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Abstract Researchers worldwide are repeatedly warning us against future zoonotic diseases
resulting from humankind'’s insurgence into natural ecosystems. The same zoonotic pathogens that
cause severe infections in a human host frequently fail to produce any disease outcome in their
natural hosts. What precise features of the immune system enable natural reservoirs to carry these
pathogens so efficiently? To understand these effects, we highlight the importance of tracing the
evolutionary basis of pathogen tolerance in reservoir hosts, while drawing implications from their
diverse physiological and life-history traits, and ecological contexts of host-pathogen interactions.
Long-term co-evolution might allow reservoir hosts to modulate immunity and evolve tolerance

to zoonotic pathogens, increasing their circulation and infectious period. Such processes can also
create a genetically diverse pathogen pool by allowing more mutations and genetic exchanges
between circulating strains, thereby harboring rare alive-on-arrival variants with extended infectivity
to new hosts (i.e., spillover). Finally, we end by underscoring the indispensability of a large multidis-
ciplinary empirical framework to explore the proposed link between evolved tolerance, pathogen
prevalence, and spillover in the wild.

Introduction

The frequent emergence of infectious diseases from wildlife and cross-species spillover has trans-
formed the curiosity of understanding the natural variation in host-pathogen interactions into a
pressing need (Bloom et al., 2017, Cunningham et al., 2017). Detailed knowledge of circulating
pathogenic strains and heterogeneities in infection outcomes and disease dynamics can shed light on
potential future transmission events. Tracking ecological conditions underlying spillover events, where
zoonotic pathogens overcome the species barrier (i.e., a hindrance to interspecies transmission) to
infect a novel host, can be beneficial for predicting the emergence and spread of pathogens. So, what
facilitates such spillover? While we have just begun to understand the patterns and processes under-
lying emerging infectious diseases (EIDs), earlier surveillance of wild animals that are typically known
to harbor zoonotic pathogens has revealed certain intriguing trends (Morse et al., 2012). Hosts that
are phylogenetically related tend to share a common pathogen pool, and thus have increased potency
to cross-infect each other (Shaw et al., 2020, Wolfe et al., 2007). For example, it is already known
that primates harbor a diverse array of pathogens capable of causing severe diseases in humans (Han
et al., 2016), including parasites such as Plasmodium knowlesi (Sabbatani et al., 2010) or simian
immunodeficiency virus (SIV) that underwent host-switching and is the most common ancestor of the
human immunodeficiency virus (HIV) (Sharp and Hahn, 2011). Perhaps, in such cases, pathogens do
not require major adaptations to spill over into phylogenetically closer organisms due to a relatively
lower species barrier (e.g., comparable immune responses and physiological processes), thereby
increasing the spillover efficiency. Spatial proximity with reservoir hosts can also lead to increased
spillover risk (Davies and Pedersen, 2008). This is exemplified by a diverse array of synanthropic (e.g.,
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brown rat, Rattus norvegicus) and domestic (e.g., dog, Canis lupus familiaris) species that are known
to share more zoonotic pathogens with humans than other animal taxa (Gibb et al., 2020; McFarlane
et al., 2012), thereby increasing the risk of host shift. However, in these examples, in addition to
spillover via phylogenetic relatedness or spatial proximity, arguably, another important condition can
be the circulation of a stable, large, and diverse zoonotic pool in the reservoir species. Indeed, this
is corroborated by recent analyses and mathematical models indicating that the number of zoonotic
viruses with spillover risk might increase proportionally with the total number (Mollentze and Stre-
icker, 2020) as well as the genetic diversity (Remien and Nuismer, 2020) of viruses maintained inside
reservoir animals.

How do reservoir species manage to support the circulation of zoonotic pathogens? The answer
perhaps lies in specific ecological, life-history, and physiological features of reservoir hosts that allow
both a stable circulation of zoonotic pathogens as well as their continuous shedding into the environ-
mental niche shared with other susceptible species (Gibb et al., 2020). For instance, naive Egyptian
fruit bats (Rousettus aegyptiacus) can remain infected with the Marburg virus for 7 months after inocu-
lation (Schuh et al., 2017) with little or no clinical disease symptoms. Meanwhile, they can also spread
the infection efficiently by contiguous shedding into the ecological space that they share with their
conspecifics as well other species, including primates (Rasche et al., 2016). In other less-known reser-
voirs such as water buffalo (Bubalus bubalis), a small number of individuals can shed Brucella abortus,
the causative agent of brucellosis, persistently at a high level for more than 2 months (Capparelli
et al., 2009). Persistent shedding of circulating strains of pathogenic Escherichia coli such as O157:H7
from various cattle species has already been reported to cause global outbreaks of gastrointestinal
illness in humans (Stein and Katz, 2017). The pertinent question here is, of course, what prevents
reservoir animals from eliminating these pathogens via effective immune responses? Although the
mechanisms are unclear (Gal-Mor, 2018), these examples perhaps hint at the unique adaption of their
immune system. Understanding the ecological contexts and evolution of such interactions between
the host immunity vs. pathogens is thus necessary not only to explain the persistence of zoonotic
pathogens but also to predict how and when the next spillover may happen.

There is also a growing interest to elucidate the factors driving heterogeneous infection outcomes
in reservoir vs. new hosts (VanderWaal and Ezenwa, 2016). For instance, original animal reservoirs
harboring pathogens capable of causing severe diseases in other animal hosts, including humans,
often do not show disease symptoms themselves (Baker et al., 2013; Guito et al., 2021; Pandrea and
Apetrei, 2010). Bats and rodents, which harbor more than 60 % of known zoonotic pathogens, are
classical examples of such reservoir hosts (Jones et al., 2008) as they are capable of asymptomatically
carrying a high diversity of human pathogens, including coronaviruses, henipaviruses, filoviruses, and
hantaviruses (reviewed in Subudhi et al., 2019). Recent studies indicate that they are efficient reservoir
hosts because their dampened innate immune pathways do not form effective barriers to prevent viral
infections, thereby allowing viruses to easily establish stable infection inside the host (Letko et al.,
2020). Such reduction in immune responses could also protect hosts from negative consequences of
immune activation (Khan et al., 2017a) because, contrary to our expectation, disease symptoms are
not always caused by ineffective immune responses, but are often mediated via their overreactivity
(Graham et al., 2005). For instance, patients infected with HIV or influenza viruses have high levels of
type 1 interferon (IFN) and T-cell activation (Teijaro et al., 2011), which also impose cytotoxicity and
immunopathological damages (self-harm) to their own cells and organs (Dybdahl and Storfer, 2003;
Hsue et al., 2004; Kaplan et al., 2011). This is possibly also true in the case of the ongoing pandemic
caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, Dec 2019 to present), which
has already caused more than 4.1 million deaths within 1.5 years (https://covid19.who.int/). Growing
evidence suggests that besides causing severe flu-like symptoms in humans (Harrison et al., 2020),
SARS-CoV-2-driven increased morbidity is also associated with a ‘cytokine storm’ comprising surplus
release of tumor necrosis factor-a (TNF-a) and IFN-y (Ayres, 2020; Azkur et al., 2020), triggering
multiorgan failure and sepsis (Hu et al., 2021). Certainly, the answers to such heterogeneous infection
outcomes perhaps lie in — why do different hosts, in the first place, employ distinct immune response
strategies against the same pathogen?

Unfortunately, our understanding of infection and disease has been overtly biased by how we
perceive pathogens that infect us. Since pathogens by definition reduce host fitness (e.g., through
increased mortality or reduced fecundity), host-pathogen interactions have been traditionally viewed
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Figure 1. Outlining the difference between resistance vs. tolerance. Defense mechanisms against invading pathogens can either include eliciting
immune responses to detect and eliminate pathogens (resistance) or mitigate the fitness costs of infection or immune activation without directly
reducing the pathogen load (tolerance). Different genotypes are initially exposed to the same number of pathogens. Figure plotted based on
hypothetical data and adapted from Figure 1 of Raberg et al., 2007.

as purely antagonistic. Consequently, studies on pathogen defense have primarily focused on mecha-
nisms that host typically use to resist infections by activating immune responses (Ayres and Schneider,
2012). This bias has led us to ignore mechanisms that facilitate the host's ability to coexist with
pathogens and withstand their negative fitness effects by reducing pathogen- or immune-mediated
damage (i.e., tolerance; see Figure 1; McCarville and Ayres, 2018; Raberg et al., 2009; Raberg
et al., 2007; Schneider and Ayres, 2008). Such a response to tolerate pathogens and their effects is
perhaps a more meaningful strategy from the reservoir host’s perspective (discussed later). Contrary
to pathogen resistance, since tolerance mechanisms mitigate fitness costs without directly changing
the pathogen burden, they can explain their high abundance and longer persistence required for
effective transmission of emerging infections (Mandl et al., 2015; Oliveira et al., 2020). However,
despite the proposed link (e.g., high circulation of Marburg virus in bat hosts; Guito et al., 2021) or
SIV in simian hosts, (Chakrabarti, 2004) causal connections between tolerance, pathogen circulation,
and risks of emerging infections in the natural host-pathogen systems have been rarely analyzed
(but see Guito et al., 2021); for example, at an ecological scale, how do host immune strategies
and pathogen populations interact to modulate the risk of emerging infections? Indeed, studies of
several emerging viral diseases in human cell lines and other laboratory models have been highly
successful in shedding light on proximate host defense mechanisms and counter-strategies used by
viruses (Legrand et al., 2006). Yet they might not be the best system to understand infections in their
natural hosts (Bean et al., 2013) and simulate situations where they can become an emerging infec-
tion in the wild (Flies, 2020a).

