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ABSTRACT Certain cyanobacteria look green if grown in red light and vice versa. This dramatic color change, called comple-
mentary chromatic adaptation (CCA), is caused by alterations of the major colored light-harvesting proteins. A major controller
of CCA is the cyanobacteriochrome (CBCR) RcaE, a red-green reversible photoreceptor that triggers a complex signal transduc-
tion pathway. Now, a new study demonstrates that CCA is also modulated by DpxA, a CBCR that senses yellow and teal (green-
ish blue) light. DpxA acts to expand the range of wavelengths that can impact CCA, by fine-tuning the process. This dual control
of CCA might positively impact the fitness of cells growing in the shade of competing algae or in a water column where light lev-
els and spectral quality change gradually with depth. This discovery adds to the growing number of light-responsive phenomena
controlled by multiple CBCRs. Furthermore, the diverse CBCRs which are exclusively found in cyanobacteria have significant
biotechnological potential.

Light is critical for any organism that relies on photosynthesis
for growth. However, light intensity and quality can vary dra-

matically in both terrestrial and aquatic environments, which can
significantly impact photosynthetic efficiency. Thus, it is no sur-
prise that organisms have evolved a host of exquisitely tuned pho-
toreceptors to sense and respond to the intensity, quality, and
directionality of light. Members of the ancient phylum Cyanobac-
teria, which are considered the evolutionary precursor of algal and
plant plastids, encode a vast array of such photosensors, including
the phytochromes (1, 2).

Phytochromes occur in plants, algae, nonphotosynthetic bac-
teria, and fungi but have not been identified in archaea or in ani-
mals (3–5). They constitute a large superfamily of GAF domain-
containing photoreceptors that use bilins as their chromophore.
Typically, they absorb light in two regions of the visible spectrum,
which stimulates the interchange between stable photoconvertible
isomers. The canonical phytochrome, first identified in plants,
absorbs red light in the Pr state, which converts it to the Pfr state.
The Pfr state can revert to Pr by the absorption of far-red light or
by a dark reversion step. These different photocycle states of phy-
tochrome, in turn, control various signal transduction pathways.

The phytochrome superfamily has been divided into three sub-
families based on domain structure (4). Group I, best character-
ized in plants, contains the canonical phytochromes that have the
unusual “knotted” PAS-GAF-PHY tridomain structure (3).
Group II contains GAF-PHY domains but lacks the PAS domain
(6). Cyanobacteria contain examples of both group I and II pho-
tosensors, but these are less well characterized. Group III is com-
prised of cyanobacteriochromes (CBCRs), which are exclusively
found in cyanobacteria. CBCRs represent an abundant and di-
verse subfamily that contains bilin-binding PAS-GAF domains.
Remarkably, the CBCRs can be activated by a diverse set of wave-
lengths that cover almost the entire spectrum from UV to near
infrared (1, 7, 8). This unexpected and exciting discovery has
opened up active fields to probe how molecular structure can
influence absorption spectra (6) and in understanding the roles of
these various CBCRs in controlling cellular processes.

One of the most striking examples of light-regulated control by
CBCRs is a phenomenon known as complementary chromatic
adaptation (CCA), in which certain cyanobacteria can appear in
different colors based on the light in which they are grown (Fig. 1).
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FIG 1 (Top) Whole-cell absorption spectra of F. diplosiphon cells. Cells
grown in green light accumulate PE and look brick red (inset), while cells
grown in red light look green (inset) and accumulate PC. The maximum ab-
sorption peaks of PE (�max, 540 nm) and PC (�max, 620 nm) are shown by
arrows. (Bottom) Absorption spectra of DpxAt (teal; �max, 495 nm), DpxAy

(yellow; �max, 567 nm), RcaEg (green; �max, 532 nm), and RcaEr (red; �max,
661 nm). Ovals represent the different forms of DpxA and RcaE with their peak
absorption wavelengths shown below. The interconversion between these
forms is shown by colored arrows. The composite figure is adapted and slightly
modified (with permission) from figures that appear in references 9 and 14.
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CCA was observed as early as 1902 by Engelmann and others and
is best characterized in the filamentous cyanobacterium Fremyella
diplosiphon, in which cells appear green if grown in red light and
vice versa (9). This change in pigmentation represents a change in
the composition of the multiprotein light-harvesting phycobili-
some (PBS). PBS proteins are a major constituent in the cell that
allows cells to optimize absorption of ambient light for photosyn-
thesis under various light conditions. This, in turn, can provide
cells a growth advantage.

It turns out that there are different types of CCAs and that the
control of CCA is complex and regulated at many levels. Typically,
cells that exhibit CCA can alter the composition of the PBS in
response to light quality (9). In F. diplosiphon, the levels of PBS
pigmented polypeptides phycoerythrin (PE; �max, 540 nm) and
phycocyanin (PC; �max, 620 nm) were shown to change based on
ambient light conditions. In a series of elegant experiments per-
formed in the laboratory of Grossman and others, it was demon-
strated that changes in PBS composition were controlled at the
transcriptional level (10, 11).

