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a Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed 
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A B S T R A C T   

The aim of this study is to explore the pharmacological properties of the essential oil derived from 
Ptychotis verticillata Duby (PVEO), a medicinal plant native to Morocco, focusing on its antidia
betic, anti-tyrosinase, and anti-inflammatory effects. Additionally, the study aims to characterize 
the phytochemical composition of PVEO and evaluate its potential as a natural therapeutic 
alternative for various health conditions. To achieve this, phytochemical analysis was conducted 
using gas chromatography-mass spectrometry (GC-MS). Furthermore, in vitro assessments were 
conducted to investigate PVEO’s antidiabetic activity by inhibiting α-amylase, xanthine oxidase, 
and α-glucosidase. Tests were also undertaken to evaluate the anti-inflammatory effect of PVEO 
on RAW 264.7 cells stimulated by lipopolysaccharide (LPS), as well as its efficacy as an anti- 
tyrosinase agent and its lipoxygenase inhibition activity. The results of the phytochemical 
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analysis revealed that PVEO is rich in terpene compounds, with percentages of 40.35 % γ-ter
pinene, 22.40 % carvacrol, and 19.77 % β-cymene. Moreover, in vitro evaluations demonstrated 
that PVEO exhibits significant inhibitory activity against α-amylase, xanthine oxidase, and 
α-glucosidase, indicating promising antidiabetic, and anti-gout potential. Furthermore, PVEO 
showed significant anti-tyrosinase activity, with an IC50 of 27.39 ± 0.44 μg/mL, and remarkable 
lipoxygenase inhibition (87.33 ± 2.6 %), suggesting its candidacy for dermatoprotection. Addi
tionally, PVEO displayed a dose-dependent capacity to attenuate the production of NO and PGE2, 
two inflammatory mediators implicated in various pathologies, without compromising cellular 
viability. The findings of this study provide a solid foundation for future research on natural 
therapies and the development of new drugs, highlighting the therapeutic potential of PVEO in 
the treatment of gout, diabetes, pigmentation disorders, and inflammation.   

1. Introduction 

For decades, essential oils (EOs) sourced from many plants have been extensively employed in conventional medicine [1]. They are 
rich in bioactive compounds, such as terpenes, phenols, and sesquiterpenes, that exhibit diverse biological and pharmacological ac
tivities [2]. Among these activities, anti-diabetic, anti-tyrosinase, and anti-inflammatory effects are of particular interest, as they may 
offer natural alternatives for the management of prevalent and challenging health conditions [3,4]. 

Millions of individuals throughout the world are afflicted with diabetes, a chronic metabolic illness [5]. Consisting of chronic 
hyperglycemia and a range of consequences, it is distinguished by malfunction in glucose metabolism [6]. Diabetes can be classified 
into two main types: Type 1, which is of genetic and autoimmune origin and requires insulin therapy [7], and Type 2, which is often 
associated with lifestyle factors such as obesity and physical inactivity, and can be controlled by dietary changes, exercise, and oral 
medications [8,9]. Several studies have suggested that some EOs may have blood sugar regulatory properties, possibly by modulating 
insulin secretion or sensitivity [10,11]. 

Tyrosinase is an enzyme implicated in the melanin synthesis, the pigment responsible for skin, hair, and eye color [12,13]. Melanin 
plays a vital role in protecting the skin from ultraviolet radiation and oxidative stress [14]. However, abnormal tyrosinase activity or 
expression can lead to pigmentation disorders, such as albinism, vitiligo, melasma, and hyperpigmentation [15]. These disorders can 
cause cosmetic and psychological problems [16,17]. Hence, tyrosinase activity inhibition is a prevalent approach utilized in the 
management and prophylaxis of pigmentation disorders [18]. Certain EOs have been shown to have anti-tyrosinase action; this might 
be due to the scavenging free radicals or interfering with the enzyme’s catalytic mechanism [19–21]. 

Inflammation is a complex and dynamic process that occurs in response to tissue injury or infection, it is essential for the elimi
nation of pathogens and the repair of damaged tissues [22]. However, when inflammation becomes chronic or excessive, it can cause or 
aggravate various diseases, such as arthritis, asthma, and atherosclerosis [23]. Inflammatory pathways are frequently stimulated in the 
context of chronic inflammation and the production of pro-inflammatory mediators, such as prostaglandins, chemokines, and cyto
kines [24]. Several EOs have been shown to possess anti-inflammatory properties, possibly by modulating the expression or activity of 
these mediators or by affecting the signaling pathways that regulate inflammation [25–28]. 