In this review, we are primarily addressing how disease tolerance in reservoir species can be intrin-
sically linked to the maintenance and transmission of pathogens and their spillover. We first discuss
why and how tolerance might naturally evolve during long-term association between natural hosts
and pathogens as an effective strategy. We then outline the favorable ecological and evolutionary
contexts vis-a-vis host-pathogen tolerogenic interactions that may maximize the spillover risk (see
Figure 2 for a brief conceptual outline). Besides host immune modulation, we note that tolerance may
also evolve because pathogens can adapt to cause less harm to their hosts. Finally, we end by high-
lighting the importance of a systematic empirical framework to test various hypotheses on disease
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Figure 2. Plausible sequence of events leading to the emergence of zoonotic diseases from tolerant reservoir hosts. Step 1: Long-term coevolution with
natural pathogens might lead to specific adaptation of the immune system of reservoir species such that they can tolerate pathogens by reducing their
counteractive inflammatory responses or evolving various immunomodulatory responses (e.g., altered activity of regulatory T-cells; Pavlovich et al.,
2018; Robertson and Hasenkrug, 2006). Step 2: Tolerant hosts with reduced inflammatory responses can support the circulation of diverse pathogen
species and strains. A longer infectious period within tolerant hosts also provides an accurate ecological niche where pathogens can acquire newer
mutations over time or undergo genetic exchanges and re-assortments to produce novel variants (Bhat et al., 2021, Domingo-Calap, 2019). Step 3:
Although the risk of infecting a new host species (other than the natural reservoir species) might be low, some of these pathogen variants with altered
genetic backgrounds might be able to cross the species barrier and infect a new host more effectively (Mandl et al., 2015). Step 4: When novel hosts
(e.g., humans or domestic animals) come into contact with these pathogens, they might face severe illness as they are unable to tolerate the impacts of
infection or lack mechanisms to reduce the cytotoxic effects of inflammatory responses (e.g., cytokine storm during SARS-CoV-2; Azkur et al., 2020).

tolerance and its plausible evolutionary ecological role in emerging infections. With growing evidence
of disease tolerance in natural host-pathogen systems, we hope that its detailed understanding might
provide new impetus to infectious disease research and pandemic preparedness.

Relevance of evolving tolerance in natural host-pathogen
systems

Immune strategies are not only contingent on how hosts and pathogens interact but also depend
on their specific ecological and life-history contexts. Depending on the pathogenicity and infection
frequency, the host’s optimal immune response might rapidly change (Khan et al., 2017b; Sorci,
2013). While killing invading pathogens by activating immunity seems to be the most obvious choice
for hosts to respond against infection, such resistance mechanisms can themselves lead to negative
fitness consequences via immunopathological damages (Khan et al., 2017a; Schneider and Ayres,
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2008). Depending on what types of cells and organs are getting damaged, immunopathology can
ultimately lead to disruption of normal physiology and impose lifelong pathological consequences
(Auten and Davis, 2009, Khan et al., 2017a). Do high costs of such inflammatory responses against
pathogens tilt the balance in favor of a tolerance strategy over an evolutionary time scale? Although
there are no experiments to detect such dynamic changes in immune strategies, one possibility is
that if the activation of the immune response causes proportional damage to both the host and the
pathogen, then the host'’s ability to invest in self-toxic immune responses might have an upper limit.
Beyond this threshold, the host may switch strategy from active resistance to tolerating infections to
limit the immunopathological damages. However, tolerance to invading pathogens might also have
a threshold, especially when invading pathogens exploit the host resources, and hence, an unlimited
number of pathogens is not sustainable. Therefore, optimal use of immune strategies is perhaps fine-
tuned by the fitness effects of both immune activities and pathogen statistics (Mayer et al., 2016).

Tolerance in natural hosts and disease reservoirs

Recent experiments in naturally occurring systems have provided ample evidence for disease toler-
ance in nature, although exact ecological contexts are widely varied and detailed micro-evolutionary
processes remain unclear. For example, the West Nile virus causes significant population declines
in most avian hosts, but not in mourning doves (Zenaida macroura) where individuals can harbor
high viral titers without showing any significant morbidity, suggesting features of infection toler-
ance (Komar et al., 2003; LaDeau et al., 2007). Hawai'i ‘Amakihis (Hemignathus virens) from low-
elevation regions show a reduced rate of weight loss and better physiological condition even during
the acute-phase infection with Plasmodium relictum than their high-elevation counterparts, indicating
their higher tolerance to pathological effects of avian malaria (Atkinson et al., 2013). In the wild-
caught field voles (Microtus agrestis), mature males can maintain better body condition than immature
males while harboring very high macro- and micro-parasite loads, again indicating a higher tolerance
(Jackson et al., 2014). Older tadpoles of American toad (Bufo americanus) and green frogs (Rana
clamitans) also show characteristics of relatively higher tolerance to Echinostoma trivolvis, a locally
abundant trematode species, compared to younger tadpoles (Rohr et al., 2010). Besides showcasing
tolerance in natural populations, these examples also highlight how tolerance response in the wild is
sensitive to species identity, population history, and their life-history traits.

Molecular information underlying the host’s responses against their natural pathogens further
revealed that several key reservoir species have consistently evolved mechanisms to mitigate the
immunopathological consequences caused by the over-induction of inflammatory pathways (Letko
et al., 2020). A very recent analysis showed that fruit bats (R. aegyptiacus), the natural reservoirs for
the Marburg virus, lack the induction of several pro-inflammatory genes that are classically implicated
in primate filoviral pathogenesis such as CCL8, FAS, and IL6 (Pavlovich et al., 2018). While they have
expanded the type | IFN gene family, which is known to initiate an antiviral immune cascade with
reduced inflammatory capacity, they also seem to use natural killer (NK) cell receptors with distinct
inhibitory signaling components, allowing them to asymptomatically harbor high viral loads (Pavlovich
et al., 2018). Also, the PHYIN family of genes and sets of innate immune receptors/sensors capable
of activating inflammasome were shown to be absent in two bat species, Pteropus alecto and Myotis
davidii (Ahn et al., 2016). Using different types of RNA viruses such as influenza A virus, Melaka
virus, and Middle East respiratory coronavirus, researchers have shown that dampening inflamma-
tory responses enable these bats to tolerate multifarious viral infections (Ahn et al., 2019), avoiding
immunopathological damages caused by cytotoxic intermediates (Letko et al., 2020; Subudhi et al.,
2019). The reduction in cytotoxic inflammatory responses in bats has been further proposed to have
coevolved as a response to minimize DNA damage, caused by free radicals generated during their
increased metabolic activity while flying (Irving et al., 2021, Zhang et al., 2013). Such mechanisms
also highlight the liaison between bat immunity and key life-history adaptations.

Interestingly, sooty mangabeys (Cercocebus atys) and African green monkeys (Chlorocebus
aethiops) infected with SIV show acute early inflammation, but they also possess regulatory mecha-
nisms to rapidly control such responses; for example, they use anti-inflammatory inhibitory cytokines
such as transforming growth factor-p (TGF-B) and IL-10 (Silvestri et al., 2007) to avoid chronic aber-
rant immune activation and immunopathology (Ansari and Silvestri, 2014; Pandrea et al., 2008;
Silvestri et al., 2003). Besides, they are also able to maintain normal rates of peripheral mature CD4*

Seal et al. eLife 2021;0:68874. DOI: https://doi.org/10.7554/eLife.68874 5 of 30


https://doi.org/10.7554/eLife.68874

e Life Review article

Evolutionary Biology | Immunology and Inflammation

T cell proliferation to compensate for the cytopathic destruction of CD4* T cells post-viral infection
(Chahroudi et al., 2012). The role of immunomodulatory molecules is widespread in other reser-
voir species as well. In rodents, regulatory T cell (Treg) responses suppress inflammation and down-
regulate cytotoxic T lymphocyte responses that usually eradicate the virus-infected cells, thereby
facilitating viral persistence inside hosts (Robertson and Hasenkrug, 2006). For example, hantavirus-
infected rodents maintain a steady-state Treg response to allow viral persistence as well as to curb
inflammation-induced immunopathology (Schountz and Prescott, 2014). Deer mice (Peromyscus
maniculatus) infected with Sin Nombre virus (SNV) also upregulate cytokines that correspond to Treg
responses, prolonging the viral presence (Ermonval et al., 2016). Norway rats (R. norvegicus) infected
with Seoul virus (SEOV) not only reduce the pro-inflammatory mediators such as interleukin-6 (IL-6) or
TNF-a in their lungs but also increase the expression of regulatory factors TGF-B (overexpressed in
bats as well; Silvestri et al., 2007) and FoxP3 to prevent inflammation-related pathology at sites of
increased SEOV replication (Easterbrook and Klein, 2008). A growing body of evidence for pathogen
tolerance is also coming from arthropod vectors, evolving various mechanisms to efficiently repair the
damages caused by pathogens. This in turn allows them to have a normal lifespan while carrying
persistent infections. For example, while dengue virus infection in Aedes aegypti causes apoptosis
in the midgut, mosquito hosts improve the maintenance of midgut homeostasis and tissue integrity
via careful regulation of interstitial stem cell (ISC) proliferation, tolerating the effects of viral infection
(Oliveira et al., 2020). Another example includes arboviral infection, which usually leads to oxidative
stress in insect cells (Joubert et al., 2012), but mosquito vectors can tolerate the infection by upreg-
ulating their antioxidant pathways in the midgut (Tchankouo-Nguetcheu et al., 2010; Cappuccio and
Maisse, 2020).

