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Abstract: Vehicular ad hoc networks (VANETs) have an important role in urban management and
planning. The effective integration of vehicle information in VANETs is critical to traffic analysis,
large-scale vehicle route planning and intelligent transportation scheduling. However, given
the limitations in the precision of the output information of a single sensor and the difficulty of
information sharing among various sensors in a highly dynamic VANET, effectively performing
data aggregation in VANETs remains a challenge. Moreover, current studies have mainly focused
on data aggregation in large-scale environments but have rarely discussed the issue of intra-cluster
data aggregation in VANETs. In this study, we propose a multi-player game theory algorithm for
intra-cluster data aggregation in VANETs by analyzing the competitive and cooperative relationships
among sensor nodes. Several sensor-centric metrics are proposed to measure the data redundancy
and stability of a cluster. We then study the utility function to achieve efficient intra-cluster data
aggregation by considering both data redundancy and cluster stability. In particular, we prove the
existence of a unique Nash equilibrium in the game model, and conduct extensive experiments to
validate the proposed algorithm. Results demonstrate that the proposed algorithm has advantages
over typical data aggregation algorithms in both accuracy and efficiency.

Keywords: data aggregation; game theory; vehicular ad hoc network; nash equilibrium

1. Introduction

Vehicular ad hoc networks (VANETs) have recently received considerable attention. A VANET
is a special type of mobile ad hoc network (MANET) that consists of many traveling vehicles. The
vehicles in a VANET can communicate with one another using short-range wireless communication [1].
Advancements in embedded processing, wireless networking, and flexibility in sensing area selection
have made creating vehicular networks possible [2]. At present, various types of vehicles are broadly
equipped with sensors. These vehicle-mounted sensors can gather and share different types of
information using on-board computers or global positioning system navigators [3]. Vehicles equipped
with sensors can collect, process, and aggregate data [4], which can significantly improve vehicle
safety or provide information on road conditions. Thus, aggregating data for a VANET is important to
achieve desirable dissemination services.

Although many studies have been conducted on data aggregation in MANETs, the distinct
characteristics of VANETs, such as high-speed mobility, limited transmission range, high node density,
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and dynamic network topology, pose significant challenges to data aggregation in VANETs. Most
messages (e.g., location information and environmental data) are periodically broadcast by each vehicle
in a VANET. Thus, when many vehicles participate in the VANET, the possibility of the occurrence
of wireless collisions is high. For example, in a large-scale vehicular network, if every car transmits
messages to the target node without reduction, then the network faces the problem of data collision
and congestion. These problems lead to huge bandwidth consumption and high communication and
processing costs, which reduce the efficiency of the entire vehicular network. By contrast, wireless
link breakage always occurs in VANETs because of the highly mobile environment, or worse, link
reestablishment increases transmission delay and network control overhead cost. Thus, the main issue
for data aggregation in VANETs is how to design an efficient data aggregation approach to aggregate
data with less bandwidth consumption and high accuracy in a highly dynamic network. Current
studies have mainly focused on data aggregation in large-scale environments but have rarely discussed
intra-cluster data aggregation in VANETs.

Game theory provides a natural way to model the data aggregation process using sensor nodes
in the same cluster. In a VANET, sensors can be modeled as individual players in a data aggregation
game with appropriate strategies and utility functions. This eventually leads to a global optimum data
aggregation strategy in the cluster. In this study, we propose a game theory model of intra-cluster
data aggregation (MGADA) based on non-cooperative game theory by analyzing the competitive and
cooperative relationships among sensor nodes in VANETs. The key contributions of this study are as
follows: first, several sensor-centric metrics are developed to measure data redundancy in a cluster and
cluster stability in a VANET. Second, intra-cluster data aggregation in the VANET is modeled from a
game theory perspective considering both data redundancy and cluster stability. Finally, a multi-player
game theoretic algorithm is designed to optimize intra-cluster data aggregation in a VANET.

The rest of this paper is organized as follows: Section 2 provides a review of the related
literature. Section 3 presents the problem formulation. Section 4 describes the proposed data
aggregation algorithm in detail. Section 5 discusses the experiments that were conducted to validate
the effectiveness of the proposed algorithm. Section 6 draws the conclusions and discusses potential
additional research directions that can be pursued in the future.

2. Related Works

In this section, we discuss existing techniques for data aggregation in MANETs and VANETs.
Data aggregation is an important issue in MANETs and has therefore been studied for decades.
Various methods, including parameter estimation, rough sets, trust establishment, game theory, and
particle swarm optimization, have been applied to perform data aggregation in MANETs [3–15].
Energy efficiency is the most significant problem in a MANET because of its limited energy capacity.
Most studies aim to minimize energy cost in data transmission to prolong the lifetime of MANETs.
In contrast to MANETs, VANETs have a completely different scenario because vehicles are rich in
energy resources. Data aggregation in VANETa is primarily subject to the problems of link stability,
data redundancy, and data accuracy. Thus, data aggregation algorithms designed for MANETs are
unsuitable for VANETs, and new solutions must be developed.

