38), patients whose chronic viral hepatitis or autoimmune hepatitis was 
not well controlled by antiviral agents or immune suppressants may experience acute flare-
up of underlying liver disease following COVID-19 vaccination. These phenomena can be 
partially explained by immune reconstitution inflammatory syndrome, known as paradoxical 
worsening of infectious diseases after immune reconstitution (39,40). Thus, for patients who 
have chronic viral hepatitis or autoimmune hepatitis of which the activity is uncontrolled, 
COVID-19 vaccine should be administered with caution after assessing the risks and benefits.

Our study has a limitation. Due to the retrospective nature of the HBsAg kinetics study, we 
were unable to collect HBsAg titers at the index date; thus, baseline values were assigned 
as the last value obtained before vaccination, and the differences from baseline values were 
compared in the study. Nevertheless, due to the large sample size, HBsAg changes could 
be confirmed even when just compared to the HBsAg values tested within 30 days before 
vaccination. In addition, evaluation of intrahepatic immune cell activities in liver tissue, 
which was not performed in the present study, could potentially provide evidence for the 
association between COVID-19 vaccination and HBsAg kinetics.

In conclusion, COVID-19 vaccination was associated with a transient decrease in HBsAg 
titers in CHB patients treated with antivirals, regardless of the type of vaccine. In addition, 
COVID-19 vaccination transiently reduced the frequency of NKG2A+ NK cells, which might be 
related to the decrease in HBsAg titers.
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Frequency of NKG2A+ cells in total NK and CD56dimCD16+ NK cells after COVID-19 
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same participant, the median value was used in the analysis. (A) Changes in the relative 
frequency of NKG2A+ cells among total NK cells and (B) CD56dimCD16+ NK cells (n=2) 
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HBV-specific T-cell responses after COVID-19 vaccination. ICS was performed to examine 
the frequency of CD4+ or CD8+ T cells responding to HBcAg and HBsAg using PBMC samples 
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