Taken together, it appears that reservoir hosts and vectors might have repeatedly evolved either
lower inflammatory responses or multifarious compensatory mechanisms to mitigate the negative
effects of inflammation. The ability to maintain a balanced immunity and homeostasis during infection
might explain their ability to tolerate the circulating pathogens, without showing severe disease symp-
toms. Yet, a major gap in our understanding is that none of these previous experiments could reveal
how these features arose in these animals.

So, what drives the evolution of tolerance?

Although experimental results are limiting, one of the most compelling results in recent years was
obtained from longitudinal sampling of wild Soay sheep (Ovis aries) populations performed by
Hayward and coworkers (Hayward et al., 2014). They not only showed tolerance in wild sheep popu-
lations against their naturally occurring intestinal worms but also provided the conceptual framework
for how natural selection might have acted upon tolerance (Hayward et al., 2014). For instance,
individuals losing bodyweight more slowly with increasing pathogen burden (i.e., more tolerant,
Figure 1) had higher lifetime reproductive success, suggesting a strong positive selection on toler-
ance. However, the most striking feature of their results was that the observed variations in tolerance
were mostly explained by the environmental effects, with very little additive genetic variation left in
the population, thereby indicating that tolerance evolved under a strong directional selection. These
results conform with existing theoretical models that predicted tolerance to reduce polymorphism,
underscoring the importance of directional selection therein (Miller et al., 2005). In other words, as
the infection spreads, consistently higher fitness advantage of tolerant hosts than their nontolerant
counterparts might reduce the levels of genetic variation and cause rapid fixation of tolerance-related
alleles (Miller et al., 2005; Roy and Kirchner, 2000). This is in stark contrast to resistance strategy,
which typically reduces pathogen fitness, instigating an evolutionary arms race to select for pathogen
traits to overcome the host's resistance mechanisms (Schneider and Ayres, 2008). However, high
costs of immune activation and life-history trade-offs might cause resistance alleles to converge to
an intermediate optimum under stabilizing selection (Raberg, 2014). Individuals can also maintain
genetic variation for resistance under balancing selection (Raberg, 2014), which might produce highly
polymorphic infection outcomes within the population (Lefévre et al., 2010).

Notably, understanding the evolutionary origin of pathogen tolerance in the wild might require
information on the long-term coevolutionary history of natural reservoirs and their pathogens. In most
cases, it is quite difficult to validate a causal link between coevolutionary history and micro-evolutionary
processes leading to the evolution of tolerance in natural hosts, but a few recent comparative analyses

Seal et al. eLife 2021;0:68874. DOI: https://doi.org/10.7554/eLife.68874 6 of 30


https://doi.org/10.7554/eLife.68874

e Life Review article

Evolutionary Biology | Immunology and Inflammation

offer some interesting clues. A key experiment with populations of house finches (Haemorhous mexi-
canus) from two locations with a different coevolutionary history of infection by bacterium Mycoplasma
gallisepticum was particularly helpful here (Adelman et al., 2013). The population from Alabama with
a longer history of exposure to M. gallisepticum infection showed higher tolerance than the popu-
lation from Arizona, which was not exposed to the pathogen previously. This is further supported
by mechanistic studies, which revealed that the more tolerant Alabama population expressed lower
levels of pro-inflammatory cytokine (IL-1B) and higher levels of anti-inflammatory cytokine (IL-10)
(Adelman et al., 2013). In another example, natural populations of Asian tiger mosquitoes (Aedes
albopictus) isolated from regions with longer exposure to heartworm (Dirofilaria immitis) also showed
higher tolerance compared to populations with little exposure to the parasite (Dharmarajan et al.,
2019). These results might have negative implications for human health as tolerant mosquitoes with
increased vectorial capacity might catalyze the disease spread (Dharmarajan et al., 2019; Lefévre
et al., 2013). In rodents, phylogenetic analyses have revealed that hantaviruses became associated
with ancestral rodents of the family Muridae (Plyusnin and Morzunov, 2001). Subsequently, when
the ancestral family underwent co-speciation events resulting in different subfamilies such as Murinae,
Arvicolinae, and Sigmodontinae, hantaviruses remained associated with them, thereby explaining their
continued persistence and asymptomatic state of several rodent species (Plyusnin and Morzunov,
2001; Schountz and Prescott, 2014). Finally, sooty mangabeys and African green monkeys, natural
hosts of SIV, also remain healthy and do not develop AIDS (Chahroudi et al., 2012, Wetzel et al.,
2017) possibly because of their long coevolutionary history with lentiviruses (dating back to 5-6 million
years; Compton and Emerman, 2013), which enables them to prevent the deleterious consequences
of SIV infections (Rudensey et al., 1995). Taken together, while these examples unanimously suggest
the importance of long-term host-pathogen coevolutionary dynamics in pathogen tolerance, they also
indicate that such a response is perhaps unlikely to be true for host species exposed to novel patho-
gens that they have not coevolved with.

Implications of land-use changes

In recent decades, the altered trajectory of host-pathogen interactions and coevolutionary dynamics
might have more obvious consequences for disease spread from animals to humans, associated with
rapid deforestation and land-use changes (Bloomfield et al., 2020, Plowright et al., 2021). For
example, landscapes with patches of forests are likely to have increased spatial overlap between
wildlife, livestock, and humans. This presents ideal ecological conditions for transmission of zoonotic
pathogens from naturally tolerant wildlife hosts, thereby increasing the risk of disease outbreaks in
nearby domestic animal or human populations (Hansen et al., 2013; Rulli et al., 2017). In 2019, 14
Chinese workers died in Guyana (South America) while engaged in mining due to infection caused
by the fungus Histoplasma, rarely found in China but prevalent in America, mostly isolated from soil
samples containing decaying bat and bird feces (Wang et al., 2019). This might be an example of how
the invasion of humans into the natural ecosystem can expose them to local new infections for which
they lack effective immune responses. While it will remain unclear whether the outcome would have
been different if Chinese populations had shared evolutionary history with Histoplasma in their natural
habitat, revealing the causality between coevolution, tolerance, and infection will be a formidable
challenge for understanding new EIDs in the wild, warranting closer investigation.

Role of tolerance in spillover and new infections

Successful spillover to novel host warrants multiple sequential steps (Plowright et al., 2017). Briefly,
pathogens should first be released by their reservoir hosts either directly into the environment or a new
host through different plausible transmission routes such as consumption, animal bites, or sexual inter-
actions (Webster et al., 2017). Pathogens should then survive until it encounters novel susceptible
hosts whom it might infect directly or by undertaking a further round of adaptation to the new host
environment (Parrish et al., 2008). Finally, once the pathogen establishes infection in the novel host
by evading the immune responses, it then needs to spread effectively in the population (Plowright
et al., 2015; Subudhi et al., 2019). At each step of this transmission chain, the duration of the host's
infectivity, population density, and size might dictate the success of the consecutive step (Remien
and Nuismer, 2020, Wolfe et al., 2007). However, before all these fine-scale micro-evolutionary
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downstream processes can begin, potentially an important precondition can be the maintenance of a
sufficiently large (Mollentze and Streicker, 2020) and diverse (Remien and Nuismer, 2020) zoonotic
pathogen pool with the potential to overcome the species barrier. Although the causal link is absent,
large populations of reservoir animals harboring large pathogen populations have been predicted to
serve as fertile sources of zoonotic diseases (Han et al., 2016). Also, the role of reduced inflamma-
tion and disease tolerance in maintaining such persistent zoonotic pathogen populations in reservoir
species has already been implicated (Pavlovich et al., 2018; Martin et al., 2019), but how it can
boost transmission and spillover is relatively unclear.