Recently, several aggregation techniques for VANETs have been proposed in the literature [16–27].
Mitra et al. [16] proposed a novel data aggregation algorithm based on mobile agents in dynamic
traffic management systems. However, the different numbers of proxy nodes and access orders to
nodes have significant effects on the performance of this algorithm. Zhao and Yang [17] used mobile
nodes to gather polling-based data. The authors divided the nodes into two categories: affiliated and
polling nodes. Affiliated nodes send data to polling nodes through a certain number of relay hops.
Polling nodes then aggregate the data and upload them to the mobile sink. However, the problem of
finding an optimal subset of polling nodes is non-deterministic polynomial hard (NP-hard). Processing
time increases dramatically as the network scale increases. Wang et al. [18] presented an aggregation
algorithm based on the node distance required to send data from cluster members to the cluster head by
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multi-hop transmission. However, this algorithm cannot adapt to large-scale VANET scenarios because
of excessive communication overhead. Scheuermann et al. [19] used infrastructure and stationary
supporting units (SSUs) to assess dissemination performance based on the number of equipped vehicles
on the road in city scenarios. If a small number of SSUs are installed in a city and connected with
one another via some backbone network, then the entire vehicular network achieves interoperability
and enhanced dissemination performance. However, the network undergoes significant difficulty
in convergence. Realistic VANET applications have not been considered in the evaluation.
Lochert et al. [20] proposed a hierarchical data aggregation algorithm. However, delay time evidently
increases as the network scale increases. Wischhof et al. [21] proposed a method called segment-oriented
data abstraction and dissemination to disseminate information. However, this method is unsuitable for
applications that require precise aggregation results. Dietzel et al. [22] presented a bandwidth-efficient
integrity protection mechanism for traffic efficiency application in VANETs, which uses HyperLogLog
estimators to create bandwidth-efficient integrity proofs. [27] presented a generic architecture and
used it to categorize different aggregations and assess their suitability to solve particular challenges. In
general, most of the aforementioned data aggregation methods focus on data aggregation in large-scale
environments, whereas the intra-cluster data aggregation issue is hardly addressed or explored.

Recently, the game theoretic mechanism has been extensively investigated for distributed
decision-making in wireless networks. A variety of applications exist for game processing, such
as power control [28–30], routing [8,31,32], data gathering [13,14], bandwidth sharing [33], congestion
control [34], and topology control [35] in MANETs. In [13], an evolutionary game-based data
aggregation model (EGDAM) in wireless sensor networks was proposed, and an evolutionary
game-based adaptive weighting algorithm (EGWDA) was provided for pixel-level data aggregation
with homogeneous sensors. In [14], the interaction between sensors and monitoring nodes was
formulated as a dynamic game with incomplete information, and a reputation system was built to
ensure reliable data fusion by confining the fusion process to trustworthy sensors. Thus, the game
theory mechanism is suitable to build effective functions for decision-making processes. However, few
studies have investigated data aggregation in dynamic VANETs. Existing algorithms for MANETs
cannot be directly applied to VANETs because of their different features in terms of node characteristics
(e.g., high power, quick motion, and low bandwidth).

3. Problem Statement

In VANETs, we divide the data aggregation process into three stages: cluster initialization stage,
cluster stabilization stage, and cluster reconstruction stage. In the first stage, the cluster initialization
stage, all the nodes in the vehicular network are grouped into several temporary clusters. A cluster
head is then selected for each temporary cluster. The main goal of this stage is to find a reasonable
mechanism to select a cluster head and facilitate intra-cluster communication.

In the second stage, the cluster stabilization stage, the temporary cluster is relatively stable. The
nodes in the temporary cluster send sample data to the cluster head. During this stage, each sending
node generates a data report in each sampling period. The information in a data report contains the
node location, sample data, sample quality, and the sequence of the sampling period.

In the second stage, the first challenge is to estimate the sample quality of each node. The second
challenge is to construct a stable cluster for data aggregation in highly mobile vehicular networks that
can reduce packet loss and improve communication quality. The third challenge is to find an optimal
transmission strategy for efficient data aggregation, which can be formulated as shown below.

Supposing that there are n nodes in a cluster, and each node independently samples data, then
pi

(k) is the transmission strategy of node i in the k-th sampling period, which is defined as follows:

ppkqi “

#

0
1

(1)
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If ppkqi “ 1, then node i is a sending node that sends data report to the cluster head in the k-th

sampling period. If ppkqi “ 0, then node i is a candidate node that remains silent in the k-th sampling
period. Thus, the problem in this step is to find an optimal combination of transmission strategy,
!

ppkq1 , ppkq2 , ppkq3 , ..., ppkqn

)

, which can reduce the number of sending nodes to improve transmission
efficiency while preserving data aggregation accuracy.

The third stage is the cluster reconstruction stage. During the cluster stabilization stage, the
cluster stability is monitored continuously. If the metric for evaluating the cluster stability exceeds a
predefined threshold, the cluster is considered broken. Consequently, the process enters the cluster
reconstruction stage, and the cluster is reconstructed by reentering the cluster initialization stage.

