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The association between uric acid (UA) on one side and systemic hypertension (Htn), dyslipidemia, glu-
cose intolerance, overweight, fatty liver, renal disease and cardiovascular disease (CVD) on the other side
is well recognized. However, the causal relationship between UA and these different clinical problems is
still debatable. The recent years have witnessed hundreds of experimental and clinical trials that favored
the opinion that UA is a probable player in the pathogenesis of these disease entities. These studies dis-
closed the strong association between hyperuricemia and metabolic syndrome (MS), obesity, Htn, type 2
diabetes mellitus (DM), non-alcoholic fatty liver disease, hypertriglyceridemia, acute kidney injury,
chronic kidney disease (CKD), coronary heart disease (CHD), heart failure and increased mortality among
cardiac and CKD patients. The association between UA and nephrolithiasis or preeclampsia is a non-
debatable association. Recent experimental trials have disclosed different changes in enzyme activities
induced by UA. Nitric oxide (NO) synthase, adenosine monophosphate kinase (AMPK), adenosine
monophosphate dehydrogenase (AMPD), and nicotinamide adenine dinucleotide phosphate (NADPH)-
oxidase are affected by UA. These changes in enzymatic activities can lead to the observed biochemical
and pathological changes associated with UA. The recent experimental, clinical, interventional, and epi-
demiologic trials favor the concept of a causative role of UA in the pathogenesis of MS, renal, and CVDs.
� 2016 Production and hosting by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

UA is a weak acid (M.W. = 168) produced in the liver, muscles,
and intestines [1]. Purines are the precursors of UA. Xanthine
oxidoreductase (XO) is the enzyme responsible for UA production.
Exogenous sources that can increase serum UA include fatty meat,
organ meat, and seafood [2]. Fructose is another source of exoge-
nous UA. Fructose is present in fruits and added sugar. Fructoki-
nase enzyme catalyzes the phosphorylation of fructose by
consuming adenosine triphosphate (ATP). Adenosine monophos-
phate (AMP) thus generated finally converts to UA [3]. UA was
incriminated in the pathogenesis of gout and kidney stones. How-
ever, for more than 140 years ago, high serum UA (SUA) was pro-
posed in association with other diseases including Htn [4], CKD
and DM [5]. The association between hyperuricemia and CHD
was first reported in 1951 [6]. SUA bears a highly significant posi-
tive correlation with insulin resistance (IR) and insulin response to
oral glucose load. Hyperuricemia encountered in case of increased
IR is the sequence of decreased renal urate clearance [7]. Accumu-
lating data point toward a possible etiologic role of increased UA in
the pathogenesis of MS, CVD and renal disease [8]. Experimental
and clinical trials have demonstrated the reversal or amelioration
of different diseases associated with hyperuricemia after adminis-
tration of hypouricemic agents. These agents are either inhibitors
of the XO enzyme or stimulants of renal UA excretion. This later
group supports that the therapeutic effect is a consequence of UA
lowering rather than inhibition of release of free oxygen radicals
on inhibition of XO enzyme. In this review, we are going to discuss
the possible impact of hyperuricemia on metabolic, renal, and
CVDs.
Uric acid and metabolic syndrome

MS is a group of clinical and laboratory abnormalities. Out of
the five established manifestations, three or more are needed to
diagnose MS. These manifestations are (1) waist circumfer-
enceP 90 and 80 cm in men and women respectively; (2) serum
triglycerideP 150 mg/dL; (3) high-density lipoprotein cholesterol
(HDLc) < 40 and 50 mg/dL in men and women respectively; (4)
blood pressure (BP) P 130/85 mmHg; and (5) fasting blood
sugarP 100 mg/dL [9]. The different manifestations of MS are con-
sidered as consequences of excess fat deposition in the adipose tis-
sue [10]. Excess intake of sugars beside purine rich foods can lead
to increased incidence of hyperuricemia, obesity and DM [11]. In
Fig. 1. Effect of intra-cellular uric acid on nitric oxide synthesis within vascular endothel
hypertension.
adults with normal body mass index, MS is 10 times higher in
those having SUAP 10 mg/dL compared to those with
SUA < 6 mg/dL [12]. The hazard ratio of incident MS shows a steady
increase when normal adults were allocated into four quartiles
according to SUA. These results were still observed after consider-
ing the body composition [13]. When children (10–15 years at
baseline) were followed for 10 years, high SUA was a significant
predictor of incident MS in male subjects [14]. On the other hand,
when elderly hyperuricemic subjects above sixty-five years were
followed for more than 4 years, only female subjects showed
increased incidence of MS [15]. Another prospective study assessed
1511 men and women 55–80 years old, who were not affected ini-
tially by any of the components of MS. Follow-up has demon-
strated a significantly higher incidence of many components of
MS, namely, hypertriglyceridemia, low HDL, and Htn in subjects
with highest sex-adjusted quartile of UA [16]. A meta-analysis of
eleven studies of more than fifty-four thousand participants
showed that elevated SUA is associated with increased risk of MS
and non-alcoholic fatty liver disease (NAFLD) [17]. By inhibiting
endothelial NO synthase, decreased NO might underlie insulin
resistance [18]. Hyperuricemia is significantly associated with
insulin resistance in normal subjects and to lesser extent in type
1 diabetic subjects [19]. Lowering SUA by a uricosuric agent [20]
or allopurinol [21] is associated with improved insulin sensitivity
in human subjects (Fig. 1).