The essential oil extracted from Ptychotis verticillata, also known as Ammoides verticillata (Brot.) Breistr, a medicinal and aromatic 
plant endemic to Morocco and belonging to the Apiaceae family, has attracted considerable attention due to its therapeutic potential 
[29]. The Apiaceae family is recognized for its richness in bioactive compounds, with their essential oils containing phenylpropanoids 
such as thymol, carvacrol, estragole, and anethole, which possess antioxidant properties [30]. These molecules have sparked signif
icant interest in medical research owing to their bioactivity, including their ability to neutralize free radicals and protect cells against 
oxidative damage [31]. Traditionally referred to as "Nûnkha," this plant is utilized for various purposes such as flavouring [32], 
perfumery, and the treatment of digestive and respiratory disorders. Several studies have highlighted the abundance of terpene 
compounds in this plants essential oil, including carvacrol, thymol, D-limonene and gamma-terpinene [29,33,34]. Other studies have 
demonstrated the antioxidant, antibacterial, and anticancer efficacy of this essential oil, particularly in the treatment of breast cancer 
[29,35]. Another study on the synergy of this essential oil with conventional antibiotics such as ampicillin, amoxicillin, and eryth
romycin showed promising results. These combinations reduced the minimum inhibitory concentration of these antibiotics up to 10 
folds against a wide range of bacteria [34]. However, the anti-diabetic, anti-tyrosinase, and anti-inflammatory activities of PVEO 
remain insufficiently explored in the scientific literature. 

Therefore, the objective of this study is to characterize the phytochemical profile of PVEO obtained from the eastern region of 
Morocco and to evaluate its anti-diabetic, anti-tyrosinase, and anti-inflammatory effects. These comprehensive investigations, aim to 
contribute to the understanding of the therapeutic potential of this natural resource and to provide new insights for the development of 
novel and effective agents for diabetes management, pigmentation disorders, and chronic inflammation. 

2. Materials and methods 

2.1. Plant material and essential oil extraction 

Harvested in 2022, the Ptychotis verticillata Duby, native to the Ahfir area in Eastern Morocco, was purchased at a local market in 
Oujda, Eastern Morocco. Botanical identification of the specimen was carried out by expert botanist Professor Mohamed Addi, 
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researcher at the Oujda Faculty of Science. A voucher number (CLP-003) was assigned to the specimen at the Center for Oriental Water 
and Environmental Science and Technology of Mohammed 1st University of Oujda. Subsequently, the essential oil was systematically 
extracted from the aerial components of the plant by the utilization of hydrodistillation with a modified Clevenger equipment. This 
selected methodology rigorously adheres to the established protocols [29,36]. 

2.2. Phytochemical composition by GC-MS 

Using a gas chromatograph coupled with a mass spectrometer detector, qualitative and semi-quantitative analysis of the essential 
oil derived from Ptychotis verticillata Duby was conducted, as described by El Guerrouj et al. [37]. The chemicals were identified and 
separated utilizing a Shimadzu GC system manufactured in Kyoto, Japan, in conjunction with an MS QP2010 equipment available from 
Fuji Scientific Instruments in Kyoto, Japan. The process of separation was carried out by employing a BPX5 capillary column that 
consisted of 5 % phenyl and 95 % dimethylpolysiloxane. The carrier gas utilized in this experiment was pure helium (99.99 percent). 
To ensure a consistent flow rate of 1.69 mL/min, the injection, interface temperatures, and ion source were all held constant at 250 ◦C. 
Programming the column heating system to increase at a rate of 10 ◦C per minute from 50 ◦C (for 1 min) to 250 ◦C (for 1 min), 
maintaining the temperature for 1 min. The components of the sample were ionized using Electron Impact (EI) mode at an energy of 70 
eV. The mass range that was analyzed varied between 40 and 300 m/z. Following that, 1 μL of each produced oil was injected with a 
fractionation ratio of 90:1. Each sample underwent three assessments, during which chemical identification was achieved by 
comparing retention durations to validated standards and mass spectrum fragmentation models derived from databases or NIST 
compounds [38]. The method of collecting and processing data was carried out using Laboratory Solutions (v2.5). 

2.3. Antidiabetic activity 

2.3.1. α-Amylase inhibition assay 
In the examination of potential antidiabetic properties inherent in Ptychotis verticillata essential oil (PVEO), the α-amylase inhi

bition assay was meticulously conducted. Compounds isolated from PVEO underwent a pre-incubation with α-amylase solution (1 U/ 
mL) for 10 min at 37 ◦C. The reaction was begun by introducing 30 μL of soluble starch (0.5 % concentration in deionized water) and 
thereafter incubating it at 37 ◦C for 6 min. The reaction was carefully terminated, and absorbance at 565 nm was precisely measure 
[39–41]. 