Tolerance might enhance spillover risk by increasing the infectious
period, pathogen burden, and genetic diversity

Physiological mechanisms underlying the tolerance response might be critical in triggering the spill-
over process (Medzhitov et al., 2012, Henschen and Adelman, 2019). For example, both infec-
tious period and transmission potential can increase if the host tolerates the pathogenic infection by
evolving an efficient repair mechanism to counter the damages caused by the pathogen and immune
responses (Henschen and Adelman, 2019). The host can generate new cells to replace injured tissues
(Medzhitov et al., 2012), as observed in the case of micro-hemorrhages caused by metazoan para-
sites like Schistosoma mansoni or ruptured red blood cells by Plasmodium sp. (Allen and Wynn,
2011, Henschen and Adelman, 2019). Such a mechanism can allow pathogens to continuously infect
new cells, thereby reducing the selection pressure on them to replicate more effectively (Henschen
and Adelman, 2019). Consequently, this whole process might select less virulent pathogens for
reservoir hosts (Miller et al., 2006), resulting in a longer infectious period and higher number of
circulating pathogens, extended pathogen shedding duration, and increased risk of contacts among
infected and susceptible hosts (Adelman and Hawley, 2017, VanderWaal and Ezenwa, 2016). These
hypotheses are also consistent with a previous theoretical model, which suggests that tolerance can
increase the overall disease burden in host populations, by transmitting the infection to other nontol-
erant susceptible individuals sharing the same ecological niche (Horns and Hood, 2012). The model
further predicts that because of such increased disease burden tolerance is most effective in small
and isolated host populations, where the risk of infection transmission to other susceptible individuals
can be minimized, suggesting a joint role of demographic features and tolerance on disease spread.
A recent study on African straw-colored fruit bats (Eidolon helvum) strongly supports this possibility
where small isolated populations had a higher abundance of henipaviruses and extended within-host
latency (Peel et al., 2018). Although not tested empirically, spatial proximity to these populations
can certainly increase the risk of infections to conspecific susceptible individuals as well as spillover
to new hosts.

It is also important to note that spillover into a new host is a rare event (Cross et al., 2019) where
pathogen abundance alone may not be always sufficient to jump across the species barrier. Although
not mutually exclusive, the emergence of novel zoonotic pathogens might also depend on the genetic
diversity of the pathogen pool (Wolfe et al., 2007). Pathogen genetic diversity is likely to be greatest
within large reservoir populations when they also harbor proportionally large pathogen populations
(Remien and Nuismer, 2020). Increased strain diversity might enhance the pathogen’s prospect of
jumping across species barrier by harboring the pool of useful mutations to establish infection in a new
host (Dennehy et al., 2010, i.e., production of specific rare variants that are inherently more compe-
tent to establish cross-species infection; Mandl et al., 2015). Indeed, changes in genetic diversity of
the pathogen pool by mutations or genetic exchanges can lead to alterations in the kinetics of viral
replication within the natural hosts (Simmonds et al., 2019), modulating the host's ability to detect
antigens and initiate countereffective immune responses (Burmeister et al., 2016; Retel et al., 2019).

Tolerance vs. pathogen interactions

An interesting situation might arise when hosts harbor multiple pathogen strains thriving together,
increasing the level of competitive interactions (Miller et al., 2006). It has been shown that under
intense intra-specific competition for available hosts, bacteriophage ¢ 6 that normally infects Pseu-
domonas syringae can also rapidly evolve to infect other novel bacterial hosts such as Pseudomonas
atrofaciens and Pseudomonas glycinea (Bono et al., 2013). While this provides a clear example where
the ability to infect new hosts arose as a function of intra-specific competitive interactions, it might
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be relevant for increased disease transmission and spillover as well, provided the probability of such
interactions between zoonotic pathogen strains intensifies inside reservoir hosts. Extended infectious
period, higher abundance, and relaxed selection within naturally tolerant hosts can certainly provide
the appropriate stage for pathogens to acquire mutations to evolve into a new strain or exchange
genetic material between various strains (Domingo-Calap, 2019). These are perhaps more likely for
pathogens with multi-segmented genomes such as the influenza virus, where rapid viral replication
can increase diversity by allowing the recombination of different genomic segments (McDonald et al.,
2016). Revealing the plausible ecological contexts that increase the chances of reassortment (e.g.,
presence of co-infecting strains; Tao et al., 2015) might be crucial to tracing how novel genome
combinations can arise to create influenza subtypes with expanded host range and novel antigenic
properties (Bhat et al., 2021; also see Cecilia, 2014 for recombined dengue virus genotypes).

Another plausible example is the gene loss and adaptations during interspecies transmission of
SIVcpz, a strain of SIV that naturally infects chimpanzees. Later analyses revealed SIVcpz as a recombi-
nant between two SIV lineages from old-world monkeys with a uniquely reconstructed vif gene (Bailes
et al., 2003; Etienne et al., 2013). Although it is unclear where and how such genetic modification
took place, this enabled the recombinant virus to antagonize hominid antiviral protein APOBEC3s
more efficiently, contributing to the origin of the HIV-1 pandemic in humans (Etienne et al., 2013).
Most recently, the phylogenetic network approach has revealed that even the VOC202012/01 variant
of SARS-CoV-2, which was first reported in the UK in 2020, might have originated through recombina-
tion of preexisting virus strains before rapidly spreading into many other countries (Xie et al., 2021).
Although direct evidence is lacking, the role of suitable human hosts tolerating the coexistence of
multiple strains cannot be ignored (Martin et al., 2011; Simon-Loriere and Holmes, 2011). This is
partly corroborated by recent evidence of SARS-CoV-2 evolution in immunocompromised patients
who could maintain high viral loads over prolonged periods (reviewed in Day et al., 2020), thereby
allowing more opportunities for viral replication, mutations, and potential recombination events.

In contrast, recombination between unrelated groups of viruses is rare, but such situations can
also arise, at least ecologically, if they coexist within a tolerant host, serving as a unique niche for
them to stay together for long, interchange genomic sequences and undergo recombination to
create viral strains with emergent properties. For example, both yellow fever virus (YFV; flavivirus)
and SIV (retrovirus) might persist together in their natural hosts sooty mangabeys (Woodall, 1968),
which show tolerance to these viruses by significantly reducing the IFN-a level (Mandl et al., 2011).
Mosquito host A. aegyptiis also known to tolerate both dengue (flavivirus) and chikungunya (alpha-
virus) virus (CHIKV) (Kaur et al., 2018). Although genetic exchanges between such distinct virus
lineages might appear far-fetched at present due to a lack of empirical support, scant evidence
exists from some environmental isolates (Diemer and Stedman, 2012). For example, viral metag-
enomic sequences derived from a hot, acidic lake in Lassen Volcanic National Park (USA) have
revealed a single-stranded DNA virus encoding a major capsid protein, which is similar to those
found only in single-stranded RNA viruses, suggesting a recombinant viral genome (Diemer and
Stedman, 2012). This is puzzling because mechanisms for interviral RNA-DNA recombination are
unknown (Stedman, 2015). Also, indirect support for the possibility of genetic exchanges between
cohabiting distinct viral pathogens might come from a recently identified novel coronavirus (labeled
as Ro-BatCoV GCCDC1) found in R. leschenaultia, which carried a functional p10 gene (involved
in the formation of cell syncytia) possibly derived from a bat-isolated orthoreovirus (Huang et al.,
2016). In this example, the putative inter-family heterologous recombination event between a
single-stranded RNA virus (i.e., ancestral beta-coronavirus) and a double-stranded segmented
RNA virus (i.e., orthoreovirus) hints at possibilities of how specific genetic events might trigger the
formation of recombinant viruses in nature with potentially altered transmission potential (Huang
et al., 2016). Another example is the novel bandicoot papillomatosis carcinomatosis virus type
1 (BPCV1), isolated from western barred bandicoots (Perameles bougainville), which exhibited
genomic properties of both the Papillomaviridae and the Polyomaviridae family of viruses (Wool-
ford et al., 2007). These observations (and perhaps many more that await discovery in future) indi-
cate that genetic exchanges between diverse groups of pathogens are indeed possible in natural
conditions and such possibilities might increase proportionally with the time spent together inside
a tolerant host. For example, longitudinal observation of one population of Rousettus leschenaultii
bats for 2 years found recombinants of RdRp (RNA-dependent RNA polymerase) and p10 genes
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in Ro-BatCoV GCCDC1 within as early as 5 months since the initial surveillance began (Obameso
et al., 2017).

Evolution of immune evasion strategies by pathogens

Pathogens, especially viruses, can evolve much faster than their hosts, presenting numerous mecha-
nisms to avoid immune sensing (Silvestri, 2009). SIV, for example, can rapidly produce variants that
can escape cytotoxic T lymphocytes of their natural host sooty mangabeys (Kaur et al., 2001). A
certain allelic variant of the Nef gene product from SIV downregulates the CD3-T-cell receptor complex
from infected CD4+ T cells, suggesting the ability to block the counteractive immune responses and
maintain the viral persistence (Schindler et al., 2006). This perhaps also exemplifies how pathogens
might adapt to bypass host immunity, promoting a tolerance-like response to avoid harmful effects of
immune activation. However, such function was lost during viral evolution in the lineage that ultimately
gave rise to HIV-1. Most recently, a novel variant of SARS-Cov2 (B.1.427/B.1.429), isolated from Cali-
fornia (USA), was also found to harbor spike glycoprotein mutation that could reduce the neutraliza-
tion effectivity of the Wuhan-1 isolate-based mRNA vaccine (McCallum et al., 2021), suggesting the
possibility of new mutations aiding rapid evolution of the virus against vaccine-elicited antibodies
(also see SARS-CoV-2 B.1.617.2 (Delta) variant identified in the state of Maharashtra, India, against
BNT162b and ChAdOx-1 vaccines; Kemp et al., 2021).