Glucose intolerance and diabetes mellitus

The link of UA to hyperglycemia was first described in the nine-
teenth century [22]. Elevated SUA predicted DM and insulin resis-
tance in a fifteen-year follow-up study. Baseline SUA in this cohort
of 5012 young adults was not associated with a change in serum
insulin, indicating that hyperuricemia is an independent risk factor
for insulin resistance and type 2 DM [23]. High normal SUA was
also associated with future development of type 2 DM among lean
healthy and normoglycemic women [24]. Increased hepatic glu-
cose production is a distinguished feature of insulin resistance
and type 2 DM. Intracellular UA stimulates AMPD and inhibits
AMPK enzyme activity (Fig. 2). Intracellular AMPK inhibits hepatic
gluconeogenesis. AMPD stimulates hepatic gluconeogenesis [25].
Decreased endothelial NO synthase (eNOS) activity in hyper-
uricemic patients causes increased insulin resistance [18,19].
Treatment of asymptomatic hyperuricemic personnel with allop-
urinol for 3 months results in significant decrease in insulin resis-
tance and inflammation parameters [21].
ium UA = uric acid; NO = nitric oxide; FMD = flow mediated dilation; Htn = systemic



Fig. 2. Intra-cellular uric acid stimulates gluconeogenesis. UA = uric acid; AMP-
D = adenosine monophosphate dehydrogenase; AMPK = adenosine monophosphate
protein kinase.

Fig. 3. Uric acid as mediator of systemic hypertension. ENaC = epithelial sodium
channels; Na = sodium; HTn = systemic hypertension.
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However, genetic epidemiologic studies also called Mendelian
randomization studies failed to prove an association between UA
and type 2 DM [26,27]. Genetic polymorphisms of a well-
characterized serologic variant can be utilized to study the effect
of this variant on disease risk. A total of 28 genetic loci were recog-
nized to significantly associate with SUA concentration [28]. The
knowledge of genetic regulation of SUA allows the use of Men-
delian randomization to examine the possible causal relation
between SUA and type 2 DM risk. The genetic score in these 2 arti-
cles is mainly based on genes that control UA transport between
extracellular and intracellular compartments and, hence, may dis-
sociate the physiological serum-intracellular relationship. Intracel-
lular UA is postulated as the cause of insulin resistance and
enhanced gluconeogenesis [29]. It is not known whether the score
alters the extracellular-intracellular equilibrium. The genetic score
may dissociate this equilibrium and then can lead to the incorrect
conception that SUA is not a risk factor for diabetes [29]. Unfortu-
nately, we did not encounter large randomized controlled clinical
studies looking for impact of SUA lowering on the development
of MS and type 2 DM.
Systemic hypertension