2.3.2. α-Glucosidase inhibition assay 
Simultaneously, the α-glucosidase inhibition assay was rigorously executed. A methanolic stock solution, combined with 0.5 U/mL 

of α-glucosidase enzyme solution and potassium phosphate buffer (0.1 M), underwent a 6-min incubation at 25 ◦C. Next, 20 μL of a 
solution of p-nitrophenyl-α-D-glucopyranoside substrate (5 mM) was added, and the mixture was incubated for 8 min. The process was 
carefully halted, and the absorbance was accurately measured at a wavelength of 405 nm [41]. 

2.3.3. Xanthine oxidase (XO) assay 
Introducing an additional dimension, the xanthine oxidase (XO) assay explored the inhibitory potential of PVEO on xanthine 

oxidase. Conducted under aerobic conditions, the assay mixture underwent a 15-min preincubation at 25 ◦C. The reaction was started 
by introducing the substrate solution, consisting of 150 mM xanthine in a 70 mM phosphate buffer, and allowing it to incubate at a 
temperature of 25 ◦C for a duration of 30 min. The process was deliberately stopped, and the absorbance at 290 nm was accurately 
determined [42]. 

2.4. Dermatoprotective activity: tyrosinase inhibition assay 

In the investigation of the dermatoprotective potential inherent in Ptychotis verticillata essential oil (PVEO), a methodological 
adaptation was employed to assess tyrosinase inhibitory activity [43,44]. In a succinct delineation, 25 μL of the PVEO sample was 
meticulously amalgamated with 100 μL of tyrosinase solution (333 U/mL, 50 mM phosphate buffer, pH 6.5), undergoing incubation at 
37 ◦C for a precise interval of 10 min. After this initial phase, 300 μL of L-DOPA (5 mM) was introduced, and the resulting mixture 
underwent a subsequent 30-min incubation at 37 ◦C. The resultant absorbance readings were meticulously recorded at 510 nm uti
lizing a UV-VIS spectrophotometer (Jenway 6300, Staffordshire, UK). Tyrosinase inhibition levels were quantified across a spectrum of 
PVEO concentrations, specifically at 10, 20, 40, 60, 120, and 160 μg/mL. The determination of IC50 values, representing the con
centration at which 50 % inhibition occurred, formed a pivotal aspect of the analytical framework. It is imperative to note that 
quercetin served as the positive control in this experimental context, providing a benchmark for the assessment of tyrosinase inhibitory 
activity. This meticulous methodological approach facilitated a comprehensive evaluation of PVEO’s capacity to inhibit tyrosinase, 
thereby contributing nuanced insights into its dermatoprotective attributes. 

2.5. Anti-inflammatory activity of PVEO 

2.5.1. Inhibition of 5-LOX enzyme 
With a few minor modifications, this assessment adhered to the protocol described by Pinto et al. (2007) [45]. A UV-VIS spec

trophotometer (Jenway 6300, Staffordshire, UK) with a 560 nm setting was used to measure the formation of the Fe3+/xylenol orange 
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combination, which served as the basis for the assessments. For 5 min, the Glycine max enzyme 15-lipoxygenase was incubated at 
25 ◦C with either plant extracts or a conventional inhibitor. After that, linoleic acid was added to 50 mM Tris–HCl buffer (pH 7.4) at a 
final concentration of 140 μM, and the mixture was incubated at 25 ◦C for 20 min in the dark. To stop the process, add 100 μL of FOX 
reagent, which is 30 mM sulfuric acid, 100 μM xylenol orange, and 100 μM iron (II) sulfate in a 9:1, v/v methanol/water solution. 

Only the buffer and LOX solution were pipetted in the control wells. During the incubation period, the LOX enzyme was present in 
the blanks, and the substrate linoleic acid was added after the FOX reagent. After 30 min at 25 ◦C, changes in absorbance values at 560 
nm were used to calculate the % suppression of hydrogen peroxide formation, which served as an indicator of lipoxygenase’s inhibitory 
action. The following formula was used to calculate the inhibition percentage: 

Inhibition percentage (%)=

[
(Acontrol − Ablank) −

(
Asample − Ablank

)

(Acontrol − Ablank)

]

The variable Acontrol represents the absorbance value of the control well, Ablank represents the absorbance value of the blank well, 
and Asample represents the absorbance value of a sample well. 

