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Selective neuronal loss is a hallmark of neurodegenerative diseases, including Huntington’s
disease (HD). Although mutant huntingtin, the protein responsible for HD, is expressed
ubiquitously, a subpopulation of neurons in the striatum is the first to succumb. In
this review, we examine evidence that protein quality control pathways, including the
ubiquitin proteasome system, autophagy, and chaperones, are significantly altered in
striatal neurons. These alterations may increase the susceptibility of striatal neurons to
mutant huntingtin-mediated toxicity. This novel view of HD pathogenesis has profound
therapeutic implications: protein homeostasis pathways in the striatum may be valuable
targets for treating HD and other misfolded protein disorders.
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HUNTINGTON’S DISEASE
Huntington’s disease (HD) is an autosomal dominant neurode-
generative disorder caused by a mutation in the gene encoding
the huntingtin (Htt) protein. The mutation is an expansion of
CAG repeats that encodes a homomeric polyglutamine stretch in
the first exon of Htt. Alleles with 35 repeats put an individual
at risk for HD; 40 or more invariably lead to disease. Although
mutant Htt (mHtt) is expressed ubiquitously, the key pathologi-
cal hallmark of HD is the selective loss of striatal medium spiny
neurons (MSNs) that express enkephalin and γ-aminobutyric
acid (GABA; Graveland et al., 1985). As HD progresses, degen-
eration also occurs in the cortex and later the globus pallidus
and thalamus (Vonsattel et al., 1985; Vonsattel and DiFiglia,
1998).

Huntington’s disease arises from the abnormal accumulation of
mHtt. In HD mouse models and human patients, the appearance
of visible mHtt aggregates called inclusion bodies (IBs) correlates
with the onset of behavioral deficits (Davies et al., 1997). IB for-
mation is restricted anatomically despite ubiquitous expression
of mHtt. Many mechanisms attempt to explain selective striatal
degeneration – including differential Htt expression, mitochon-
drial dysfunction, and neurotrophic factor expression – but none
accounts for the regional selectivity of IBs.

IB FORMATION IS AN INDICATOR OF CELLULAR
PROTEOSTASIS
Inclusion body formation indicates a mismatch between the
production and clearance of aggregation-prone protein. The
mechanism of IB formation in HD is unclear, but the length
of the polyQ repeat region correlates with the number of IBs
in diseased brains (Vonsattel et al., 1985; Becher et al., 1998).
While the role IBs play in cellular toxicity has been controversial,

evidence suggests that IB formation can be dissociated from neu-
rodegeneration (Klement et al., 1998; Saudou et al., 1998; Kim
et al., 1999) and is a coping response to mHtt rather than a
direct source of toxicity (Arrasate et al., 2004). In addition to
aggregated mHtt, IBs contain ubiquitin, molecular chaperones,
and proteasome subunits, suggesting that cells have insufficient
capacity to clear misfolded mHtt (Sieradzan et al., 1999; Stenoien
et al., 1999; Waelter et al., 2001; Mitra and Finkbeiner, 2008).
Further evidence suggests that cells can degrade IBs even after
they form: Yamamoto et al. (2000) generated an inducible HD
mouse model in which they terminated mHtt production after
IBs and behavioral deficits arose. Turning off mHtt produc-
tion caused IBs to disappear and reversed the behavioral deficits
(Yamamoto et al., 2000). Although this study demonstrated that
IB formation is reversible, it did not address whether IBs are
cleared all at once or dissolved gradually. Later work showed
that IBs in mHtt-expressing neurons disappear abruptly (Arrasate
et al., 2004; Miller et al., 2010), suggesting that neurons can
spontaneously and rapidly metabolize IBs. Autophagy and the
ubiquitin-proteasome system (UPS) have been implicated in this
metabolism. Thus, the balance between the formation and clear-
ance of IBs can provide insight into the efficiency of proteostasis
pathways.