To solve the aforementioned challenges, we design several metrics to analyze data redundancy in
VANETs by estimating the sample quality of each node. Given that the rapid motion of vehicles results
in frequent and dramatic topological changes in VANETs, we also propose several metrics to estimate
cluster stability in VANETs. By considering cluster stability, MGADA can improve communication
quality and data transmission quality in the data aggregation process. Finally, to find an optimal
combination of transmission strategy, we study the competition and cooperation relationships among
the sensor nodes involved in data aggregation based on game theory, and employ Nash equilibrium
and interruption processing to optimize the transmission strategy in VANETs.

4. MGADA

4.1. Cluster Initialization

Cluster stability is very important for data aggregation in the highly dynamic VANET. We
introduce a typical clustering algorithm named position-based prioritized clustering [36] for cluster
head selection in the cluster initialization stage. In this clustering algorithm, the relative movement in
the neighborhood, leadership duration, and moving direction are considered for clustering. Each node
broadcasts beacons to announce itself to be a cluster head. The beacon contains the number of clock
periods, node ID, moving direction, node location, and leadership. When a node receives a beacon
from a neighbor, it compares the neighbor’s moving direction with its own. If they have the same
direction, then the node joins the cluster its neighbor belongs to when the following three conditions
are satisfied: its neighbor is the cluster head; its neighbor has a larger leadership than it has; and its
neighbor has a smaller ID number than it has.

4.2. Cluster Stabilization Stage

4.2.1. Sample Quality Estimation

In this subsection, we introduce several definitions to address the problem of estimating the
sample quality of a node:

Sample Quality. In general, the sample quality of a node depends on both real-time and historical
sample data. We can evaluate the sample quality of one node by calculating the deviation among the
sample data in a sliding window, which can reflect the extent of the variation in the sample data in a
particular time interval. Thus, the sample quality can be defined as follows:

SQpkqx “
1´ ασ2

x pkq
ˆ

DRpkqx ´DRpkqx

˙2 (2)

σ2
x pkq “ std

´

DRpqqx , DRpq`1q
x , ..., DRpkqx

¯

(3)

DRpkqx “
1

k´ q` 1

k
ÿ

i“q

DRpiqx (4)
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q “

#

1, k ď w
k´w` 1, k ą w

(5)

where SQpkqx denotes the sample quality of node x in the k-th sampling period, DRpkqx is the data
sampled by node x in the k-th sampling period, q is the sequence number of the sampling period at the
starting position of the sliding window, w is the size of the sliding window, and a is the adjustment

factor and ranges from 0 to 1. DRpkqx and σ2
x pkq denote the mean value and variance, respectively, of the

sample data set collected by node x during the sampling periods that fall within the sliding window.
Calculating SQpkqx requires the mean and variance values of the entire sample data collected in the

sliding window. Given the constraints of storage resources and the processing capacity of the nodes,
buffering all the sample data in the sliding window is impractical. However, we can simplify the
calculation of SQpkqx by storing the intermediate results of DRpk´1q

x :

DRpkqx “

$

’

’

&

’

’

%

1
k

ˆ

pk´ 1q ˆDRpk´1q
x `DRpkqx

˙

, k ď w

1
w

ˆ

wˆDRpk´1q
x `DRpkqx ´DRpk´wq

x

˙

, k ą w
(6)

Here we provide a brief explanation of Equation (6). When the sequence number of the
current sampling period, k, is less than the size of the sliding window, w, that is, k ď w, then

all the data collected by node x falls into the sliding window, so that DRpkqx can be obtained by

adding DRpkqx to pk´ 1q ˆ DRpk´1q
x , which is the sum of the data collected in the previous k ´ 1

sampling periods. In another case, when the sequence number of the current sampling period, k,

is larger than the size of the sliding window, w, that is, k ą w, DRpkqx is the mean value of the

data set {DRpk´w`1q
x , DRpk´w`2q

x , ..., DRpk´1q
x , DRpkqx }, and DRpk´1q

x is the mean value of the data set

{DRpk´wq
x , DRpk´w`1q

x , ..., DRpk´1q
x }, so that DRpkqx can be obtained by adding DRpkqx to wˆDRpk´1q

x and

subtracting DRpk´wq
x from wˆDRpk´1q

x , which is the sum of {DRpk´wq
x , DRpk´w`1q

x , ..., DRpk´1q
x }.

To analyze the distribution of the sample quality in a cluster, SQpkqx must be normalized. We use
the linear normalization function to map the sample quality value within the range of [0, 1] as follows:

´

SQpkqx

¯

1

“

SQpkqx ´Min
´

SQpkq
¯

Max
`

SQpkq
˘

´Min
`

SQpkq
˘ (7)

where Max
´

SQpkq
¯

and Min
´

SQpkq
¯

denote the maximum and minimum sample quality, respectively,
in the neighborhood set of node x in the k-th sampling period.