2.5.2. Modulation of the inflammation in LPS-treated RAW 264.7 cells, and inhibition of major inflammation mediators  

a Cell Culture 

The investigation included culturing RAW 264.7 murine macrophage cells obtained from the American Type Culture Collection 
(ATCC, Manassas, VA, USA) in accordance with ATCC standards. Maintained at 37 ◦C in Dulbecco’s Modified Eagle Medium (DMEM) 
supplemented with 10 % fetal bovine serum (FBS), 4.5 g/L glucose, 4.5 mM glutamine, 100 units/mL penicillin, and 100 μg/mL 
streptomycin, the cells formed the basis for a thorough investigation.  

b Cell Viability Assessment 

Cell viability was meticulously evaluated using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) colori
metric assay. Initially, RAW 264.7 cells were seeded at 1 × 104 cells per well in 96-well plates [46,47]. Subsequently, varying con
centrations of PVEO were applied, ranging from 25 to 200 μg/mL, with or without lipopolysaccharide (LPS) at 1 μg/mL for 24 h. 
Post-treatment, MTT solution (10 μg/mL) was introduced, and formazan crystals were solubilized in dimethyl sulfoxide (DMSO). 
Absorbance readings at 570 nm, with a background control at 630 nm, were recorded using an ELISA microplate reader (BioTek 
Instruments, Inc, Winooski, VT, USA). The viability of the cells was assessed by determining the proportion in relation to the untreated 
cells.  

c. Inflammatory Mediator Determination 

Table 1 
Phytochemical constituents of PVEO.  

N◦a Compoundsb RT (min) Area (%) Ri
c Ri Lit.d 

1 α-Thujene 5.084 0.26 928 931 
2 α -Pinene 5.214 2.79 933 939 
3 β-Pinene 5.943 0.51 974 980 
4 β-Myrcene 6.116 1.25 987 991 
5 α-Phellandrene 6.391 0.45 993 1005 
6 2-Carene 6.591 1.34 1010 1011 
7 β-cymene 6.740 19.77 1022 1025 
8 β-thujone 6.920 1.18 1029 1029 
9 γ-terpinene 7.300 40.35 1048 1062 
10 isothujol 7.794 0.21 1153 1170 
11 4-terpineol 9.335 1.81 1169 1177 
12 α-terpineol 9.566 0.46 1175 1189 
13 carvone 10.809 0.34 1239 1243 
14 thymol 11.063 6.29 1279 1290 
15 carvacrol 11.165 22.40 1294 1298 
16 cyclopent-1-ene-3,5-diol 11.343 0.60 1325 –   

Identified compounds Percentage  
Hydrocarbon monoterpenes 8 66.72  
Oxygenated monoterpenes 7 32.69  
Others 1 0.60  
Total identified (%) 16 100 

a In order of elution. 
b components identified by KI and MS. 
c Kovats index calculated from alkanes series on the MS capillary column (C8–C24). 
d Kovats index/Retention index from data libraries (NIST). 
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The assessment of nitric oxide (NO) levels employed the Griess reaction assay [48]. RAW 264.7 cells, seeded at 1 × 104 cells per 
well, underwent treatment with LPS, either alone or in conjunction with PVEO (25–100 μg/mL), for 24 h. Culture supernatants were 
subjected to Griess reagent, and the ensuing intracellular nitrate levels, a stable product of NO, were quantified at 540 nm using an 
ELISA microplate reader (BioTek Instruments, Inc, Winooski, VT, USA). Simultaneously, intracellular prostaglandin E2 (PGE2) levels 
were quantified through an enzyme immunoassay (EIA) kit from R&D Systems, following the manufacturer’s protocols. This metic
ulous approach provided comprehensive insights into the modulation of NO and PGE2 production in response to PVEO under 
LPS-induced inflammatory conditions, significantly contributing to the elucidation of PVEO’s potential anti-inflammatory properties. 