IB FORMATION IS CELL-SELECTIVE
In HD brains, IBs localize within the nucleus and, more com-
monly, the neuropil of striatal and cerebral cortical neurons. Other
subcortical structures, such as the globus pallidus and the thala-
mus, exhibit fewer IBs (DiFiglia et al., 1997; Maat-Schieman et al.,
1999; Sieradzan et al., 1999). Within the human striatum, IBs are
only present in 1–4% of neurons, but are more prevalent in the
cerebral cortex, which exhibits less cell death in HD (Gutekunst
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et al., 1999; Sieradzan et al., 1999). Furthermore, few IBs form in
the most vulnerable striatal neurons; only 4% of MSNs exhibit
IBs, while 50% of NADPH-positive striatal neurons do (Kuem-
merle et al., 1999). Greater neuronal death in the striatum does
not explain this differential distribution, as both low- and high-
grade cases exhibit similar numbers of striatal IBs (Gutekunst et al.,
1999).

Differential mHtt expression within the cortex and striatum
may account for different IB levels in these regions. Indeed, in a
neuronal culture system, the rate of IB formation was tightly cor-
related with mHtt levels (Arrasate et al., 2004; Miller et al., 2010).
In immunolabeling studies, Htt levels were relatively low in striatal
neurons but were uniformly high in cortical pyramidal neurons
(Ferrante et al., 1997; Fusco et al., 1999; Sieradzan and Mann, 2001;
Gourfinkel-An et al., 2004). However, even when striatal and cor-
tical neurons expressed mHtt equally, cortical neurons formed IBs
more readily (Tagawa et al., 2004; Arrasate and Finkbeiner, 2012).
Thus, intrinsic differences in how cell types handle misfolded
proteins contribute to differences in IB formation.

PROTEOSTASIS IN THE STRIATUM
Neurons are postmitotic cells that require consistently functional
proteostasis pathways. While dividing cells can simply dilute
misfolded or aggregated proteins through division and growth,
neurons rely on intracellular protein quality control pathways,
such as degradation, to maintain protein quality (Eden et al.,
2011). In addition, as neurons survive throughout an organism’s
lifetime, their proteostasis mechanisms must withstand stressors
over time. Misfolded proteins, such as mHtt, stress the proteostasis
system, which can dysregulate protein quality control mechanisms
and lead to cell death. Striatal MSNs are particularly vulnerable to
degeneration and cell death even though mHtt is expressed ubiq-
uitously. Here, we review evidence that striatal MSNs have global
changes in proteostasis that render them unable to manage protein
misfolding.

UBIQUITIN PROTEASOME SYSTEM
The UPS degrades misfolded and mutated intracellular proteins.
Proteins targeted for degradation are ubiquitinated (i.e., tagged
with a polyubiquitin chain; Pickart and Fushman, 2004) and deliv-
ered to the proteasome where they are unfolded and hydrolyzed
(Goldberg, 2003; Pickart and Cohen, 2004). Originally, mHtt
IBs were thought to clog the proteasome (Bence et al., 2001).
Later work showed that proteasome function was inhibited prior
to IB formation and that IB formation actually improved UPS
flux (Bennett et al., 2005; Mitra et al., 2009). These findings sug-
gested that diffuse mHtt – mHtt protein outside of a visible
IB – impairs proteasome function. IBs may sequester this diffuse
population of protein. Subsequently, Hipp et al. (2012) showed
that mHtt does not directly block the proteasome. Instead, they
found that misfolded mHtt overwhelmed the chaperone system,
leading to misfolding of metastable proteins and increased sub-
strate load which in turn overwhelmed the UPS (Hipp et al.,
2012).

Mutant Htt has differential effects on UPS function in the
striatum compared to other brain regions. Levels of a single
ubiquitin-activating enzyme, Ube1, are lower in the striatum and

cortex than in the cerebellum in CAG140Q knock-in mice (Wade
et al., 2014). Conversely, a number of other UPS-associated pro-
teins are upregulated in the striatum and downregulated in the
cortex of R6/2 HD model mice (Liu et al., 2007). This upregu-
lation suggests that striatal neurons have an increased need for
UPS function, which may make the striatum more susceptible
to UPS stressors. Indeed, age-dependent reduction in proteaso-
mal function was shown to be exacerbated in the striatum (Zhou
et al., 2003). In addition, global knockout of Parkin, an E3 ubiq-
uitin ligase, resulted in mitochondrial respiration defects and
increased oxidative stress in the striatum (Damiano et al., 2014;
Figure 1).