Conversely, host-pathogen tolerogenic interactions over an evolutionary timescale might also lead
to progressive loss of immune evasion mechanisms in the pathogen, potentially reducing their infec-
tivity to future hosts. Perhaps, one of the best-documented examples includes Myxoma virus (MYXV),
which is highly pathogenic to European rabbits, with a case fatality rate close to 100% (Peng et al.,
2016). The same virus lost its virulence by 50-70% after being introduced in Australia to counter their
invasive rabbit populations. During this coevolution, the Australian isolate of MYXV suffered a loss of
function mutation in their protein M156, which is critically required to counter host antiviral protein
kinase R (Peng et al., 2016). In contrast, SIV is known to retain its infectivity across species even after a
long-term transgenerational association with experimentally inoculated monkey hosts, as noted in the
case of cross-infection from laboratory macaques to humans (Khabbaz et al., 1994). More studies are
perhaps required to test these diverse pathogen-specific outcomes vis-a-vis zoonotic transmission.

Supporting evidence for tolerance and pathogen prevalence from
vaccination studies

Finally, recent vaccination studies in poultry birds can also offer some important clues on how toler-
ance can in principle influence the pathogen persistence and diversity. This is particularly true for
vaccines that operate by reducing the disease symptoms (i.e., leaky vaccines), rather than preventing
the infection, pathogen replication, and transmission (Gandon et al., 2001; Read et al., 2015). Infec-
tion outcomes in these vaccinated hosts largely resemble several features of tolerance where patho-
gens do not cause disease despite an extended infectious period (Mackinnon et al., 2008), but
become progressively more virulent to other nonvaccinated hosts (compare with Horns and Hood,
2012 model). For example, more virulent strains of Marek’s disease virus appeared, persisted, and
were transmitted among chickens when they were vaccinated (Read et al., 2015). Here, the ability to
withstand infection via leaky vaccines perhaps provided the ideal ecological conditions that facilitated
modified viral strains to emerge, persist, circulate, and transmit effectively, which otherwise would
have been lethal for the chicken host to carry.

Another example is live vaccination with attenuated strains of porcine reproductive and respira-
tory syndrome virus (PRRSV), which prevents the development of disease symptoms in pigs but does
not protect them against contracting the infection (Nan et al., 2017). In fact, the application of live
vaccines might result in PRRSV variants that cause clinical severity and elevated viremia in the naive
inoculated pigs, suggesting a reversal of virulence level (Jiang et al., 2015, Liu et al., 2018). Although
mechanisms are unknown (Zhou et al., 2021), tolerance after vaccination could facilitate genetic
diversification of the circulating viruses, enabling them to evolve newer immune evasion strategies
and revive virulence. Indeed, a recent study on chicken vaccinated against infectious bronchitis virus
(IBV) has detected selection pressure, resulting in the diversification of viral coat proteins (Franzo
et al., 2019). This provides a plausible evolutionary mechanism of producing newer vaccine escape
variants as well as variants with wider infectivity to new hosts (Franzo et al., 2019). Future studies
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should thus compare and analyze these different vaccination contexts to verify whether they create
likely niches for persistent pathogens and genetic alterations to create new emerging variants — some
of them might just be competent enough to cause spillover by infecting new hosts more successfully.
We also speculate that underlying mechanisms might be different from that of tolerance achieved
via reducing host immune responses, selecting for either loss of immune evasion strategies or lower
infectivity of pathogens (discussed above). However, there are no experiments to test whether and
how these potentially different tolerance mechanisms might produce contrasting effects on pathogen
evolution and emergence.

An integrated immune-centric experimental paradigm

Host immune strategies, ecology, and pathogen prevalence all play instrumental roles in facilitating
spillover, but studying them in isolation is far from ideal given the complex interactions that are
involved therein. Costly immune responses might evolve to act at suboptimal levels in the wild due to
constraints from available resources and physiological states (Viney and Riley, 2017). Although large-
scale research focusing on model host-pathogen interactions has mostly studied molecular aspects,
there is a growing consensus that in the wild, host ecology, life-history, and physiological constraints
are important mediators of optimal immune strategies, infection risk, and myriad infection outcomes
(Graham, 2021; Restif and Graham, 2015). An integrated approach is thus needed where they
should be jointly studied to explain the patterns and processes of pathogen prevalence and infec-
tion outcomes in the wild. Below, we suggest a few interrelated research foci that can be combined
with traditional disease surveillance programs, aiding biological risk assessment of future EIDs (see
Figure 3 for a brief outline of the suggested experimental paradigm).

Suggestion 1: identify the plausible ecological niches for emerging
infections

Our understanding of emerging diseases from natural reservoirs has increased substantially over
the past two decades (White and Razgour, 2020), but unfortunately, this knowledge is limited to
a handful of species under scrutiny from specific geographic locations. For example, rodents and
bats are of special interest from a human disease perspective since they harbor about 60 and 30%
of known zoonotic viruses, respectively (Johnson et al., 2020). However, it is often overlooked that
they also commonly utilize landscapes frequently occupied by other species, including humans and
domestic animals (Morand et al., 2014), increasing the possibility of exchanging microbes at multiple
interfaces of species interactions. They might not always cause disease outbreaks, with most of them
being benign transfers, but they can help to estimate the risk of the background spillover rate among
hosts of different taxa (Flores et al., 2017; Gao et al., 2016).

Transmission dynamics might also be contingent on intermediate hosts and vector populations
(Plowright et al., 2017). Understanding pathogen persistence and release from intermediate hosts
can lead to unearthing important bottleneck events during the emergence of novel infectious diseases
(Cui et al., 2017). Hence, in addition to traditional practices of selectively obtaining data from only a
very few overtly represented reservoir species from any location (Watsa, 2020), future efforts can be
directed towards continuous monitoring of pathogen abundance and strain diversity across different
interacting species occupying the same niche, including potential reservoirs, intermediate and human
hosts. Further, it is important to collect such data simultaneously from various landscapes with altered
species interactions and community composition because each location provides unique ecological
niche catering to diverse host-pathogen interactions. More information across different locations can
eventually motivate powerful comparative analyses to uncover novel associations between new host
species (or populations) and future zoonotic routes.

Long-term tracking of pathogens and disease with altered species interactions is perhaps most
relevant for rapid land-use changes in recent decades (Guo et al., 2019) — deforestation and the
resulting loss of biodiversity have already been identified as one of the major driving forces influencing
the risk of disease spread from animals to humans (Daszak et al., 2000; Gibb et al., 2020; Patz
et al., 2008). Some of the ecological mechanisms influencing disease transmission in anthropogeni-
cally modified habitats are certainly the changes in the niche of the interacting species (host/vector/
pathogen), their altered behavior, distribution in space, and animal movement patterns (Gottdenker
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Figure 3. Outline of the proposed experimental paradigm, linking host ecology, tolerance and immune responses, and life-history to understand the
natural contexts of emerging infections. While performing the traditional disease surveillance program, information on ecology, life-history, and immune
strategies of potential reservoirs can be gathered in parallel to explain why and how zoonotic pathogens are distributed in the wild (Suggestions 1 and
2). Once potential reservoir hosts and zoonotic pathogens are identified, their associations can be tested for signatures of coevolution and compared
with overlapping populations of novel hosts (e.g., humans or domestic animals) to analyze the observed polymorphisms of key molecules involved in

reservoir host-zoonotic pathogen interactions, divergence in infection outcomes, or immune evasion strategies of pathogens (Suggestion 3). Finally,
controlled laboratory experiments can be performed to test causal links between host-pathogen coevolution, pathogen tolerance, and prevalence

(Suggestion 4).

et al., 2014). The relative importance of one or more of these mechanisms in explaining the response
to land-use changes is likely to vary across regions. For instance, South Asia has undergone large-scale
land conversions at alarming rates, losing approximately 30% of its forest land (Sudhakar Reddy
et al., 2018) and, hence, can be the hotspot for EIDs (Coker et al., 2011). We thus strongly recom-
mend a long-term disease surveillance program where multiple such regions should be first identified
and then jointly analyzed to understand whether and how altered species interactions are responsible
for pathogen abundance and occurrence in different animal hosts across ecosystems. This should
be closely followed by tracking how they in turn influence the pathogen communities (with zoonotic
potential) found in overlapping human populations.