3. Results and discussion 

3.1. Phytochemical composition 

Table 1, and Fig. 1 displays the results for the 16 components found in the sample. The relative abundance or amount of each 
component in the sample is represented by the % area. According to the table, the component with the biggest percentage area is 
γ-terpinene (40.35 %). This means it is the most prevalent component in the sample. Carvacrol (22.40 %), is the second most abundant 
component in the sample, with the biggest percentage area. β-cymene (19.77 %), thymol (6.29 %), and α-pinene (2.79 %) are other 
prominent components with relatively high percentage area values. Components with low percentage area values, on the other hand, 
include α-thujene (0.26 %), α-phellandrene (0.45 %), α-terpineol (0.46 %), and (− )-carvone (0.34 %). These components are present in 
lesser amounts in the sample. Taibi et al. found that P. verticillata essential oil contains a range of aromatic and terpene components, 
with carvacrol being the predominant ingredient [35]. A further investigation carried out by Bnouham et al. revealed that the crucial 
oil derived from P. verticillate, there were a total of 10 components discovered. The main constituents were thymol, D-limonene, 
gamma-terpinene, and m-cymene, which accounted for 95.86 % of the total [32]. These findings contribute to our understanding of the 
chemical composition of PVEO and its potential applications in various fields, including pharmacology and aromatherapy. 

Table 2 presents the outcomes of investigations into the inhibitory impacts of essential oil derived from Ptychotis verticillata (PVEO) 
on three key enzymes: xanthine oxidase (E.C. 1.17.3.2), α-amylase (E.C. 3.2.1.1), and α-glucosidase (E.C. 3.2.1.20). These enzymes are 
involved in the metabolism of purines and carbohydrates, and their inhibition can help reduce the symptoms of gout and diabetes, 
respectively [49–51]. According to the table, PVEO exhibited significant inhibitory activity against all three enzymes in terms of IC50, 
which is the concentration of a substance that inhibits 50 % of the enzyme activity, and lower values indicate higher potency. PVEO 
was compared with two positive controls: allopurinol, a standard drug for gout that inhibits xanthine oxidase, and acarbose, a standard 
drug for diabetes that inhibits α-amylase and α-glucosidase. The findings indicate that PVEO had a comparable inhibitory impact on 
xanthine oxidase to allopurinol, with IC50 values of 25.33 ± 0.67 and 23.34 ± 0.09 μg/mL, respectively. Also, PVEO had a similar 
inhibitory effect on α-amylase, with IC50 values of 32.34 ± 0.78 μg/mL, while the essential oil had a relatively important inhibitory 
activity on α-glucosidase compared to the standard drug (acarbose, 65.41 ± 2.10 μg/mL) at 43.22 ± 3.03 μg/mL. Analysis of the 
chemical composition revealed the presence of various aromatic and terpene compounds, with major constituents such as γ-terpinene, 
β-cymene, carvacrol, and thymol. These compounds are recognized for their diverse biological properties, encompassing antioxidant, 
anti-inflammatory, and antidiabetic effects [52,53]. Notably, carvacrol and thymol, classified as phenolic monoterpenoids charac
terized by a hydroxyl group attached to a benzene ring [54,55], have demonstrated potent inhibitory effects on α-glucosidase, 
α-amylase, and xanthine oxidase in prior studies [56–59]. This investigation represents the first study to assess the anti-diabetic ac
tivity of this essential oil, making it difficult to compare with other previous studies. However, the results obtained in this study 
corroborate the findings of other research on essential oils rich in bioactive molecules. For example, the study conducted by Khedhri 
et al. (2023) on eucalyptus essential oils from Tunisia revealed that E. leptophylla and E. brevifolia exhibited remarkable inhibition of 
α-amylase, with an IC50 of 0.88 mg/mL [60]. Similarly, the study by Kochti et al. (2024) confirmed the efficacy of essential oils rich in 
terpene molecules, highlighting the antienzymatic efficacy of Callitris glaucophylla essential oil [61]. 

The cumulative findings suggest that PVEO holds potential as a natural alternative for gout treatment and may emerge as a 

Fig. 1. GC-MS TIC chromatogram of P. verticillata essential oil (PVEO).  
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promising natural agent for diabetes management. 

3.2. Tyrosinase inhibition assay 

The assessment of anti-tyrosinase activity assumes a pivotal role in the realm of dermatoprotection, given the central involvement 
of this enzyme in melanin biosynthesis. Melanin, the pigment dictating skin, hair, and eye coloration, arises from the conversion of 
tyrosine to DOPA catalyzed by tyrosinase [62]. This intricate process, recognized as melanogenesis, stands as a cornerstone for 
melanosome formation and melanin production, thereby fundamentally shaping skin pigmentation and texture [63]. 