Mutual Quality Gain. To compare the sample quality of adjacent nodes, we define the mutual
quality gain, which can evaluate sample quality distinction between nodes y and x in the k-th sampling
period as follows:

MQGpkqxy “ Max

¨

˝log10
SQpkqx

SQpkqy

, 0

˛

‚ (8)

where SQpkqx and SQpkqy represent the sampling quality of nodes x and y in the k-th sampling period,
respectively. A large difference in the sample quality of nodes x and y corresponds to a high mutual
quality gain. Furthermore, with the introduction of a logarithmic function, if node x has a higher
sample quality than its neighbor node y, then Equation (8) has a positive value. Otherwise, Equation (8)
has a negative value. To conveniently estimate the sample quality of a node in its neighborhood,
the negative gain is adjusted to 0. Hence, Equation (8) can clearly distinguish between the sample
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qualities of adjacent nodes and enhance the mutual quality gain of the nodes whose sample qualities
are relatively high in their neighbor domain.

Neighborhood Retroaction Quality. Neighborhood retroaction quality is defined to estimate the
relative sample quality of a node in its neighborhood. If the neighborhood retroaction quality of a
node is low, then its sample quality is relatively low in its neighbor domain, and its sample data can be
reduced to improve transmission efficiency. The neighborhood retroaction quality of node x in the k-th
sampling period NRQpkqx is denoted as follows:

NRQpkqx “
ÿ

yPNpkq
x

MQGpkqxy (9)

´

NRQpkqx

¯

1

“

NRQpkqx ´Min
´

NRQpkq
¯

Max
`

NRQpkq
˘

´Min
`

NRQpkq
˘ (10)

where MQGpkqxy is the mutual quality gain from nodes y to x in the k-th sampling period.
´

NRQpkqx

¯

1

is
the normalized neighborhood retroaction quality of each node.

Figure 1 illustrates the process of estimating the sample quality of each node in a cluster with nine
nodes. First, as shown in Figure 1a, each node calculates its sample quality according to its sample
data. Second, as shown in Figure 1b, each node acquires the sample quality of its neighbor nodes
through message broadcasting and then achieves mutual quality gain by comparing its sample quality
with those of its neighbor nodes. Two values exist between each node pair in Figure 1b. The first
value corresponds to the mutual quality gain of the node with a higher node ID from the node with a
lower node ID. The second value represents the mutual quality gain in the opposite direction. Finally,
as shown in Figure 1c, each node obtains its neighborhood retroaction quality by summing up all
the mutual quality gains of its neighbor nodes. For example, node 5 has the highest neighborhood
retroaction quality in its cluster; hence, it is likely to be chosen as the sending node. By contrast, nodes
1, 2, and 9 have the lowest neighborhood retroaction quality in their clusters and are assumed as the
candidate nodes.
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Cluster Redundancy Degree. Cluster redundancy degree CRDpkqP is utilized to evaluate the
redundancy degree of the sample data collected in a cluster in the k-th sampling period when adopting
a given transmission strategy profile P, which is defined as follows:

CRDpkqP “
1
|C|

˜

|C| ´
ÿ

iPC

ppkqi ˆ NRQpkqi

¸

(11)

where C denotes the node set of a cluster, ppkqi is the transmission strategy of cluster member i in the k-th

sampling period, P “ tppkqi |i P Cu denotes the transmission strategy set of cluster C in the k-th sampling

period, and NRQpkqi is the neighborhood retroaction quality of node i in the k-th sampling period.

4.2.2. Cluster Stability Estimation

Given the high-speed mobility of vehicles, the topological structure of VANETs varies frequently,
which significantly affects data aggregation quality. To guarantee data aggregation quality, we
introduce two parameters: separation vector gain and cluster variation degree, to analyze link stability
and cluster stability, respectively:

Separation Vector Gain. The separation vector gain is designed to evaluate the link stability
between adjacent nodes. If the relative displacement among adjacent nodes increases, then the link
stability becomes weak, and vice versa [37]. Based on this condition, the separation vector gain is
defined as follows:

SVGpkqvi

`

vj
˘

“ Max

˜

10lg
Dpkq

`

vj Ñ vi
˘

Dpk´1q
`

vj Ñ vi
˘ , 0

¸

(12)

where vi and vj denote the receiving and sending nodes, respectively. Dpkq
`

vj Ñ vi
˘

denotes the
relative displacement between vi and vj in the k-th sampling period, and Dpk´1q `vj Ñ vi

˘

denotes the
relative displacement between vi and vj in the previous sampling period.

Equation (12) evaluates the link stability by analyzing the variation tendency of the relative
displacement between two adjacent nodes. A large separation vector gain indicates that the link is
prone to instability, and vice versa. As shown in Figure 2, if nodes vi and vj are moving away from
each other, then the signal strength of the wireless link between them decreases, which indicates that
the probability of link failure increases. On the contrary, if nodes vi and vj are moving toward each
other, then the signal strength of the wireless link between them, which indicates that the wireless link
is likely to be stable.
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Cluster Variation Degree. The cluster variation degree is designed to evaluate the variation
tendency of cluster stability on a timeline and is defined as follows:

CVDpkqH “
1

k´ q` 1

k
ÿ

i“q

std
´

SVGpiqH pyq
¯

, y P CH (13)
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where CVDpkqH denotes the cluster variation degree of the cluster CH , whose cluster head is node H in

the k-th sampling period; SVGpiqH is the separation vector gain between cluster member y and cluster
head H in the i-th sampling period; and q denotes the sequence of the sampling period at the start
position of the sliding window, which is described in Equation (5). std indicates the standard deviation
function of the separation vector gain. A small cluster variation degree indicates that the cluster is
likely to be stable. Furthermore, considering the historical information of link stability, we can reduce
the effects of the abnormal behavior of individual nodes on estimating cluster stability. The detail of
the algorithm for estimating sample quality and cluster stability is listed as Algorithm 1.