Recent work also indicates that UPS activity may be lower in
the striatum than in the cortex. Tsvetkov et al. (2013) demon-
strated that diffuse mHtt is degraded more rapidly in cortical than
in striatal neurons. This difference in degradation rate may be
due to the UPS, as diffuse mHtt is ubiquitinated (Jana et al., 2001;
Waelter et al., 2001; Steffan et al., 2004) and ubiquitinated mHtt
accumulates upon proteasomal inhibition in many HD models
(Wyttenbach et al., 2000; Jana et al., 2001; Waelter et al., 2001;
Lunkes et al., 2002; Zhou et al., 2003). In addition, incubation
of mHtt with mouse striatal lysates (compared to cortical or cere-
bellar lysates) resulted in more ubiquitinated mHtt, pointing to
reduced clearance of ubiquitinated mHtt (Wade et al., 2014). Thus,
diffuse mHtt may be degraded differently in striatal neurons due
to basal differences in striatal UPS function.

PROTEIN CHAPERONE NETWORK
The protein chaperone network, which includes the heat shock
proteins (HSPs), controls cellular protein folding. Since HSPs
prevent misfolded proteins from aggregating, target proteins for
degradation, and refold misfolded proteins (Sõti et al., 2005;
Muchowski and Wacker, 2005; Westerheide and Morimoto, 2005),
they may protect against neurodegenerative disease.

Recently, gene expression data from the Allen Brain Institute
revealed many chaperone genes that are expressed at different
levels in the striatum and cortex, including Hspa2, DnaJa, var-
ious Hsp90 co-chaperones, and Tomm70a (Tebbenkamp and
Borchelt, 2010). Many of these genes were downregulated in
striatum compared to cortex, suggesting reduced capacity for
proteostasis stress in striatum. In addition, mHtt expression
upregulated Hsp70 in cerebellar neurons, which are largely
spared in HD, but not in striatal neurons. Therefore, vulner-
able cell populations likely cannot sufficiently upregulate their
chaperone system to manage misfolded mHtt (Tagawa et al.,
2007). Moreover, in HD mouse models, insufficient activation
of HSPs and the heat shock response (HSR) in the striatum was
associated with altered chromatin architecture, which reduced
access to HSP promoters (Labbadia et al., 2011). The HSR
may also be inhibited by proteins that form β-sheets (Olzscha
et al., 2011), as mHtt likely does (Thakur and Wetzel, 2002;
Poirier et al., 2005). Thus, mHtt misfolding in the striatum
may encourage β-sheet-containing mHtt aggregates to form,
which inhibit HSPs and further prevent the cell from eliminating
mHtt.

Conversely, other work identified HSPs that were upregulated
in the striatum and downregulated in the cortex of R6/2 mice (Liu
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FIGURE 1 | An overview of alterations in striatal proteostasis pathways.

Protein quality control in neurons is accomplished through three major
pathways: the UPS, chaperones and the heat shock response, and autophagy.
Recent work indicates that striatal neurons may express and induce the

proteins involved in these pathways differently than other cell types. Listed
findings were performed in HD and wild-type model systems as follows: (1)
primary striatal neuron, (2) HD mouse striatum, (3) wild-type mouse striatum,
(4) human HD striatum.

et al., 2007; Figure 1). Thus, understanding changes in chaperone
protein levels rather than gene expression may help unravel their
role in striatal-selective degeneration. Altered gene expression may
also not be the only way protein levels are regulated in the brain.
Recent studies show that mRNA expression of ribosomal pro-
teins varies across brain regions (Kondrashov et al., 2011; Jackson,
2014), which may explain why striatal chaperone gene and protein
expression are not correlated. Further studies are needed to fully
unravel HSP network function in striatal neurons.