This discovery spurred the hunt for the regulators of CCA.
Elegant analyses of the rca (regulator for chromatic adaptation)
pathway that exploited “color” mutants in F. diplosiphon uncov-
ered regulatory components that included RcaE as well as two
response regulators, RcaF and RcaC. RcaE was the first
“phytochrome-like” photoreceptor discovered in bacteria (12,
13), although it is now classified as a CBCR (it has a GAF and a PAS
domain). RcaE, like plant phytochromes, contains a cysteine in
the GAF domain that covalently binds a chromophore (bilin or a
linear tetrapyrrole), but unlike plant photoreceptors, which typi-
cally respond to red/far-red light, RcaE is sensitive to green and
red light. The complex signal transduction cascade triggered in red
or green light suggests that RcaE, which has a histidine kinase
domain in addition to the GAF domain, can differentially phos-
phorylate RcaF and RcaC. These response regulators, in turn, ac-
tivate several operons responsible for the production of PBS com-
ponents. The result of this regulatory cascade is a PBS
composition that has been altered in response to different light
conditions (11).

Now, Wiltbank and Kehoe (14) have shown that another
CBCR, called DpxA (decreased phycoerythrin expression), also
plays a key role in the regulation of CCA in F. diplosiphon. Inter-
estingly, DpxA has very different light-sensing properties than
RcaE; it can respond to yellow (�max, 568 nm) and teal (�max,
494 nm) light. Using a dpxA mutant along with spectral analysis
and measurements of kinase activity, DpxA was shown to repress
the accumulation of PE, the major PBS component that makes
cells look red. Thus, as expected, a null mutant of DpxA looks
black when grown in white light because of elevated PE levels, in
combination with normal levels of PC (in comparison, wild-type
cells look green). The authors also demonstrated that DpxAT

(produced when cells are irradiated with yellow light) is the active
form of the photoreceptor that represses PE accumulation while
DpxAY is the inactive form of the photoreceptor.

In essence, this two-sensor system provides a sophisticated de-
gree of control of CCA. By having two CBCRs, RcaE and DpxA,
which are responsive to different wavelengths, the organism has
evolved to sense a wide spectrum of light. This sensory informa-
tion is transduced via a signaling pathway to tightly control PE
expression across almost all light wavelengths. Under red light,
RcaE is the major regulator controlling PBS composition, by acti-

vating PC expression and repressing PE expression. DpxA plays a
minor role under these conditions. However, in yellow light, RcaE
is in a less active state and DpxA plays the major role of repressing
PE expression by driving DpxAY to the active form DpxAT. This
leads to a model in which RcaE plays the role of a “coarse-control
knob” under both red and green light that impacts both PE and PC
levels. On the other hand, DpxA, which responds to a narrower
range of wavelengths (between yellow and teal), affects only PE,
thus acting like a “fine-control knob.”

The discovery of a two-system control of CCA brings up sev-
eral interesting points. DpxA is the first yellow-light-sensing
CBCR identified with a specific function in modulating CCA.
However, based on sequence homology, there are several other
DpxA-like proteins in cyanobacteria, whose roles are yet to be
discovered. The presence of two (or more) light-sensing systems
raises the question of the role of such systems in the environment.
Initial characterizations of CBCRs are normally carried out using
defined narrow wavelengths, but this method does not represent
the natural environment. Over the course of the day, in water
columns or in shaded situations, wavelengths and intensities can
change dramatically. F. diplosiphon grows in aquatic environ-
ments; water attenuates red light, and so with depth, the green-to-
red ratio increases, and there may also be other shading effects.
The ability to finely modulate levels of PBS would provide a
growth fitness advantage to the population (15). This phenome-
non is reminiscent of “phenotypic plasticity” noted in eukaryotes
and bacterial cells, whereby they exhibit two or more distinct mor-
phological states in response to transient changes in the environ-
ment (16). Clearly, having such a wide range of CBCRs provides
cyanobacteria enormous flexibility in tuning cellular responses to
light (or possibly to other cues, such as redox conditions). Indeed,
some cyanobacterial species have several such CBCRs and differ-
ent chromophores (17–20). Potential cross talk and networks of
control among CBCR pathways represent new frontiers in our
understanding of “photoresponsivity” in photosynthetic organ-
isms.

The focus of this commentary has been on the novel regulatory
roles of multiple CBCRs in CCA (21), but these versatile photo-
sensors have also been implicated in the regulation of phototaxis
(22, 23), cell aggregation via cyclic di-GMP (24), and cyclic AMP
(cAMP) levels (25). As more cyanobacterial species are examined,
this palette of functions is likely to grow more diverse. Finally, the
great versatility of these CBCRs and their obvious potential in
building new optogenetic tools make them worthy of sustained
attention at the level of basic and applied research (26, 27).
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