Algorithm 1. Estimation of Sample Quality and Cluster Stability

1: Procedure Estimation
2: kÐ 1
3: for k=1 to Number_of_Sampling_Period do
4: For for each xP V
5: Get sample data in k-th sampling period
6: Get x’s position in k-th sampling period
7: Update sliding window

8: SQk Ð 1´ ασ2
x pkq {

ˆ

DRpkqx ´DRpkqx

˙2

9: Broadcast message that contains sample data, position, SQk, node id

10: MQGk Ð Max
´

log10SQpkqx {SQpkqy , 0
¯

, @y P Npkqx

11: NRQxrks Ð
ř

yPNpkq
x

MQGpkqxy

12: SVGxy rks Ð Max
´

10lgDpkq py Ñ xq {Dpk´1q py Ñ xq , 0
¯

,@y P C pxq

13: Send message (NRQx[k], SVGk, x, k ) to cluster head
14: end for
15: k++
16: end for
17: end procedure

4.2.3. Game Formulation of Data Aggregation

In this subsection, we describe the game model, including players, strategies, and the utility
function. The utility function is designed by studying the competition and cooperation relationships
among vehicles. We also prove that there exists a unique Nash equilibrium that corresponds to the
optimal transmission strategy.

(1) Multi-Player Game Model

A game of intra-cluster data aggregation in VANET is an interactive decision-making process
between a set of self-interested nodes, which formally consists of the following elements:

I: In a VANET, a set of players, individual vehicles, or wireless sensor nodes in a cluster is
considered to be the players in the game. The number of players in player set I is n.

pi: A set of strategies that is viable for the player to make a decision. In a VANET, the strategy of
player i in the k-th sampling period is a binary value ppkqi P t0, 1u, where ppkqi “ 1pppkqi “ 0q represents
the choice of player i of sending/not sending a data report to cluster head H. Strategy profile, P, is a set
of transmission strategies chosen by n nodes, that is, {ppkq1 , ppkq2 , ppkq3 , ..., ppkqn }. We represent the strategy
profile with P = {pi, p´i}, where pi is the strategy of player i, and p´i denotes the transmission strategy
chosen by other n´ 1 cluster members.
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ui: The payoff, utility function, or benefit of player i when adopting strategy profile P. In a VANET,
the utility function represents the performance of data aggregation in a cluster.

The game of intra-cluster data aggregation in a VANET is to determine an optimal transmission
strategy profile, P = {ppkq1 , ppkq2 , ppkq3 , ..., ppkqn } = {pi, p´i}, to achieve maximal utility. Each cluster member
sends its own information of neighborhood retroaction quality and separation vector gain to the cluster
head and competes with other cluster members in a sending node to optimize the utility function.
In a VANET, we mainly focus on two aspects of achievable utility: cluster-level data redundancy
(i.e., represented by the cluster redundancy degree) and cluster stability (i.e., represented by the cluster
variation degree). Hence, the utility function of the non-cooperative data aggregation game is defined
as the linear combination of the cluster redundancy degree and cluster variation degree, that is:

$

’

&

’

%

U pP, kq “ ´τˆ CRDpT2q
P ` pτ´ 1q ˆ CVDpT2q

H

argmax U pP, kq
ppT2q

i Pt0,1u

P “
!

ppT2q
1 , ppT2q

2 , ..., ppT2q
n

)

(14)

where τ is the regulatory factor ranging from 0 to 1, which is used to adjust the effect of data redundancy
and cluster stability on the utility function. T2 is the time the game processing lasts. The most common
solution for a non-cooperative strategic form game is Nash equilibrium. In a non-cooperative game,
each cluster member is assumed as a fully rational entity. Each entity intends to send its own data
report to the cluster head while reducing data redundancy and enhancing cluster stability. The
entire cluster achieves Nash equilibrium when the nodes can no longer increase their utility through
individual effort.

(2) Nash Equilibrium

In game theory, a game may possess a large number of equilibrium or none at all. Before the
derivation of the multi-player game theoretic algorithm for intra-cluster data aggregation (MGADA)
for the non-cooperative data aggregation game, we must prove that a unique Nash equilibrium
solution exists in the proposed data aggregation scheme.

Lemma 1. A cluster transmission strategy, P = {p1, p2, p3, ..., pn}, is an NE of [N, {pi}, {ui(.)}], for every i P I
and p1

i P P. If ui

´

pi, p˚´i

¯

ě ui

´

p1

i , p˚´i

¯

, then no node can improve its payoff through individual deviation.