In this investigation, the anti-tyrosinase activity of PVEO was meticulously examined through a tyrosinase inhibition assay 
(Table 3). The discerned results elucidate an anti-tyrosinase activity value of 27.39 ± 0.44 μg/mL for PVEO, juxtaposed against the 
control, quercetin, having a value of 22.15 ± 0.12 μg/mL. These findings underscore the nuanced capacity of PVEO to modulate 
tyrosinase activity, suggesting its potential in dermatoprotection, and the regulation of melanin synthesis. The noteworthy observation 
of anti-tyrosinase activity within PVEO may be ascribed to its rich terpenoid composition, exemplified by one of its major compounds, 
carvacrol, known for its demonstrated efficacy in inhibiting tyrosinase [64,65]. It is imperative to acknowledge the intricacies involved 
in comparing these results with extant studies, given the uniqueness of this research as the inaugural exploration specifically 
addressing the anti-tyrosinase activity of this plant. These outcomes not only lay the foundation for a more profound understanding of 
underlying mechanisms but also offer auspicious avenues for the application of PVEO in dermatology, promising advancements in 
products targeting hyperpigmentation challenges, and advocating for a balanced, and aesthetically beneficial skin pigmentation. 

3.3. Anti-inflammatory activity results 

3.3.1. LOX inhibition 
The data from Table 4 highlight the remarkable lipoxygenase (LOX) inhibition capacity of PVEO, reaching 87.62 ± 2.60 % at a 

concentration of 0.5 mg/mL. In parallel, quercetin, a well-known chemical compound with inhibitory properties, exhibits a LOX in
hibition capacity evaluated at 93.59 ± 1.19 % at a concentration of 1 mg/mL. It is essential to note that the LOX inhibition capacity of 
the essential oil (0.5 mg/mL) surpasses that observed with quercetin (1 mg/mL), suggesting that the essential oil of P. verticillata could 
be considered a potentially more effective inhibitor of LOX, even more potent than quercetin under the experimental conditions. 

The anti-inflammatory activity of the essential oil of the plant can be largely attributed to its composition of bioactive molecules. 
γ-terpinene, one of the major bioactive compounds in this essential oil, has been identified as an inhibitor of 5-LOX [66], demon
strating its ability to modulate acute inflammation in various in vivo experimental models [67]. Furthermore, studies suggest that 
carvacrol, the principal compound in this essential oil, may also possess anti-inflammatory properties by inhibiting certain inflam
mation mechanisms [68–71]. The results emphasize the encouraging capacity of PVEO as a natural anti-inflammatory substance. 

3.3.2. Anti-inflammatory activity on LPS-induced NO, and PGE2 production in RAW 264.7 cells 
Assessing the survival of RAW 264.7 cells triggered with lipopolysaccharide (LPS) is an important step in understanding the impact 

of PVEO on the inflammatory response. As depicted in Fig. 2, the RAW 264.7 cell percentage showed a notable rise following exposure 
to 1 μg/mL of LPS. Conversely, the quantity of RAW 264.7 cells remained unaffected by escalating concentrations of PVEO, except for 
the fourth concentration (150 μg/mL), which exhibited a minor decrease in cell viability to 96.80 ± 2.04 %. Notably, doses up to 200 
μg/mL did not elicit any reduction in cell viability, suggesting the non-cytotoxic nature of PVEO towards RAW 264.7 cells. 

This study seeks to appraise the anti-inflammatory potential of PVEO by influencing the production of inflammatory mediators, 
notably nitric oxide (NO) and prostaglandin E2 (PGE2). It is crucial to highlight the significance of NO and PGE2 in the anti- 
inflammatory process, where their inhibition assumes a pivotal role in regulating inflammatory responses [72,73]. NO, an essential 
regulator of inflammation-related cellular cascades [74], and PGE2, closely associated with mediating inflammatory responses and 

Table 2 
α-Amylase, xanthine oxidase, and α-glucosidase inhibitory activities of (PVEO) in terms of IC50 values.  

Essential oil/Positive control IC50 (μg/mL), ±SD 

Xanthine Oxidase 
Inhibition 

α-Amylase Inhibitory 
Activity 

α-Glucosidase Inhibitory 
Activity  

PVEO 25.33 ± 0.67 a 32.34 ± 0.78 a 43.22 ± 3.03 b  
Allopurinola 23.34 ± 0.09 a – –  
Acarbosea – 35.48 ± 0.69 a 65.41 ± 2.10 a   

a Positive controls. Values are reported as means ± SD (standard deviation); a, and b, designate significant difference in each column at p < 0.05. 

Table 3 
In vitro dermatoprotective activity using Tyrosinase inhibition assay.  