We note that PREDICT, an epidemiological research program funded by the United States Agency
for International Development (USAID), was operational until recently to identify broad patterns of
emerging pathogens with pandemic potential in geographical regions that are disease hotspots such

Seal et al. eLife 2021;0:68874. DOI: https://doi.org/10.7554/eLife.68874 12 of 30


https://doi.org/10.7554/eLife.68874

e Life Review article

Evolutionary Biology | Immunology and Inflammation

as the Republic of Congo, China, Egypt, India, and Malaysia (Karesh, 2011). However, after a decade
from its inception, the PREDICT program ended a few weeks before the SARS-CoV-2 pandemic began.
In the spirit of PREDICT, there are now several other global surveillance projects that aim to identify
novel pathogens before they emerge in human populations. The Global Virome project focuses on the
discovery of zoonotic viruses in the hope to prevent the next pandemic (https://www.globalvirome-
project.org; Carroll et al., 2018). Similarly, two other programs focus on cataloguing the diversity of
life on earth (including pathogens and parasites). These include BIOSCAN (https://ibol.org/programs/
bioscan), the extension of the International Barcode of Life Program (Hobern, 2021), and the Earth
BioGenome Project (https://www.earthbiogenome.org; Lewin et al., 2018). Programs, like the ones
cited above, have generated a lot of basic knowledge on mammalian pathogens, especially viruses,
and have aided the recent pandemic effort by understanding potential spillover pathways, as well
as the ability to rapidly isolate and classify SARS-CoV-2 (Carlson, 2020). However, it is critical to
remember that spillover events that spark pandemics are inherently stochastic, and there continues
to be doubt on the direct abilities of programs, like PREDICT, to prevent future pandemics (Holmes
et al., 2018). Thus, funding of these programs should not detract from the need for increased funding
to monitor at-risk human populations, such as those living in areas of high spillover risk (Holmes et al.,
2018). Additionally, there is an urgent need to support and expand networks that aim to rapidly
disseminate epidemiological information such as the WHO's Global Outbreak Alert and Response
Network (GOARN), Global Initiative on Sharing All Influenza Data (GISAID), and preprint servers such
as Virological (http://virological.org). Finally, proactive programs aimed at pandemic prevention also
critically need more spatial and temporal information describing key changes in ecological commu-
nities (e.g., biotic homogenization) and environmental parameters (e.g., global climate change) to
better understand why circulation and transmission risk of zoonotic pathogens might vary across
ecosystems. A recent web-based application ‘SpillOver’ is particularly useful to gain some of these
insights (Grange et al., 2021). In addition to information on viruses (e.g., virulence, breadth of viral
infectivity), hosts (e.g., genetic relatedness of hosts to humans, the severity of disease in humans), and
the environment (e.g., deforestation, land use), the application also considers other ancillary factors
such as frequency and intimacy of human interactions with wild and domestic animals to calculate
the spillover risk of 887 wildlife viruses and assess their pandemic potential. We hope that more data
on host-pathogen communities and their myriad interactions and effects at the backdrop of various
human interventions will further improve its location-specific predictive power.

Suggestion 2: explain the observed variations in pathogen prevalence
data

An integrated program to catalog pathogens across species, populations, and locations will prepare
a unique stage to subsequently ask more mechanistic questions; for example, explaining the macro-
scale structural variations, using diverse metrics of host immunological, ecological, and physiological
parameters. However, multiple challenges need to be overcome to conduct any meaningful analyses.
Below, we describe the indispensability of accepting the challenges and testing the natural varia-
tion in immune strategies and their complex interplay with life-history to explain EID prevalence and
emergence.

A. Role of immunity and tolerance

While the role of host immune responses in shaping heterogeneous infection outcomes (Duneau
et al.,, 2017) and pathogen evolution (Retel et al., 2019) is unquestionable, their importance in
driving naturally occurring variations in pathogen prevalence should gain more attention. Tracing
the link between variations in inflammatory responses, tolerance, pathogen abundance, and diver-
sity can provide insightful evidence about how the infection outcomes and their downstream effects
on pathogen transmission vary across reservoir species populations. However, estimating zoonotic
pathogen load in wild reservoirs and linking them to changes in their fitness proxies (i.e., tolerance;
changes in the slope of fitness-by-pathogen load; Ayres and Schneider, 2012) can be notoriously
difficult because of poor field understanding of their biology and lack of controlled experimental para-
digm. Besides, it is often not feasible to use similar fitness parameters to measure tolerance across
species and pathogens due to differences in the mode of pathogenesis and physiological processes
involved. Conversely, tolerance is easier to estimate where pathogen-specific impacts on measurable
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host fitness parameters are known. For example, a recent study standardized skin lesion prevention
efficacy as an important fitness proxy to estimate tolerance in salamander species to a pathogen Batra-
chochytrium salamandrivorans that usually infects amphibian skins (Wilber et al., 2021). In contrast,
another study used the extent of fin damage caused by ectoparasite Tracheliastes polycolpus (which
feeds specifically on and destroys fins) as a proxy in a wild population of cyprinid freshwater fish
(Leuciscus burdigalensis) (Mazé-Guilmo et al., 2014). In Atlantic salmon (Salmo salar), tolerance was
quantified by assessing eye cataract formation as a degree of pathology against increasing burden of
eye fluke Diplostomum pseudospathaceum (Klemme et al., 2020). All these examples suggest that
we need to design long-term studies to first understand the basic life history of key reservoir species in
the wild to standardize fitness measurements and observe their response to pathogens of significant
zoonotic interests (e.g., counting number of circulating hemocytes, antibody titers). This will enable
us to understand the actual ecological role of zoonotic infections and disease manifestation in wild
host populations. Moreover, long-term studies are also important to reveal how selection acts on the
host immune system against pathogens of interest. For instance, Sparks and coworkers collected data
for 26 years from wild Soay sheep (Ovis aries) populations to distinguish how natural selection acts
separately on three functionally distinct isotypes of antibodies (IgA, IgE, and IgG) against a prevalent
nematode parasite Teladorsagia circumcincta (Sparks et al., 2018). Future studies might consider
comparable frameworks to reveal the mechanistic basis of how immune system might evolve with
pathogen burden and is linked to fitness effects in reservoir hosts against zoonotic pathogens.

A few earlier studies have successfully looked into tolerance by estimating fitness traits such as
body mass, standing pathogen load, lifespan, and number of offspring produced per year in rodent
populations (Jackson et al., 2014; Rohfritsch et al., 2018, Schneider, 2011), which can be repli-
cated in future as well. A recent study with natural populations of Anolis sagrei lizards also used body
condition, locomotor performance, and survival to the end of the breeding season as a function of
infection with Plasmodium parasites (Bonneaud et al., 2017). However, rodents can be used as a
more relevant model species to link tolerance with emerging infections as they are one of the largest
disease reservoirs (Gravinatti et al., 2020), ubiquitously found in all ecosystems. Also, the immune
system of several highly abundant rodent species such as Rattus rattus or Mus musculus is very well-
characterized (Abolins et al., 2017; Viney et al., 2015), providing the opportunity to correlate known
immune parameters against zoonotic pathogens with measurable fitness traits. Future studies can also
design these assays in various ecosystems based on previous rodent experiments, where both cross-
sectional destructive sampling to obtain precise measurements as well as longitudinal sampling using
the capture-recapture method were implemented to provide stronger causal inferences (Jackson
et al., 2014).

Obtaining reliable molecular biomarkers of immunity in wild reservoirs is also important to provide
direct evidence for how inflammatory responses might vary across spatial and temporal scales and
allow some hosts to tolerate the pathogen, while others cannot (Burgan et al., 2018; Jackson et al.,
2014). Indeed, a major challenge is the lack of reagents such as monoclonal antibodies for most
wild species, but an increase in the number of fully sequenced genomes and de novo transcriptome
assemblages of different reservoirs species in the ecological community can overcome these limita-
tions. This information can enable us to compare the immune-related transcripts and gene expres-
sion patterns to produce cross-reactive recombinant proteins for protein-based assays across taxa
(Flies et al., 2020b). Indeed, recent efforts have also been successful to sequence whole genomes
of different bat species (Jebb et al., 2020). The Bat1k genome consortium aims to sequence and
annotate chromosome-level genome assemblies of all living bat species to probe genetic mechanisms
underlying their unique adaptations to zoonotic viruses (Teeling et al., 2018). Additionally, devel-
oping standardized sets of reagents for rapid serological assays of immunoglobulins and key cell types
such as resident memory T cells that can react across species can also be extremely helpful to track
how species interactions within an ecological niche can influence the possibility of shared zoonotic
pathogen pools (Flies et al., 2020b).

B. Complex interplay with life history

Host immune strategies and disease tolerance might explain pathogen abundance and strain diversity,
but they are unlikely to work in isolation without a whole organismal and physiological perspective.
This is primarily because immune strategies are contingent on diverse life-history parameters such
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Table 1. Plausible effects of different life-history traits on immune responses and tolerance.

Although resource availability and nutrition are not life-history traits, we listed them as they impact
body condition and fitness (Huang et al., 2013). ‘1" denotes increase in tolerance while '’ denotes
decrease in tolerance.

Traits

Plausible effects on infection and immunity

Reference

Predicted role
in tolerance

Reproduction

Higher investment in reproductive output trades-off with
immune responses

Short et al.,
2012

Higher
reproduction?

Mating effort

Increased mating activity leads to immune suppression

Rolff and Siva-
Jothy, 2002

Increased
mating effort?