Theorem 1. A unique Nash equilibrium exists in game, [N,{pi},{ui(.)}], if, for all i = 1,2, . . . ,n,
1. P is a non-empty, convex, and compact subset of the same Euclidean space Rn.
2. The utility function satisfies the following condition:

B2 f pp1, ..., pnq

BpuBpv
ě 0, u ‰ v (15)

That is, the utility function f (P) is a type of super modular function.
Nash equilibrium is the most widely used solution in game problems. In addition to this, the

proof of Theorem 1 is given in the Appendix A. However, pi is strictly constrained to 0 or 1; whereas
the value of p˚i may be decimal (the solution of p˚i is given in Appendix B). Under these conditions,
we attempt to search for locally optimal solutions by employing the interruption process shown below.

(3) Interruption Process

First, p˚i solution is initialized to be the unique Nash equilibrium solution, and its decimal
strategies are allowed to be 0 or 1 randomly. The interruption stage then follows. The interruption
function ξ is defined below. This random number is generated by each participant i, that is, Ri.
Furthermore, the procedure is realized through the statement rand (0, 1). Second, Ri is compared with
the constant perturbation frequency γ, which is preset in the algorithm. If Ri < γ, then one element pi

1
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in the strategy set p is randomly selected, and a new transmission strategy combination P1 is formed.
The utility value of f (P1) is measured and compared with the current optimal strategy combination P. If
f (P1) is larger than f (P), then pi

1 is substituted for the current strategy pi; otherwise, the strategy remains
unchanged. After perturbations are performed on all the participants, a new transmission strategy
combination P' can be obtained. Finally, after several perturbation and reconstruction processes, a
stable transmission strategy combination in a cluster is obtained. The detail of the game process is
described in Algorithm 2.

Algorithm 2. GameProcess

1: Procedure GameProcess
2: tÐ 1
3: P*Ð Get Nash equilibrium solution by Equation (14)
4: R*Ð 0
5: γÐGet Nash equilibrium solution by Equation (14)
6: if P has no decimal solution then
7: return
8: end if
9: Initialize cluster strategy P’

10: for each xP V do
11: if (px != 0 && px!= 1) then
12: Px

ptq Ð randomly choose 0 or 1
13: end if
14: end for
15: while the network composed by P is not stable

16: for each xP V do
17: Rx=generate a random number
18: if Rx < γ then
19: Px’Ð change node strategy
20: if f(P’) > f(Pptq) then
21: Ppt`1q = P’
22: else
23: Ppt`1q = Pptq

24: end if
25: end if
26: end for
27: end while
28: end procedure

(4) Protocol Description

A brief description of the protocol communication in the second stage is listed as follows:

(1) Each node collects a series of sampling data and stores them in the sliding window. Each node
broadcasts its own reliability in the “Reliability” message to its neighbors. The “Reliability”
message contains the following information: the number of clock period, node ID, node reliability,
and node position.

(2) Each node calculates its NRQ and SVG when it receives the “Reliability” message from its
neighbors. It then sends its own NRG and SVG in the “Attribute” message to the cluster head.
The “Attribute” message contains the number of clock period, node ID, NRQ, and SVG.
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(3) The cluster head calculates the CRD and CVD after receiving all the “Attribute” messages from
its cluster members and then performs the game process to obtain the transmission strategy.

(4) After the game process, the cluster head broadcasts a “Confirm” message, which contains the
node ID of the cluster members selected as the sending nodes to its cluster members. Then the
sending nodes send a “Data” message, which contains the number of clock period, node ID, and
the sampling value, to the cluster head.

(5) The cluster head aggregates the sampling data from the sending nodes and transmits the
aggregated data to the sink node.

4.3. Cluster Reconstruction Stage

When the topology of a VANET changes significantly and the network structure is severely
damaged, the aggregation performance in the cluster decreases significantly. Equation (12) shows that,
if the separation vector gain of the link reaches 10lgRtrans{Rnei, then normal communication is broken.
Moreover, if the separation vector gain in the cluster exceeds 10nlgRtrans{Rnei (i.e., n is the number of
nodes in a cluster), then the cluster structure significantly changes and becomes unsuitable for data
aggregation using the old transmission strategy combination. Hence, a new aggregation sub-cluster
must be reconstructed.

If a cluster enters the cluster reconstruction stage, the original cluster head broadcasts the
“Reconstruction” message to its cluster members to notify that the cluster head selection process
has been re-initialized.

5. Experiments

5.1. Simulation Settings

In this section, we present the simulation results to validate the performance and effectiveness of
MGADA. The algorithms are implemented in the ns-2 simulator using C++. For media access, we use
the original version of the standard IEEE 802.11 with a maximum transmission rate of 2 Mbps. We
adopt the tow-ray ground model as the radio propagation model. The detail of the parameter settings
in the simulation is shown in Table 1. All the simulations are run for 1800 s, and all the simulation
results are averaged over 50 runs. We perform road infrastructure simulation using a topologically
integrated geographic encoding and referencing [38] dataset provided by the United States Census
Bureau. In the simulations, the random way point [39] model is applied in node motion. When a node
reaches its destination, it stops for 5 s, chooses a random speed and another destination, and then
moves to the destination at the chosen speed. In the experiments, the performances of the MGADA
under different scenarios are compared with those of several typical algorithms, including randomized
waiting (RW) [15], GLOBAL scheme, and mobile agent-based strategy (MAS) [16], in terms of network
stability, data reduction, and data accuracy. The GLOBAL aggregation scheme aggregates all samples
in each sampling period. RW is an application layer mechanism that introduces artificial delays
and increases temporal convergence at each source node for each packet to achieve efficient data
aggregation without the explicit maintenance of a structure.