The chance to develop Htn is greater in hyperuricemic male and
female subjects; this chance augments in older age [14,30,31].
Increased SUA increases the chance of non-dipping [32]. A similar
finding is encountered among CKD patients [33]. Increased SUA is
significantly associated with the development of new-onset pri-
mary Htn in children [34]. In a recent meta-analysis of 25 moder-
ate to high-quality studies selected from all the clinical trials with
SUA as exposure and incident systemic Htn as outcome variables
through September 2013, these 25 studies of 97,824 participants
have shown that high SUA significantly predicts systemic Htn
[35]. Among 118 thousand healthy subjects 40–70 years old that
were screened for SUA during 2002, a quarter of them developed
systemic Htn over the following 10 years. Those with SUA higher
than 3 mg/dL had a greater chance to develop Htn. The higher
the SUA within the normal range, the greater was the risk to
develop Htn [36]. The association between high SUA and Htn is
stronger in younger ages and in females [37,38]. High SUA is one
of the major predictors of worse BP control [39–42]. SUA signifi-
cantly correlates with sympathetic domain parameters among
pre-hypertensive and hypertensive personnel [43]. The in vivo rise
of SUA in rats induces the epithelial sodium channel (ENaC) in the
distal nephron with consequent decrease in renal sodium excretion
[44] (Fig. 3). One of the important determinants of SUA is the glu-
cose transporter ‘‘GLUT9” gene [45]. GLUT9 transports UA. GLUT9
gene polymorphism confirmed a causal relationship of hyper-
uricemia for systemic Htn in a family study [46]. Genotype variants
of GLUT9 associated with decreased SUA are associated with a sig-
nificant decline of BP in different salt intake situations [47]. In ado-
lescents with obesity and prehypertension, allopurinol or
probenecid achieved marked control of ambulatory BP [48]. Allop-
urinol was also associated with significant decrease in office BP
and body weight and increase in the percentage of dippers among
overweight prehypertensive subjects [49]. Six months of febux-
ostat treatment resulted in a significant decrease in plasma renin
activity and plasma concentration of aldosterone and a significant
increase in estimated glomerular filtration rate (eGFR) in hyper-
uricemic hypertensive patients [50].
Adiposity

Excess fat accumulation in MS involves adipose tissue, hepato-
cytes and increased level of serum triglycerides [51]. NAFLD is
characterized by triglyceride accumulation by variable degree
within hepatocytes [52]. NAFLD is the hepatic manifestation of
MS. Recent studies point toward UA as an important factor under-
lying excess fat storage [25,53–55]. UA up-regulates the fructoki-
nase enzyme within human hepatocytes. This up-regulation is
UA concentration dependent with stepladder increase in fructoki-
nase activity with increasing the intracellular UA concentration
from 4 to 12 mg/dL. This up-regulation is blocked on adding either
probenecid or allopurinol. Stimulation of fructokinase mediates
fructose-induced hepatic steatosis [56]. AMPK and AMPD within
hepatocytes are incriminated in the developments of hepatic
steatosis. When AMPK activity is reduced excess fat infiltration
occurs, while its stimulation can prevent steatosis through
increased fat oxidation and inhibition of lipogenesis. AMPD has
opposing effect on fat deposition within the hepatocytes. AMPD
activation increases intracellular UA synthesis [57]. Intracellular
UA inhibits AMPK activity [58]. Two years ago, a novel mechanism
of UA induced fatty liver was demonstrated. UA induced hepato-
cyte endoplasmic reticulum stress within hepatocytes. Associated
with this increased stress, the sterol regulatory element-binding
protein (SREBP) undergoes cleavage and nuclear translocation



Fig. 4. Pathways of lipogenesis activated by intra-cellular uric acid. UA = uric acid; AMPD = adenosine monophosphate dehydrogenase; AMPK = adenosine monophosphate
protein kinase; ROS = reactive oxygen species; ER = endoplasmic reticulum.

Fig. 5. Intracellular uric acid as a pro-oxidant agent. UA = uric acid; ROS = reactive
oxygen species.
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and stimulates triglyceride accumulation within hepatocytes [54]
(Fig. 4).

Among the different components of MS, hypertriglyceridemia
carries the strongest association with hyperuricemia [59,60]. The
mechanism of this strong association is not yet known.

Excess fructose or sucrose intake can induce obesity beside
other features of MS [11]. In contrast, if animals are fed either glu-
cose or starch of equivalent caloric value fewer features of MS are
observed [61]. These findings point to the ability of fructose to
induce visceral fat accumulation compared to isocaloric glucose
intake. Increased fructose intake is associated with intracellular
depletion of ATP, increased AMP and increased intra-cellular pro-
duction of UA. This is followed by increased SUA [62]. Increased
SUA is an independent predictor of obesity [63]. URAT1 is one of
the transporters of UA. URAT1 mediates intracellular shift of UA.
This transporter is encountered within the adipocyte membrane
[64]. Adipose tissue can also generate UA. Adipocytes have XO that
can produce intracellular UA [65]. While extracellular UA acts as
strong antioxidant, it acts as a pro-oxidant inside the cell where
it stimulates NADPH oxidase enzyme causing increased intracellu-
lar oxidative stress, mitochondrial injury, and ATP depletion
[64,66,67] (Fig. 5). XO increases fat deposition within adipocytes.
XO knock-out mice get 50% reduction of their fat compared to wild
mice [65]. Genetic polymorphism of URAT1 gene was associated
with body mass index (BMI), waist circumference, and MS. Intra-
cellular concentration of UA looks as an important determinant
of obesity [68].
Uric acid and the kidney