Assay PVEO Control (Quercetin) 

IC50 (μg/mL)s 

Tyrosinase 27.39 ± 0.44 22.15 ± 0.12  
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sensitizing nociceptors, emphasizes the importance of targeting these mediators [75]. The results in Fig. 3A and B expound upon the 
concentrations measured under specific experimental conditions. Fig. 3A delineates that the control group manifests a basal NO 
production of 4.40 ± 0.43 μM while introducing lipopolysaccharide (LPS) induces a substantial increase to 45.76 ± 1.88 μM. The 
simultaneous addition of PVEO, spanning concentrations from 25 to 200 μg/mL with LPS at a dose of 1 μg/mL, demonstrates a 
dose-dependent reduction in NO production, ranging between 39.07 ± 0.90 and 15.77 ± 2.47 μM. Analogously, in Fig. 3B, the control 
group exhibits a PGE2 production of 54.20 ± 2.77 pg/mL, while LPS alone significantly amplifies this production to 718.50 ± 7.26 
pg/mL. The introduction of PVEO at varying concentrations induces a dose-dependent decline in PGE2 production, ranging from 
513.50 ± 8.97 to 111.60 ± 4.63 pg/mL. 

These outcomes posit that PVEO harbors anti-inflammatory activity, exemplifying a dose-dependent efficacy in attenuating LPS- 
induced NO and PGE2 production. These findings underscore the advantageous potential of PVEO in modulating inflammatory pro
cesses. The assays reveal a dose-dependent decrease in NO and PGE2 production in the presence of PVEO, thereby illustrating its 
capacity to modulate inflammatory responses. This noteworthy activity is likely attributed to bioactive compounds, with carvacrol 
emerging as one of the predominant constituents in this essential oil [75,76]. This capacity to mitigate these inflammatory mediators 
suggests a promising anti-inflammatory effect of PVEO. 

All these biological activities can be attributed to their richness in volatile compounds. These volatile chemicals play an essential 
role in pharmacology, particularly in natural products, essential oils (EO) and fragrance compounds [77]. They are often endowed with 
biological actions that can have an impact on human health. Synergistic effects are frequently observed when several volatile com
ponents of plant extracts are combined [78]. Compared to individual drugs, the interaction between these substances can increase their 
total pharmacological activity. Thymol, carvacrol and β-cymene are examples of volatile chemicals with anti-inflammatory activities. 
These chemicals have the ability to modulate inflammation-related pathways and could be investigated for the development of 
anti-inflammatory drugs [79]. Volatile chemicals possess a wide range of pharmacological actions, including antibacterial and 
anti-inflammatory activities, as well as effects on the central nervous system. Ongoing research into these substances and their 
interaction with biological systems continues to facilitate the development of new pharmaceutical products and therapeutic methods. 

4. Conclusion 

The current investigation unveiled the phytochemical makeup, as well as the anti-diabetic, anti-tyrosinase, and anti-inflammatory 
properties of the essential oil derived from Ptychotis verticillata Duby. The essential oil was found to be rich in γ-terpinene, carvacrol, 
and β-cymene, which are bioactive compounds that belong to the class of monoterpenes, and phenolic monoterpenes. These com
pounds have been reported to possess various biological, and pharmacological activities. The PVEO exhibited potent inhibitory effects 
on xanthine oxidase, tyrosinase, α-glucosidase, α-amylase, and lipoxygenase enzymes, which are involved in the pathogenesis of gout, 
diabetes, pigmentation disorders, and chronic inflammation, respectively. In addition, the PVEO had notable anti-inflammatory effects 

Table 4 
Results of LOX inhibition (%) of the P. verticillata essential oil.  

Sample (0.5 mg/mL) % LOX inhibition 

PVEO 87.62 ± 2.60 
Quercetin (1 mg/mL) 93.59 ± 1.19  

#
*

Fig. 2. Effects of PVEO on the viability of RAW 264.7 cells. The cells were treated with LPS at a dose of 1 μg/mL and incubated for 24 h in the 
presence or absence of increasing concentrations (25–200 μg/mL) of PVEO. The assessment of cell viability was conducted using the MTT color
imetric test. # denotes a significant difference between the control, and LPS-only treated groups at p < 0.05. * denotes a significant difference 
between the control, and LPS-PVEO treated groups at p < 0.05. 
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on the generation of NO and PGE2 generated by LPS in RAW 264.7 cells. It dose-dependently decreased the levels of these inflam
matory mediators without impacting the survival of the cells. These findings suggest that PVEO may mitigate inflammatory processes 
by modulating the expression of enzymes involved in the synthesis of NO and PGE2. These results suggest that PVEO has a remarkable 
therapeutic potential for the management of these prevalent, and challenging health conditions, by modulating the enzymatic ac
tivities and preventing the accumulation of harmful metabolites or the excessive production of melanin. Moreover, the essential oil 
showed comparable to superior activity to the reference drugs allopurinol, acarbose, and quercetin, which are commonly used for the 
treatment of gout, diabetes, and inflammation, respectively. This indicates that the PVEO may offer a natural and effective alternative 
to these synthetic drugs, which may have adverse effects or limited efficacy. This study provides new insights into the pharmacological 
properties of P. verticillata and contributes to the valorization of this endemic plant as a source of bioactive compounds for the 
development of novel, and innovative agents that can address the unmet needs of patients suffering from gout, diabetes, pigmentation 
disorders, and chronic inflammation. 