AUTOPHAGY
Macroautophagy (hereafter referred to as autophagy) sequesters
long-lived proteins, organelles, or parasites within double-
membrane autophagosomes (Rubinsztein et al., 2007), which
fuse with lysosomes to degrade the sequestered contents. In
many cellular and in vivo HD models, upregulating autophagy
reduces IBs (Qin et al., 2003; Ravikumar et al., 2004; Shibata et al.,
2006; Tsvetkov et al., 2010). Thus, autophagy likely regulates IB
formation and clearance.

Autophagy-related protein expression varies across brain
regions. Le Grand et al. (2013) showed that GABARAPL1, an
Atg8 subfamily protein, is highly expressed in the cortex compared
to striatum. In another study, wild-type mouse cortex exhibited
more mitochondria-containing autophagosomes than did wild-
type striatum (Diedrich et al., 2011). Finally, levels of Ambra1,

a member of the autophagy core complex, were increased in
mouse striatal interneurons compared to MSNs (Sepe et al., 2014).
These data indicate that basal levels of autophagy may be lower in
susceptible striatal neurons.

Misfolded and aggregated mHtt may impair autophagy
induction in striatal neurons. For example, mHtt expres-
sion reduces the expression of Omi/HtrA2 in cultured striatal
neurons and in human HD striatum (Inagaki et al., 2008).
Omi/HtrA2, a mitochondrial chaperone and protease (Clausen
et al., 2002), regulates autophagy and mitophagy (Li et al., 2010;
Cilenti et al., 2014). Thus, reduced expression of autophagy-
related proteins and reduced induction of autophagy may
make striatal neurons more vulnerable to mHtt (Figure 1).
Interestingly, basal autophagy was similar in the striatum
and cortex in a recent study of BACHD mice (Baldo et al.,
2013), suggesting that further investigations are needed to
compare autophagy induction in different neuronal popula-
tions.

SYNAPTIC ACTIVITY REGULATES PROTEOSTASIS
Cell non-autonomous pathways, such as neuronal signaling
and synaptic activity, may also affect striatal proteostasis.
Neuronal activity can affect levels of ubiquitinated proteins
in the post-synaptic density (Ehlers, 2003) and the subcellu-
lar localization and biochemical composition of proteasomes
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(Bingol and Schuman, 2006; Tai et al., 2010). Neuronal stimula-
tion can also induce autophagy (Shehata et al., 2012; Otabe et al.,
2014).

The striatum receives significant dopaminergic and excitatory
glutamatergic inputs from the substantia nigra and cerebral cor-
tex, respectively. Excitotoxicity caused by glutamatergic signaling
via N-methyl-D-aspartate receptors (NMDARs) may contribute
to striatal-selective degeneration in HD (Levine et al., 1999; Zeron
et al., 2002). This increased sensitivity to NMDAR activation may
also affect striatal proteostasis mechanisms. Okamoto et al. (2009)
showed that NMDAR extrasynaptic activity is necessary for mHtt
IB formation. Dopaminergic input to the striatum, which poten-
tiates glutamate excitotoxicity (Cepeda et al., 1998; Tang et al.,
2007), also affects proteostasis. Dopamine can increase IB for-
mation in primary neuron cultures and cell lines (Charvin et al.,
2005; Robinson et al., 2008), suggesting that projections from the
cortex and substantia nigra to the striatum may promote striatal
susceptibility in HD by altering striatal proteostasis mechanisms
(Figure 1).

In addition to their role as glutamate receptors, NMDARs
also regulate calcium influx. Calcium dyshomeostasis can
induce excitotoxicity and may cause cell death in HD mod-
els (Bezprozvanny and Hayden, 2004; Tang et al., 2005). Striatal
mitochondria were found to have reduced calcium buffering
capacity, and expression of calcium binding proteins in HD mouse
striatal neurons was reduced, suggesting that calcium dyshome-
ostasis is involved in striatal-selective degeneration (Thomas,2006;
Oliveira and Gonçalves, 2009). Studies also indicate that calcium
signaling can affect proteostasis. Calcium and Ca2+/calmodulin-
dependent protein kinase II (CaMKII) can regulate UPS function
and autophagy in neurons (Djakovic et al., 2009; Bingol et al.,
2010; Decuypere et al., 2011). Thus, differences in striatal calcium
handling may alter proteostasis capacity and induction. Overall,
understanding how NMDAR, dopamine, and calcium signaling
affect proteostasis will divulge cell non-autonomous mecha-
nisms that may explain the regional selectivity of IB formation
in HD.