The kidney is responsible for elimination of 70% of the daily UA
production [69]. Renal handling of UA includes glomerular filtra-
tion, proximal tubular reabsorption, secretion and post-secretory
reabsorption [70]. ABCG2 that secretes UA is restricted to the prox-
imal straight tubule (S3 segment) [71]. URAT1 is a voltage-driven
urate transporter located in the brush border of proximal convo-
luted tubules (PCT) and efficiently reabsorbs glomerular-filtrated
UA [1,72,73]. The reabsorbed UA is then driven out of PCT cells
through the basolateral membrane. The glucose transporter 9
(GLUT9) is involved in this extracellular efflux of UA [74]. ABCG2
is also expressed in the liver and intestine [75]. As UA excretion
falls in cases of CKD, compensatory increase in intestinal secretion
of UA ensues [76,77]. Whether UA is a cause or an association to
renal diseases is a question that still waits for a definitive answer.
We hope we can settle this controversy in the present review.

Nephrolithiasis

Increased SUA and high animal protein diet can cause hyperuri-
cosuria. Uricosuric agents used to treat hyperuricemia can aggra-
vate hyperuricosuria. UA within the urine (UUA) tends to
crystalize when urine pH is low. Insulin resistance, obesity, high
animal protein intake and gout can decrease urine pH. Hyperurico-
suria in the presence of acidic urine especially in case of low urine
volume can result in formation of urate stones [78]. In type 1 DM
adolescents, UUA is significantly higher and urine pH is lower com-
pared to non-diabetic controls [79]. DM patients are more prone to
develop urate stones [80].
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Chronic kidney disease

For the last one and half centuries, the association of gout with
CKD is well recognized [81]. However, it was not known which
came first. The decrease in GFR is associated with UA retention
[76]. The evidence of the offending action of UA was clearly
demonstrated in experimental studies. Most of the animals have
low SUA thanks to the existence of the uricase enzyme that breaks
down UA. To raise SUA in these animals, oxonic acid is used to inhi-
bit the uricase enzyme. By increasing SUA, animals develop sys-
temic Htn, glomerular Htn, glomerulosclerosis, and interstitial
fibrosis [81–85]. These changes were attributed to activation of
NADPH oxidase enzyme causing increased intracellular oxidative
stress, mitochondrial injury, ATP depletion [66,67], endothelial
injury, renin – angiotensin system (RAS) activation and increased
epithelial-mesenchyme transition (EMT). Increased EMT was
proved by decreased E-cadherin expression and an increased a-
smooth muscle actin and vimentin. Excess interstitial infiltration
by fibroblasts and progressive interstitial fibrosis eventually
ensues [86] (Fig. 6). On the other hand, some early clinical studies
denied UA as a risk of incident CKD [87–91]. Definition of CKD in
these articles was not precise. In one of these articles, serum crea-
tinine of 2 mg/dL was considered the cutoff point [87]. In another
study the follow-up period was relatively short to detect change
in serum creatinine in healthy cohort at basal assessment [88].