Fast pace of life reduces investment in immunity and allocate
more resources to early-sexual maturity and -reproductive

Previtali et al.,

Animals with
fast pace of

Pace of life output 2012 lifet
Bateman,
Option 1: Males invest less in immunity due to high intra-sexual 1948; Zuk and
competition for females and variation in reproductive success ~ Stoehr, 2002  Malest*
Option 2: Males disperse more and hence, are exposed to Streicker et al.,
increasing number of (diverse) pathogens 2016 Malest
Option 3: Organ-specific localization and impacts of pathogens Brandt and
across sexes; e.g., pathogens that could infect and colonize Schneider,
Sex only ovary might show female-specific pathology 2007 Males?
Younger individuals maximize their reproduction by minimizing Khan et al.,
investment in immune activation and pathogen clearance, 2017a;
thereby avoiding fitness-reducing immunopathological Medzhitov Younger
Age consequences etal., 2012 individuals?
Option 1: Organisms invest less in immune defenses when Stucki et al.,  Starving
deprived of resources 2019 individuals?
Starvation/ Option 2: Well-fed individuals can withstand the effects of
availability of  pathogens without clearing them because of their better body Knutie et al.,  Well-fed
resource condition 2016 individuals®
Nutrition Option 1: Access to a proteinaceous diet might boost the Povey et al.,  Higher protein

immune system and pathogen clearance ability

2009

contentl

Option 2: Access to a proteinaceous diet might allow hosts to

Knutie et al.,

Higher protein
content?

compensate for the costs of harboring pathogens 2017

"Also see contrasting examples in Jarefors et al., 2006 or Cousineau and Alizon, 2014, females invest more in
anti-inflammatory responses which might increase their tolerance.

as age, sex, reproductive status, or body condition (Nystrand and Dowling, 2020; Poirier, 2019,
Smith et al., 2019). A previous meta-analysis by Han and colleagues (Han et al., 2016) has identified
a diverse array of life-history traits such as gestation length, longevity, group size, mating system,
offspring per year, and age of sexual maturity that makes certain species ideal as zoonotic reservoir
hosts. However, these patterns make more sense if analyzed in terms of how hosts at a particular life-
history condition could maintain pathogens by altering their so-called combative and counteractive
immune strategies (Valenzuela-Sanchez et al., 2021; see Table 1 for a few examples highlighting
life-history traits and their proposed role in immunity and tolerance).

Males are more likely to harbor a greater diversity of pathogens compared to females due to
their increased propensity to disperse, exposing them to encounter more pathogens (Streicker
et al., 2016). Also, host systems that are sexually dimorphic in immunity and infection outcomes
can provide the pathogen with two selectively distinct environments (Gipson and Hall, 2016; Khan
and Prasad, 2011), imposing far-reaching impacts on disease transmission, especially in popula-
tions with skewed sex ratios. Life-history traits such as lifespan, sexual maturity, and reproductive
output that make certain species ideal for natural reservoirs (Han et al., 2016) can perhaps be
mediated via resource allocation trade-offs (Schwenke et al., 2016), where limiting the activa-
tion of costly immune responses might promote other fitness traits and favor pathogen toler-
ance. For example, several host species like rodents that thrive in human-dominated landscapes
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usually have a fast pace of life, reducing investment in immunity and thereby harboring more
pathogens at any given timepoint (Gibb et al., 2020) - early maturity and high early-reproductive
output (e.g., increased reproduction at a young age; see Medzhitov et al., 2012) can trade-off
with immune responses allowing rodents to become competent natural reservoirs for zoonotic
pathogens (Ostfeld et al., 2014). In nature, frequently encountered stressful environments such
as poor nutrition can also have severe impacts on immune investment and pathogen tolerance
(Wang et al., 2016). For example, burying beetle (Nicrophorus vespilloides) feeding on a low
protein diet showed increased tolerance to Photorhabdus luminescens (Miller and Cotter, 2018).
Another study on Cuban tree frog (Osteopilus septentrionalis), however, found increased toler-
ance to skin penetrating nematode Aplectana sp. when maintained on proteinaceous insect diets
(Knutie et al., 2017), suggesting that impacts of nutrition on tolerance are perhaps host- and
pathogen-specific. Nonetheless, considering these multifaceted implications of host physiology
and various life-history traits in immunity and disease tolerance, it is imperative to analyze the
role of these parameters in explaining pathogen prevalence data collected during disease surveil-
lance. Different life-history traits can interact closely to drive the level of and pathogen prevalence.
For instance, in addition to dispersal (discussed above; Streicker et al., 2016), higher pathogen
burden in males can be explained by their lower investment in immunity as they typically experi-
ence stronger intra-sexual competition and a greater variance in reproductive success (Bateman,
1948; Zuk and Stoehr, 2002). As implicated above, even age, sexual maturity, pace-of-life, or
nutritional status might manifest their effects on immunity and tolerance by altering reproduc-
tive investments. Sexually dimorphic immune investment, causing sex-specific divergence in toler-
ance and pathogen prevalence, may evolve as a function of intersexual resource competition (Li
and Kokko, 2019) or mating strategies (Bagchi et al., 2021) We certainly need future studies to
explore these intimate interactions and pinpoint complex life-history and physiological features of
reservoirs that can be attributed to their disease-carrying ability.

Suggestion 3: identify the host-pathogen coevolutionary dynamics to
predict emerging infections

Analyzing changes in genes involved in host-pathogen interactions can generate crucial insights about
their association over an evolutionary timescale (Woolhouse et al., 2002). For instance, virulence
genes involved in continuous host-pathogen arms race tend to display positive selection (dN/dS > 1)
in the codons that are involved in the interaction sites between the virus and host cell receptor (Daugh-
erty and Malik, 2012, Meyerson and Sawyer, 2011). Indeed, host cell receptors for viruses like
HIV (cluster of differentiation 4), filovirus (Niemann-Pick C1), and several coronaviruses (angiotensin-
converting enzyme 2 ) have been shown to undergone positive selection across different mammalian
orders (Pontremoli et al., 2016; Wang et al., 2020). SIV envelope protein binding domain of CD4
receptor (D1 domain) in many African primate species has undergone diversification in the coding
sequence (Zhang et al., 2008). The amino acid replacements in the D1 domain can prevent viral enve-
lope glycoprotein (Env)-CD4-mediated cell entry in multiple African primate species, protecting them
from SIV infection (Zhang et al., 2008). A recent study has further revealed that diversification of CD4
receptor, with as many as 11 coding variants in Moustached monkey Cercopithecus cephus, might
be under balancing selection as an outcome of the long-term coevolutionary arms-race with primate
lentiviruses (Russell et al., 2021). Quantifying selection pressures acting at various host receptor-
pathogen interfaces by calculating respective dN/dS ratios (Yang and Bielawski, 2000) can thus
help us in unearthing evidence of the evolutionary history of exposure; for example, (1) high or low
degree of filovirus exposure to natural reservoir bat vs. novel human hosts respectively; or (2) genomic
signatures left by pathogenic primate lentiviruses in susceptible primate species vs. other long-term
SIV-infected species such as sooty mangabeys evolving specific mechanisms to avoid the disease
progression (Russell et al., 2021). The consequences of long-term positive selection on pathogens
might also transcend into evolved variants with new antigenic properties and possible expansion
of the host range (Bedi et al., 2013). Indeed, in the case of SARS outbreak in 2002, selection on
the spike gene of SARS-CoV was positively correlated with its spillover from palm civets to humans
(Chinese SARS Molecular Epidemiology Consortium, 2004). The binding affinity of the virus spike
protein towards human ACE2 changed from low to high due to mutations in two critical amino acids,
turning it into a pandemic strain (Chinese SARS Molecular Epidemiology Consortium, 2004).
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Levels of pathogen sequence divergence can accelerate more with increased polymorphism of
host receptors (Gupta et al., 2009; Meyerson and Sawyer, 2011, Warren et al., 2019), allowing
pathogens to infect and adapt to another host more effectively (Daugherty and Malik, 2012). For
instance, a recent study that analyzed ACE2 receptors in Chinese horseshoe bats (Rhinolophus sinicus)
found multiple such highly polymorphic sites in the receptor regions, which interacts with the spike
proteins of a coronavirus isolated from the same species of bats named as SARSr-CoV (severe acute
respiratory syndrome coronavirus isolated from R. sinicus; Guo et al., 2020). As expected, binding
affinities of SARSr-CoV to these polymorphic receptors varied widely, making some cells more suscep-
tible to viral entry than others. However, the most interesting aspect of their study was that, when
tested upon human cell lines, some of these SARSr-CoV strains even showed higher binding affinity to
human ACE2 compared to that of R. sinicus, hinting at their potential to cause spillover in overlapping
human populations (Guo et al., 2020). Given the direct implications of these results in spillover and
human health, we suggest the need for more such analyses to uncover the coevolutionary outcomes
of pathogens from the diverse host interface (e.g., reservoirs vs. other host species), both at the
spatial as well as the temporal scales.