THERAPEUTIC IMPLICATIONS
Targeting cellular proteostasis pathways may be therapeutically
beneficial in HD. Table 1 contains a summary of proteostasis
targets tested in HD models.

Activating the UPS pathway is an intriguing therapeutic strat-
egy. Overexpressing specific E3 ubiquitin ligase enzymes, such
as Parkin and HrdI, increased clearance of mHtt by the UPS
(Tsai et al., 2003; Yang et al., 2007). Overexpressing CHIP, a
co-chaperone and a ubiquitin ligase, also reduced mHtt aggre-
gation and cell death in vitro (Jana et al., 2005). Alternatively,
UPS function can be induced by endogenously activating the 20S
proteasome via PA700, PA200, or PA28 proteasome activators
(Huang and Figueiredo-Pereira, 2010). Indeed, activating PA28γ

improved cell viability in striatal neurons expressing mHtt (Seo
et al., 2007) but did not improve motor phenotypes or pathol-
ogy in the R6/2 mouse model (Bett et al., 2006). These results
indicate that differences between in vitro and in vivo models of
HD must be considered before developing effective UPS-targeting
therapies.

Manipulating chaperone function may also be therapeutically
effective. For example, Hsp40 and Hsp70 can reduce mHtt-
dependent aggregation and toxicity (Warrick et al.,1999; Krobitsch
and Lindquist, 2000; Muchowski et al., 2000; Wacker et al., 2004),
while Hsp104 can reduce mHtt-induced aggregation and cell
death (Carmichael et al., 2000; Krobitsch and Lindquist, 2000;
Vacher et al., 2005). Furthermore, activating heat shock factor 1
(HSF1) activity, which regulates HSP expression, can suppress
mHtt levels and IB formation, reduce Drosophila photoreceptor
degeneration, and prolong lifespan of R6/2 mice (Sittler et al.,
2001; Fujimoto et al., 2005; Fujikake et al., 2008; Neef et al.,
2010, 2011). Chemical chaperones were also shown to be neu-
roprotective in HD mouse models (Tanaka et al., 2004; Gardian
et al., 2005). A Phase 2 clinical trial of one such chaperone,
phenylbutyrate, was completed in 2007 and demonstrated that
phenylbutyrate was well tolerated in HD patients (Hersch, 2008).
In 2014, the metal “chaperone” PBT2, which promoted degrada-
tion of extracellular β-amyloid by transporting metal ions into
cells (Crouch et al., 2011) was examined in a Phase 2 clinical
trial for HD where it was also shown to be well tolerated and
had a minor positive effect on cognition (Prana Biotechnol-
ogy). Further investigations must determine if results obtained in
chaperone overexpression-based systems are translatable to more
physiological HD models.

Finally, upregulating autophagy can ameliorate symptoms and
pathology in many HD models. Inducing mammalian target of
rapamycin (mTOR)-dependent autophagy reduced neurodegen-
eration in a fly HD model and improved behavior and motor
performance in mouse HD models (Ravikumar et al., 2004; Berger
et al., 2006; Sarkar et al., 2009). Inducing autophagy indepen-
dently of mTOR also reduced mHtt aggregation and toxicity
in various models (Sarkar et al., 2005; Ma et al., 2007; Zhang
et al., 2007; Williams et al., 2008; Rose et al., 2010; Tsvetkov et al.,
2010). The compounds identified in these studies act via inhibi-
tion of calpain or inositol monophosphatase (IMPase), activation
of the imidazoline type 1 receptor (I1R) or AMP-activated pro-
tein kinase (AMPK), and antagonism of L-type Ca2+ channels.
While autophagy is a promising therapeutic target, the degree of
autophagy induction must be optimized if overactive autophagy
is detrimental, as seen in some circumstances (Chakrabarti et al.,
2009).