Before the introduction of UA lowering agents, up to a quarter of
gouty patients developed proteinuria. Histologic examination of
the kidneys in these patients revealed nonspecific changes, namely
arteriosclerosis, glomerulosclerosis, and interstitial fibrosis. In
addition, collecting ducts and the medullary interstitium in some
of these patients showed focal deposition of monosodium urate
crystals with secondary inflammatory response. This inflammatory
response is in the form of focal granulomatous reaction with dense
accumulation of macrophages and T-lymphocytes. Tubular cells
within the inflammatory exudate showed a sixfold increase in
macrophage migration inhibitory factor (MIF) mRNA, compared
with uninvolved areas [92]. These changes were described as
‘‘gouty nephropathy” or ‘‘chronic urate or UA nephropathy” [93].
However, the focal nature of urate deposits and of the inflamma-
tory response can’t explain the diffuse pathology of CKD encoun-
tered in these cases [94]. It is worth mentioning that urate
deposits could be detected in autopsies that lack evidence of CKD
[95]. Irrespective of the baseline eGFR, SUA significantly predicted
CKD progression over 5 years of follow-up of a cohort of IgA
nephropathy patients [96]. SUA proved as a strong predictor for
the development of increased urine albumin excretion rate (UAER)
on follow-up of normoalbuminuric type 1 diabetic patients for
6 years. For every 1 mg/dL increase in SUA, the risk of development
of albuminuria increased by 80% [97]. In a recent cohort study of
Fig. 6. Different pathogenic mechanisms of kidney injury possibly induced by uric acid. U
protein-1; RAS = renin angiotensin system; EMT = epithelium mesenchyme transition; V
3605 normal subjects having normal kidney functions, the subjects
were categorized according to the longitudinal follow-up of SUA
into persistently low, fluctuating with declining or rising SUA,
and persistently high SUA. Incident CKD was significantly higher
in categories with rising or persistently high SUA [98]. SUA is asso-
ciated with resistive indices within renal arteries estimated by
Doppler study [99]. In another study in Type 1 DM there was a
2.4-fold increase in the unadjusted risk of eGFR loss in patients
having SUA > 6.6 mg/dL compared to those with lower level
[100]. In a study of 263 type 1 DM newly diagnosed, SUA was a sig-
nificant independent predictor of macroalbuminuria after 18 years
[101]. In a recent study, insulin sensitivity was significantly higher
in type 1 DM who had regression of albuminuria compared to
those who did not [102]. In a longitudinal study of a cohort of
20,142 type 2 DM patients having eGFR > 60 mL/min and normal
UAER, De Cosmo et al., looked at the incidence of eGFR < 60 mL/
min., increased UAER or both over 4 years of follow-up. They
assessed the association of SUA quintiles with the onset of these
CKD components using regression analysis to adjust for different
confounders. 7.9% of patients developed eGFR < 60 mL/min, 14.1%
developed increased UAER and 2% of patients developed both com-
ponents. The higher the SUA quintile the higher is the relative risk
ratio of eGFR decline. In patients who developed eGFR decline,
there was a significant association of SUA with albuminuria
[103]. These findings are supported by more recent results
reported in Japan [104]. A cross-sectional study of more than three
thousand type 2 DM patients looked for UA effect on the preva-
lence of diabetic kidney disease (DKD). 68% of the hyperuricemic
had DKD versus 41.5% with normal UA [105]. When the data of
seventy liver transplantation children were revised, a cumulative
incidence of hyperuricemia of 32% over ten-year postoperative
was observed. All these children underwent annual estimation of
SUA, inulin and urate clearance. Decreased urate clearance was
the main cause of hyperuricemia. SUA tended to predict the devel-
opment of CKD [106]. A more interesting prospective observation
study of a cohort of 900 healthy adult blood donors that were fol-
lowed for 5 years showed that the basal SUA was a significant pre-
dictor of eGFR decline even after multivariate regression analysis
[107]. The drawback of this trial is the lack of serial estimation of
SUA and the limited number of females. However, this study is dis-
tinguished because the subjects were healthy normotensive sub-
jects lacking signs of CKD on entry to the study. Another
prospective study of 21,475 healthy volunteers followed for seven
years looked for the association of UA level with incident CKD
defined as eGFR < 60 mL/min/1.73 m2. UA between 7 and 8.9 mg/
dL was associated with almost doubling and level above 9 mg/dL
was associated with tripling of incident CKD [108]. A Japanese 5-
year follow-up study of more than two thousand healthy adults
above the age of 40 years without CKD showed that
A = uric acid; ROS = reactive oxygen species; MCPl = Macrophage chemo-attractant
SMC = vascular smooth muscle cells.
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SUA > 5.9 mg/dL is a significant risk factor for CKD and proteinuria
[104]. A recent meta-analysis and review of 13 studies containing
more than one hundred and ninety thousand participants tried to
find out whether UA is an independent risk factor of incident
CKD. This study confirmed that UA is an independent risk factor
for the development of CKD in non-CKD healthy persons with no
discrimination between male and female sex. The longer the
follow-up the stronger is this association [109]. Glucose concentra-
tion in the glomerular ultrafiltrate is similar to serum concentra-
tion. This glucose is reabsorbed by the PCT. Sodium-glucose co-
transporter 2 (SGLT2) present in the apical membrane is responsi-
ble for absorption of 90% of this glucose [110]. In case of hyper-
glycemia, SGLT2 is over expressed to increase glucose absorption
[111]. Intracellular glucose increases leading to increased activity
of polyol pathway leading to increased fructose synthesis. Intracel-
lular fructose metabolism leads to increased UA synthesis
[112,113]. Fructokinase knockout mice are protected against the
renal degenerative changes associated with aging and increased
salt intake [114]. In a recent study of 422 type 2 DM for more than
fifteen years that were followed for up to 77 months, patients with
SUA > 7 mg/dL in males and >6 mg/dL in females had a signifi-
cantly higher rate of DKD progression, and overall mortality
[115]. In a meta-analysis of 24 studies with twenty-five plus
patients with CKD, elevated SUA is significantly associated with
risk of mortality in these patients [116]. GLUT9 polymorphism is
strongly associated with SUA in healthy subjects in the general
population that have normal kidney function. In a cohort of 755
CKD patients, GLUT9 polymorphism predicted progression [117].
A causal relation of UA to CKD progression could be realized based
on this study. In a retrospective cohort study of 803 CKD patients,
propensity score analysis using three different methods showed a
consistent impact of high UA on progression to end-stage renal dis-
ease (ESRD) [118]. XO inhibitors possibly delay the progression of
CKD in adult hyperuricemic and hypertensive patients [119]. The
target SUA should be <6.5 mg/dL to delay progression [77,118].