Future studies can also test whether and how coevolving viral pathogens can maintain genetic
polymorphism for adaptation to the host immune environment. Probing signatures of coevolution
in accessory proteins that target host-associated restriction factors can aid understanding of the
complex interplay between immune defense and viral adaptations. Indeed, the importance of such
evolutionary processes has been implicated in previous studies where modified strains of HIV (simian
tropic HIV-1 strain; stHIV-1) rapidly evolved to antagonize host restriction factor tetherin by acquiring
mutations in the accessory protein Vpu within merely four passages through an atypical HIV-1 host
species pigtailed macaques (Maccaca nemestrina; Hatziioannou et al., 2014). There are several other
accessory genes as well such as Nef, Vif, and Vpr that have evolved in lentiviruses to counteract host
antiviral immune responses (Sauter and Kirchhoff, 2018). Hence, in addition to finding links between
host immune strategies (resistance vs. tolerance), life-history, and pathogen prevalence, revealing
coevolutionary dynamics and resulting genetic diversification of circulating pathogens (i.e., key mole-
cules involved in host entry, infectivity. and virulence) can greatly advance our understanding of their
range expansion via spillover.

Suggestion 4: set up controlled proof-of-principle laboratory
coevolution studies to test hypotheses generated in the wild and
provide mechanistic insights

It is important to note that due to the involvement of a multitude of factors ranging from genetics to
environmental variations influencing animal populations, evaluating disease tolerance and pathogen
spillover can be complicated in the wild. Data from field experiments can certainly provide information
about larger patterns and processes such as heterogeneity in immune responses and genetic diversity
in circulating pathogen strains, but creating a controlled empirical paradigm is perhaps necessary
to generate more mechanistic insights into the actual micro-evolutionary processes. Finding greater
pathogen diversity and prevalence in reservoir hosts with lower inflammatory responses, reduced
rate of fitness loss, and increased polymorphism in pathogen receptor sites might indicate a poten-
tial correlation between coevolution, tolerance, and diverse zoonotic pathogen pool, but the causal
link is still difficult to establish. Using common garden experimental setups that allow rearing and
maintenance of well-characterized focal organisms under study in their semi-natural environmental
conditions (e.g., large field enclosures for wild mice) can help us to partially overcome the uncertain-
ties associated with quantifying parasite burden and estimating fitness traits in the wild (Barrett et al.,
2019;: Klemme et al., 2020).

Yet it might be challenging to answer some of the most fundamental questions, such as do
hosts actually evolve tolerance to their natural pathogens? If so, how do we track such evolutionary
processes? Besides gathering clues from comparative studies using various host populations, labora-
tory experimental evolution using tractable animal models (with known biology and genomic infor-
mation) can be an excellent alternative to test these possibilities (Khan et al., 2017b; Masri et al.,
2013; Prasad and Joshi, 2003). They can enable us to directly track host-pathogen dynamics and
test diverse hypotheses on the evolution of host tolerance, genetic diversifications of pathogens,
and spillover risk to overlapping susceptible host populations. Owing to rapid generation time and
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Figure 4. Outlining the controlled laboratory experimental evolution framework to test the link between coevolutionary history and tolerance.
Susceptible host populations can be exposed to the coevolving pathogens at every generation and assayed periodically to estimate the changes in the
tolerance level.

easy maintenance, insect hosts, in particular, provide an excellent system to conduct such long-term
evolution experiments (e.g., see Ford et al., 2020; Khan et al., 2017b; Mukherjee et al., 2019; but
also see Kohl et al., 2016 for study in voles). While in principle any well-characterized insect model,
with known biology and genetic information, can be used to test these basic hypotheses, mosquito
hosts can be particularly useful both for the fundamental discovery as well as their direct relevance to
human health (Huang et al., 2019). For example, filarial infections that exert strong selection pressure
in mosquito hosts by inducing high mortality can be a valuable resource to test whether fitness costs
are minimized by evolving tolerance (Aliota et al., 2010; Bartholomay, 2014). Experimental evolu-
tion studies can also be combined with a comparative dataset where multiple wild-caught mosquito
populations are analyzed to quantify the natural variation in tolerance to filarial worms, followed by
probing their underlying immune profiles. Subsequently, populations showing lower tolerance can be
identified and subjected to repeated exposure to filarial infection across generations to test whether
the level of tolerance can be further increased by modulating inflammatory responses. Such an inte-
grated empirical framework might help in establishing the proposed causal link between coevolu-
tionary history and pathogen tolerance (see Figure 4).

A similar experimental paradigm can also be used to test whether shared evolutionary history is
responsible for tolerance in the vector hosts against their natural pathogens. For example, mosquito
species Armigeres subalbatus is a natural vector for the zoonotic filarial worm Brugia pahangi whom
they can tolerate, but not the morphologically and biologically similar pathogen Brugia malayi (Aliota
et al., 2010; Aliota et al., 2007), which is perhaps not as prevalent as B. pahangi in the mosquito
hosts (Muslim et al., 2013). In fact, mosquito hosts resist B. malayi infection using costly immune
responses (Aliota et al., 2010; Aliota et al., 2007). Can long-term coevolution reverse such effects
of B. malayi infection? By experimentally imposing long-term selection with the new pathogen B.
malayi, we can verify the causal connection between the length of coevolutionary history and the
level of host tolerance and parasite evolution. Subsequently, genetic analyses can uncover the mech-
anistic basis of adaptive changes in host immunity (e.g., possible modulation of costly inflammatory
responses; Mérkle et al., 2021) and pathogen replication and transmission potential (Siva-Jothy and
Vale, 2021).
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Laboratory evolution studies can also be implemented to track the evolutionary origin of estab-
lished molecular mechanisms underlying tolerance strategies adopted by vector hosts. For example,
both A. albopictus and A. aegypti can rapidly synthesize viral-derived DNA (vDNA), which is crucial
for their tolerance and survival against chikungunya virus and dengue virus, respectively (Goic et al.,
2016). How did such mechanisms evolve? A possible empirical framework is to (1) collect naturally
isolated Aedes populations lacking (or with inherently lower) viral tolerance; (2) impose long-term viral
selection to directly test whether stronger tolerance is correlated with increased vDNA synthesis; and
(3) finally, test whether such evolved tolerance can be reversed by reducing vDNA synthesis (using
reverse genetics) to verify its functional role (see Goic et al., 2016). Since previous experiments already
demonstrated the role of tolerance in increasing the transmission intensity and vectorial capacity in
mosquitoes (Dharmarajan et al., 2019), experiments showing direct evolution of parasite tolerance
and infectivity in important vectors will make crucial contributions to public health (Lambrechts and
Saleh, 2019).

Conclusion and further implications for public health

In closing, as disease-causing pathogens from wild animals are emerging at an unprecedented rate
across the globe, we must acknowledge that our understanding of specific ecological interactions
and adaptive features of reservoir hosts is still at a nascent stage. A few theoretical models and
experiments have provided broader insights into specific immune strategies to cater persistence of
zoonotic pathogens (Alexander et al., 2012; Brook et al., 2020; White et al., 2018), but their over-
simplistic assumptions might have limited inferential value in nature. To fill this gap, we have compiled
a range of direct and indirect evidence of tolerance that can potentially explain the pathogen prev-
alence across host-pathogen systems, indicating its wider relevance to disease spread and spillover.
However, despite the conceptual appeal, predictions based on the tolerance of reservoir hosts in
catalyzing emerging infections still lack empirical rigor. There are no experiments that have thoroughly
verified the whole process; that is, evolution of pathogen tolerance in reservoir animals to spillover.
Recent analyses appear promising as they reveal the genetic basis differentiating the pathogen resis-
tance from tolerance in critical human diseases such as HIV, where a high viral load often coincides
with minimal disease progression as a feature of tolerance (Regoes et al., 2014). Also, there are
experiments with bacteriophages that have confirmed that genetic variations are indeed required for
viral emergence and host expansion (Dennehy et al., 2010). Still, targeted studies in natural reservoirs
are needed to jointly probe the whole spectrum of tolerance to pathogen emergence, validating their
cascading impacts on the spillover.

To this end, an integrated immune-centric understanding of naturally occurring variable infection
outcomes across different host-pathogen systems and their specific ecological contexts, life-history,
and evolutionary implications can be crucial. Systematic verification of the proposed links between
pathogen prevalence, pathogen diversity, and host tolerance across a range of ecological contexts
is needed, followed by deeper evolutionary insights into the maintenance of latent pathogen reser-
voirs and conditions that trigger spillover events. We believe that a hypothesis-driven experimental
framework based on previous theoretical models is timely and will conceptually motivate a wide range
of biologists to adopt a proactive disease surveillance program complemented with deeper ecolog-
ical, evolutionary, and immunological thinking. Finally, we expect that our review will not only be
relevant to the present crisis created by pandemic and emerging infections, but it will also provide a
newer understanding of other important aspects of public health research such as infectious disease
control (e.g., consequences of disease tolerance via vaccination) and the dynamics of noninfectious
diseases (e.g., increased risk autoimmune disorders in geographical regions where improved hygiene
has reduced pathogen burden; Bach, 2018).
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