Over the past decade, most therapies tested in HD clinical tri-
als have either targeted dopamine or NMDA signaling (Bonelli
and Hofmann, 2007). As discussed above, both dopaminergic
and NMDA signaling can affect striatal proteostasis; however, it is
unclear whether the few compounds that have some effect on HD
do so via proteostasis pathways. As most of these compounds do
not markedly influence HD progression, it is likely that direct tar-
geting of proteostasis pathways will be necessary to achieve clinical
success.

Protein homeostasis has an important role in striatal-selective
neurodegeneration in HD, and it is a strategic focus of therapeutic
efforts. Since obvious symptoms of HD do not often develop until
the fourth or fifth decade of life (Kieburtz et al., 1994), proteosta-
sis pathways likely manage misfolded mHtt fairly well for a long
time. Thus, future studies may find that only modestly increasing
proteostasis function can stall disease indefinitely.
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Table 1 | Proteostasis targets tested in HD models.

Target Effect HD models tested Phenotype improved Reference

mTOR inhibition Autophagy induction Cell line, fly, mouse Cellular toxicity, mHtt

aggregation, motor phenotypes,

weight gain

Ravikumar et al. (2004),

Berger et al. (2006)

IMPase inhibition Autophagy induction Cell line Cellular toxicity, mHtt levels Sarkar et al. (2005)

Calpain inhibition Autophagy induction Cell line, zebrafish Cellular toxicity, mHtt

aggregation, photoreceptor

degeneration

Williams et al. (2008)

I1R activation Autophagy induction Cell line, zebrafish,

mouse

mHtt aggregation,

photoreceptor degeneration,

mHtt levels, motor phenotypes

Williams et al. (2008), Rose

et al. (2010)

L-type Ca2+ channel

inhibition

Autophagy induction Zebrafish mHtt aggregation,

photoreceptor degeneration

Williams et al. (2008)

AMPK activation Autophagy induction Mouse Motor phenotypes, survival time Ma et al. (2007)

Hsp40 overexpression Chaperone induction Yeast, in vitro mHtt aggregation, mHtt fibril

and oligomer formation

Krobitsch and Lindquist

(2000), Muchowski et al.

(2000), Wacker et al. (2004)

Hsp70 overexpression Chaperone induction Yeast, in vitro, fly mHtt aggregation, mHtt fibril

and oligomer formation, ocular

degeneration

Warrick et al. (1999),

Krobitsch and Lindquist

(2000), Muchowski et al.

(2000), Wacker et al. (2004)

Hsp104 overexpression Chaperone induction Cell line, yeast,

mouse

Cell death, mHtt aggregation,

mouse survival

Carmichael et al. (2000),

Krobitsch and Lindquist

(2000), Vacher et al. (2005)

Hsp90 inhibition HSF1 and HSR activation Cell line, fly mHtt aggregation,

photoreceptor degeneration

Sittler et al. (2001), Fujikake

et al. (2008)

HSF1 activation

(Hsp90-independent)

HSR activation Cell line, fly mHtt aggregation and levels, cell

death, eye degeneration

Neef et al. (2010)

Parkin overexpression UPS induction Cell line PolyQ aggregation and levels Tsai et al. (2003)

HRD1 overexpression UPS induction Cell line mHtt levels and aggregation, cell

death

Yang et al. (2007)

PA28γ overexpression UPS induction Primary neuron mHtt levels, cell death Seo et al. (2007)

CHIP overexpression UPS induction Cell line mHtt aggregation, cell death Jana et al. (2005)

CONCLUDING REMARKS
The gene responsible for HD was identified in 1993. Since
then, the characteristic pathology of HD has been puzzling.
If mHtt expression is ubiquitous, why do MSNs degenerate
first? Although many hypotheses have emerged, the regional
selectivity of IB formation indicates that differences in striatal
proteostasis capacity are responsible for the selective degenera-
tion of MSNs. Recent evidence supports this claim, demonstrating
that components of autophagy, the UPS, and chaperone sys-
tems are expressed or regulated differently in striatal neurons
than in other brain regions. Thus, targeting proteostasis path-
ways specifically in the striatum may uncover new treatments for
HD.
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