Acute kidney injury (AKI)

In 37 patients who underwent cardiac surgery, SUA was
assessed 1 hour postoperative. A significant positive correlation
between SUA, on one hand, and urine neutrophil gelatinase-
associated lipocalin (NGAL) estimated 1 h, 6 h and 24 h postopera-
tive, and serum creatinine measured 1 day, 2 days and 3 days post-
operative respectively on the other hand. There was also a
significant negative correlation between SUA and the kinetic eGFR
measured 1, 2, 3 and 4 days postoperative respectively. These find-
ings illustrated that the rise of UA one-hour postoperative precedes
and significantly predicts subsequent development of AKI [120]. In
another trial in patients undergoing open-heart surgery, SUA in
blood samples collected 2 h postoperative had a stronger predic-
tive value for AKI and the need for renal replacement therapy
(RRT) in comparison with serum and urine NGAL [121]. Preopera-
tive UA level was also a strong predictor of postoperative AKI. In
patients undergoing radical cystectomy, preoperative SUA was an
independent predictor of postoperative AKI [122]. In a retrospec-
tive study of more than two thousand patients who underwent
coronary bypass surgery, preoperative SUA was a strong predictor
for the development of postoperative AKI [123]. UA was not only a
predictor of postoperative AKI but also predicted AKI in patients
having burns [124] or those with sepsis [125]. In a retrospective
analysis of all patients admitted to a tertiary hospital over 2 years,
and after consideration of logistic regression analysis, patients hav-
ing SUA > 9.4 mg/dL on hospital admission had significantly the
highest risk to develop AKI during their hospital stay. On the other
hand, those having UA < 4.5 mg/dL were at lowest risk [126]. The
strength of this study is based on many points: 1st is wide spec-
trum of the patients’ primary disease, including infectious, cardio-
vascular, gastrointestinal, hematology/oncology, and respiratory
disorders. The 2nd point is the graded association of UA with the
development of AKI. A similar retrospective study in another hos-
pital has shown similar results [127]. When more than eleven
thousands of participants were followed for about twelve years,
823 of them were admitted to the hospital because of AKI.
SUA > 5 mg/dL was independently associated with these admis-
sions. The risk of AKI was 16% higher with each 1 mg increase in
SUA [128]. SUA level is a significant predictor of contrast-induced
nephropathy (CIN) [129,130]. UA lowering with allopurinol in
addition to saline hydration was associated with significantly
lower incidence of CIN compared to saline hydration alone or sal-
ine hydration plus N-acetyl cysteine [130]. UA potentially mediates
AKI through vascular, pro-oxidative and inflammatory mecha-
nisms [131]. UA inhibits endothelial NO synthesis, and thus pro-
motes vasospasm in afferent and, to less extent, in the efferent
arterioles [82,132]. UA inhibits capillary endothelial cells’ prolifer-
ation and migration [133]. It can also induce endothelial apoptosis
[132]. UA also correlates with pre-glomerular arteriolopathy in
human beings, an obstacle to renal autoregulation in condition of
renal hypoperfusion [134]. As mentioned above, UA stimulates
NADPH oxidase with consequent increase in oxidant stress. The
increased oxidant stress stimulates production of macrophage
chemo-attractant factor (MCP1) within vascular smooth muscle
cells (VSMCs) [135]. Hyperuricemic rats show increased macro-
phage infiltration of their kidneys [83]. Administration of an
NADPH oxidase inhibitor inhibited MCP1 production within
VSMCs [135] (Fig. 6).
Preeclampsia (PE)