Here we introduce four metrics—the stability, compression, accuracy, and overhead ratios—to
evaluate the network stability, data reduction, aggregation accuracy, and overhead, respectively. The
network stability is defined in Equation (14), and the compression ratio is defined as the percentage of
the sending nodes. The accuracy ratio is defined as the ratio of the sample data to the baseline data,
and the overhead is defined as the percentage of non-application bytes divided by the total number of
bytes sent by MGADA. We also analyze the protocol overhead of MGADA and discuss the impact of
utility factor on MGADA.
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Table 1. Parameters settings used in the simulation.

Parameter Remark, Default Value

Simulation time 1800 s
Area range 10,000 m ˆ 10,000 m

Maximum speed 5, 10, 15, 20, 25 (m/s)
Vehicle Density 20, 40, 60, 80, 100 (vehicles/km)

Sampling period 30 s

w Sliding window size, 10
α Adjustment factor in Equation (2), 0.5
τ Adjustment factor in Equation (14), 0.5

Rtrans Maximum transmission range, 300 m
Rnei Neighborhood radius of cluster members, 100 m

Radio Propagation Model Tow-ray ground

5.2. Analysis of Experimental Results

Figure 3 indicates the impact of vehicle density on the performance in aggregation accuracy,
network stability, and data reduction. In this simulation, the vehicles are moving in fixed traffic roads
at a maximum velocity of 15 m/s. The directions of the vehicles are relatively restricted. Figure 3a–c
show the variation of the accuracy, stability, and compression ratios with vehicle density.
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In Figure 3a all the algorithms perform well in aggregation accuracy. However, MGADA can
improve the aggregation accuracy much faster than the other algorithms when the vehicular density
is less than 40 vehicles/km because MGADA can maintain a more stable cluster structure in a spare
network than the other algorithms. In addition, when vehicle density reaches a certain degree, further
improvement in aggregation accuracy with an increment in vehicle density is difficult. Figure 3a
shows that aggregation accuracy remains stable over [0.9, 0.95] when vehicular density is more than
60 vehicles/km. Figure 3a also shows that the performance of RW is close to that of GLOBAL scheme.
RW attempts to wait for data reports with random delays and therefore exhibits the same amount of
randomness in accuracy as GLOBAL scheme. The aggregation performance in MAS is most dependent
on vehicle density, compared with that in the other algorithms because of the optimized capability of
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mobile agents. However, MAS does not exhibit good performance in a sparse network because, in
this situation, the cooperation of vehicles is weak and the mobile agent is unsuitable for aggregation.
MGADA is superior to the other three algorithms under different density scenarios.

Given its effective strategy, Figure 3b shows that MGADA achieves the best performance in cluster
stability among the compared algorithms, whereas the stabilities achieved by RW and MAS are the
same as that of GLOBAL scheme. These findings prove that the compared algorithms do not achieve
aggregation in an optimal manner. MGADA performs better than the compared algorithms because of
its advantages in maintaining cluster stability by game processing.

Figure 3c demonstrates that MGADA sacrifices the compression ratio to improve aggregation
accuracy. The compression ratio rises as vehicle density increases because the volume of propagation
data is enormous in high density. Moreover, the required information for aggregation is limited to
the known area. In a sparse network, the effective integration of data is limited. MGADA uses a
self-adaptive strategy and can aggregate more data than the other algorithms. However, RW and MAS
are different. In a sparse network, RW cannot obtain information adaptively using the random waiting
strategy. MAS collects information using mobile agents, which adaptively choose strategies through
distances and angles. In a sparse network, the connection among each vehicle is weak, and jumping
from one vehicle to another is not beneficial for mobile agents. Thus, the compression ratio in MAS is
close to that in RW, as shown in Figure 3c. Figure 3 shows that the aggregation scheme, which searches
for a stable topology with less dependence on density, is efficient for aggregation in a VANET.

Figure 3d–f show the standard deviations of aggregation accuracy, network stability and data
reduction with different vehicle densities of all the algorithms. From Figure 3d,e, we can find that
MGADA not only achieve the best performance in aggregation accuracy and network stability but also
the lowest standard deviation of aggregation accuracy and network stability among all the algorithms
in all the simulation scenes. From Figure 3f, because GLOBAL schemes aggregate data without
compression, we can find that MGADA also achieves the lowest standard deviation of compression
ratio among all the algorithms except GLOBAL scheme.

Figure 4 shows the impact of vehicle velocity on MGADA, RW, MAS, and GLOBAL scheme. In
this simulation, the vehicle density is set at 60 vehicles per kilometer of road. As shown in Figure 4a,b,
all the algorithms show a decline in accuracy and stability with an increase in vehicle velocity. Rapid
vehicular motion can speed up message delivery and result in considerable package losses. Moreover,
as shown in Figure 4a, when the maximum velocity is over 10 m/s, the accuracy ratio decreases as
maximum velocity increases. A large maximum velocity and a large number of vehicles with different
velocities correspond to the high instability of the global aggregation environment. Thus, RW, MAS,
and GLOBAL scheme do not perform well on the indices of stability ratio and accuracy ratio. In
Figure 4a, we can also see that the accuracy ratio of MGADA stabilizes at approximately 90%, whereas
those of the other three algorithms vary more and exhibit poorer performance, which proves that
MGADA can achieve superior aggregation results compared with the other algorithms in a high
velocity scenario.