Data availability statement 

Data will be available upon request from the corresponding author. 

(A)

(B)

Fig. 3. The effect of PVEO on the synthesis of prostaglandin E2 (PGE2) and nitric oxide (NO) induced by LPS. (A) Following exposure to LPS (1 μg/ 
mL), RAW 264.7 cells were cultured for a duration of 24 h with ascending concentrations (25–200 μg/mL) of PVEO. Utilizing the Griess reagent 
assay, the nitrite concentration in the culture medium was determined. (B) PGE2 concentrations in the culture media were determined in accordance 
with the instructions provided in the materials using a commercially available assay kit. The data provided illustrates the mean and standard 
deviation of three separate experiments. A p-value less than 0.001 (#) indicates a statistically significant difference between the control group and 
the group treated with LPS alone. Significance levels of p < 0.001 (**) and p < 0.01 (***), respectively, denote substantial differences between the 
LPS-alone and PVEO treatment groups. 
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Antigout and antidiabetic activity: In vitro inhibition of α-glucosidase, α-amylase, and xanthine oxidase 

table 2 presents the outcomes of investigations into the inhibitory impacts of essential oil derived from Ptychotis verticillata (PVEO) 
on three key enzymes: xanthine oxidase (E.C. 1.17.3.2), α-amylase (E.C. 3.2.1.1), and α-glucosidase (E.C. 3.2.1.20). These enzymes are 
involved in the metabolism of purines and carbohydrates, and their inhibition can help reduce the symptoms of gout and diabetes, 
respectively [49–51]. According to the table, PVEO exhibited significant inhibitory activity against all three enzymes in terms of IC50, 
which is the concentration of a substance that inhibits 50% of the enzyme activity, and lower values indicate higher potency. PVEO was 
compared with two positive controls: allopurinol, a standard drug for gout that inhibits xanthine oxidase, and acarbose, a standard 
drug for diabetes that inhibits α-amylase and α-glucosidase. The findings indicate that PVEO had a comparable inhibitory impact on 
xanthine oxidase to allopurinol, with IC50 values of 25.33 ± 0.67 and 23.34 ± 0.09 μg/mL, respectively. Also, PVEO had a similar 
inhibitory effect on α-amylase, with IC50 values of 32.34 ± 0.78 μg/mL, while the essential oil had a relatively important inhibitory 
activity on α-glucosidase compared to the standard drug (acarbose, 65.41 ± 2.10 μg/mL) at 43.22 ± 3.03 μg/mL. Analysis of the 
chemical composition revealed the presence of various aromatic and terpene compounds, with major constituents such as γ-terpinene, 
β-cymene, carvacrol, and thymol. These compounds are recognized for their diverse biological properties, encompassing antioxidant, 
anti-inflammatory, and antidiabetic effects [52,53]. Notably, carvacrol and thymol, classified as phenolic monoterpenoids charac
terized by a hydroxyl group attached to a benzene ring [54,55], have demonstrated potent inhibitory effects on α-glucosidase, 
α-amylase, and xanthine oxidase in prior studies [56–59]. This investigation represents the first study to assess the anti-diabetic ac
tivity of this essential oil, making it difficult to compare with other previous studies. However, the results obtained in this study 
corroborate the findings of other research on essential oils rich in bioactive molecules. For example, the study conducted by Khedhri 
et al. (2023) on eucalyptus essential oils from Tunisia revealed that E. leptophylla and E. brevifolia exhibited remarkable inhibition of 
α-amylase, with an IC50 of 0.88 mg/mL [60]. Similarly, the study by Kochti et al (2024) confirmed the efficacy of essential oils rich in 
terpene molecules, highlighting the antienzymatic efficacy of Callitris glaucophylla essential oil [61]. 

The cumulative findings suggest that PVEO holds potential as a natural alternative for gout treatment and may emerge as a 
promising natural agent for diabetes management. 
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