PE complicates 5–10% of pregnancies worldwide [136]. Affected
women usually have profound long-term consequences [137]. PE is
characterized by Htn, proteinuria, and edema that develop after
20 weeks of pregnancy [138]. Decreased placental perfusion due
to impaired remodeling of spiral arteries might result in hypoxia
[139]. UA level showed high correlation with BP in cases of PE
[140]. In pregnant ladies suffering PE, serum tumor necrosis factor
a (TNFa) and ICAM1 were significantly higher than control or
hypertensive pregnant ladies. Subcutaneous blood vessels showed
intense staining with these 2 agents. SUA showed positive correla-
tion with TNF a and ICAM1 in PE patients [141].
Uric acid and cardiovascular system (CVS)

Whether SUA is merely a risk marker or a risk factor for CV dis-
ease, or whether hypouricemic agents affect outcomes is still a
matter of debate [142]. The association between SUA and different
CVD might be confounded by different factors frequently encoun-
tered in cardiac patients. These factors include Htn, dyslipidemia,
DM, alcohol consumption, hypothyroidism and diuretic use
[143]. Independent of any CV risk factor, increased SUA level, even
within the normal range, is a risk factor for impaired flow-
mediated dilation (FMD) of brachial artery (Fig. 1), increased caro-
tid intima-media thickness (IMTc), and increased stiffness of the
aorta in healthy subjects [144–149]. In non-diabetic CKD patients
(stage 3–5) who lack evidence of CVD and were not treated with
either RAS blockers or statins, FMD inversely correlated with SUA
[150]. Treatment of hyperuricemic type 2 DM patients with allop-
urinol for 3 years succeeded to reduce carotid IMT [151]. UA stim-
ulates platelet-derived growth factor receptor b (PDGFRb)
phosphorylation in the rat aorta [152]. This discovery would
explain the VSMC proliferation and CVD in hyperuricemic patients.
When isolated human umbilical vein endothelial cells (HUVECs)
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were exposed to 6 mg and 9 mg/dL UA, significant increase in
intracellular free oxygen species was followed by senescence and
apoptosis of these cells. Senescence and apoptosis of HUVECs were
ameliorated on addition of either probenecid or an antioxidant like
N-acetyl cysteine or tempol. In addition, UA increased expression
of the different elements of RAS within HUVECs [153]. When
human aortic endothelial cells (HAECs) are exposed to high UA
concentration for 48 h, a significant decline in eNOS activity was
observed. There was also 50% reduction in mitochondrial DNA
level, a decrease in mitochondrial mass and a significant reduction
in basal concentration of ATP. The higher the concentration of UA
within the culture medium the greater was the reduction in intra-
cellular ATP concentration [66] (Fig. 7).

On the other hand, some studies failed to demonstrate UA as
independent CVD risk factor [154]. Analysis of data obtained from
6763 participants in the Framingham heart study failed to demon-
strate a significant association between SUA and CHD and CV mor-
tality [155]. However, many of the epidemiologic data collected in
recent years favor the association between SUA and the risk of
CVD. A recent study showed SUA as independent predictor of
CHD [156]. In a prospective study of more than fifty thousand male
subjects with history of gout in the Health Professionals Follow-Up
Study, the relation between history of gout and the development of
CVD was examined. After follow-up for twelve years, patients with
history of gout were found at greater risk of CV mortality, mainly
due to CHD [157]. Increased SUA is associated with the unstable
coronary lipid-rich plaques [158]. SUA predicts HF in patients with
stable CHD. This predictability is muffled, but not abolished, by dif-
ferent confounders [159]. SUA was measured in 705 cases of both
sexes that underwent coronary angiography. 41% of cases had nor-
mal angiography and were considered the control group. A signif-
icant positive correlation between SUA and the severity of CHD
score was encountered [160]. After measurement of SUA of over
400.000 in checkup centers in Stockholm, these candidates were
followed for 7–17 years. The higher the basal SUA in this middle-
aged population the higher is the chance to develop acute myocar-
dial infarction (AMI), heart failure (HF), and stroke [161]. SUA is a
significant predictor of poor outcomes in AMI patients complicated
with reduced LV function, HF, or both [162]. The Pooled data from
eleven studies that evaluated the prognostic importance of SUA
demonstrated that hyperuricemia can significantly predict all-
cause mortality in HF patients [163]. These data are also observed
in HF patients with preserved ejection fraction [164] and in
patients hospitalized with severely decompensated acute HF
[165,166]. The relation of SUA with acute HF outcome is weakened
with deterioration of kidney function [167]. The association
Fig. 7. Different vascular injury mechanisms possibly mediated by uric acid. UA – uric aci
derived growth factor receptor.
between SUA and ischemic stroke is debatable. While some accuse
SUA as predictor of magnitude of infarct [168], most found SUA to
play a favorable role [169–171]. Allopurinol succeeded to improve
mortality rate in HF patients with history of gout [172]. However,
in a more recent trial, allopurinol failed to improve left ventricular
ejection fraction, or exercise capacity after 6 months in patients
with HF and hyperuricemia [173]. In a cohort of 557 healthy sub-
jects, 415 of whom were women, aged 60 years and older, men
with higher SUA (>5.5 mg/dL) had significantly higher left ventric-
ular mass compared to men with lower level [174]. The association
between SUA and left ventricular hypertrophy (LVH) is more likely
in women than in men when they have CKD [175]. In patients with
LVH and preserved ejection fraction, SUA is associated with dias-
tolic dysfunction in women only [176]. 37% of kidney transplant
recipients that had normal graft function developed persistent
hyperuricemia within the 1st post-transplant year. Hyperuricemia
in these patients was significantly associated with Htn, increased
pulse wave velocity, and LVH [177]. Treatment with allopurinol
improved left ventricular function and coronary flow reserve in
patients with dilated cardiomyopathy and concomitantly elevated
SUA [178]. The association between SUA and the major cardiovas-
cular adverse events following acute coronary syndrome is stron-
ger in women compared to men [179]. It seems that this
association in patients with normal kidney function is observed
in older aged women. SUA was found as independent predictor
of LVH in postmenopausal but not in premenopausal women
[180]. In type 2 DM hyperuricemia was significantly associated
with atrial fibrillation independent of other risk factors and all
potential confounders [181]. In 200 hypertensive patients that
have normal treadmill exercise test, patients with erectile dysfunc-
tion have significantly higher SUA [182]. In persons with elevated
level of HDLc, SUA is associated with an increased risk of idiopathic
venous thromboembolism [183]. In patients with hypertrophic
cardiomyopathy, SUA is a significant predictor of adverse outcome
[184]. Increased SUA was appointed as independent risk factor for
overall mortality and CV mortality [185,186]. The relationship
between SUA and CV mortality is higher in the lowest and highest
quintiles in both men and women [187]. A prospective analysis of
329 patients with ST-elevation myocardial infarction (STEMI) and
eGFR < 60 mL/min/1.73 m2 treated with percutaneous coronary
intervention (PCI) disclosed a strong correlation of SUA with 1-
year mortality [188]. A recent meta-analysis of six studies, includ-
ing more than 200.000 patients showed that hyperuricemia inde-
pendently increases the risk of mortality from CVD and CHD
[189]. The knowledge of genetic regulation of SUA allows the use
of Mendelian randomization to examine the possible causal rela-
d; ROS = reactive oxygen species l; RAS = renin angiotensin system; PDGFR – platelet
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tion between SUA and cardiovascular risk. Genotype precedes life
events and is not affected by lifestyle [190]. This analysis disclosed
a causal relation between SUA on one hand and CHD, cardiovascu-
lar mortality and sudden cardiac death on the other hand [191].
These results criticize the hypothesis that the effect observed with
high SUA is not due to the molecule itself but due to the induction
of the XO and the effect of XO inhibitors is secondary to inhibition
of the enzyme rather than the consequent control of SUA. XO acti-
vation results in increased production of free oxygen radicals with
consequent increased oxidative stress and triggered inflammation.
XO inhibitors can abolish this oxidative stress and burns out the
consequent inflammation [192].

Conclusions

According to the recent experimental and clinical trials and to
the therapeutic interventions and the Mendelian randomization
studies it seems that UA is a real risk factor for the development
of metabolic, renal and CVDs. The intracellular UA seems to be
more pathogenic. The cell membrane urate transporters are
responsible for the intra-extracellular UA shift, and hence, they
are important determinants of the offending role of UA. These
studies have also demonstrated that low SUA levels might carry
high risk similar to the high levels. Based on these facts, more
interventional studies are needed to optimize the therapeutic man-
agement of this evolving risk factor. These studies should highlight
when to treat, the target SUA level and the long-term safety of the
different hypouricemic agents.
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