Furthermore, a large maximum velocity can weaken link stability, which can cause the
compression ratios in RW and MAS to increase with a rise in vehicle velocity, as shown in Figure 4c.
However, the compression ratio in MGADA decreases with an increment in vehicular velocity, as
shown in Figure 4c. Vehicles with high motion find it difficult to maintain a stable cluster structure.
The higher the vehicle velocity is, the more unstable the network is. This means that more nodes are
needed for well aggregation when the amount of nodes remains unchangeable. Thus, the compression
ratio in MGADA decreases with an increase in vehicular velocity. The compression ratio in RW is
smoother than that in MAS because of the disadvantages of mobile agents and the flexibility of random
waiting for data reports. In addition, MGADA, which searches for a stable aggregation environment,
is effective in a VANET.

Figure 4d–f show the standard deviations of aggregation accuracy, network stability and data
reduction with different maximum vehicle velocities of all the algorithms. It’s obvious that MGADA
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still achieves the lowest standard deviations in all the simulation scenes. All the simulation results
above demonstrate that MGADA has the advantage of fine stability over the compared algorithms.
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Figure 5 shows the overhead of MGADA with different vehicle densities and velocities. The
overhead of MGADA declines with an increment in vehicle density when the maximum vehicle
velocity is fixed. By contrast, when the vehicle density is fixed, the overhead rises with an increment in
vehicle velocity, because the clusters in a VANET become more stable as the vehicle velocity decreases.
In a denser and more stable network, the number of cluster reconstruction and message retransmission
can be reduced, which in turn can also reduce the overhead of MGADA.
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A group of experiments are also conducted to observe the effect of utility factor on MGADA,
under different vehicle velocities and densities. As shown in Figure 6, the accuracy ratio is distributed
within [0.85, 1.00] when the utility factor varies from 0.2 to 0.8. The utility factor significantly influences
aggregation performance. When the utility factor is too large, the weight of the network stability
function is small, and it is difficult to maintain a relatively stable condition in a sub-cluster for a
long period for the cluster head. When the utility factor is too small, the aggregation environment
is sufficiently stable, and many packages are deleted in the aggregation process. Thus, aggregation
performance is also insufficient. We also find that MGADA achieves the best performance in
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aggregation accuracy when the utility factor is 0.5, the maximum velocity is 5 m/s and vehicle
density is 60 vehicles/km, as shown in Figure 6.Sensors 2016, 16, 245 15 of 18 

 
Figure 6. Accuracy ratio under different utility factors, vehicle densities and maximum vehicle 
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6. Conclusions

A cluster aggregation scheme with improved stability is proposed in this study. First, node
sample qualities are presented to distinguish nodes from one another. The link divergence and intensity
variation of the cluster structure are evaluated in detail. Moreover, the collaborative relations among the
nodes are mapped for multi-players who compete against and cooperate with one another in the game.
Finally, Nash equilibrium and the interruption process are utilized to achieve an optimal transmission
strategy. MGADA works well in the simulation experiments. In the future, an efficient clustering
algorithm will be explored and applied to our work to achieve data aggregation in large-scale VANETs.
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Appendix A. Proof of the Existence of a Unique Nash equilibriumin MGADA

Proof of Theorem 1. The theorem that identifies the existence of Nash equilibrium is obtained from [32].
The first condition is satisfied because strategy space pi is a set composed of 0 and 1, that is, pi is a
non-empty, convex, and compact subset of the same Euclidean space Rn.

We suppose that Ykx and Zx(k) represent the values of the separation vector gain from node x to
in the k-th round and neighborhood retroaction quality of node x in the k-th clock period, respectively.
These values can be expressed as follows:

Ykx “ Max

˜

10lg
Dpkq px Ñ Hq

Dpk´1q px Ñ Hq
, 0

¸

(A1)

Zkx “
ÿ

yPNpkq
x

Max

¨

˝lg
SQpkqx

SQpkqy

, 0

˛

‚ (A2)
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Suppose that n nodes are distributed in a certain area and make a sample for T clock periods, then:

s2 “
x2

1 ` x2
2 ` ...` x2

n
n

´
px1 ` x2 ` ...` xnq

2

n2 (A3)

Given that Y and Z are determined by the sample data, no correlation exists between variables Y
and Z. By substituting Equations (A1)–(A3) into Equation (14), the following expression can be derived:

f pp1, p2, ..., pnq “ ´τˆ CRDpT2q
P ` pτ´ 1q ˆ CVDpT2q
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Suppose that i is not equal to j, that is, i “ j, then:

B f pp1, p2, ..., pnq

BpuBpv
“

2 p1´ τq

n2 pT2 ´ q` 1q

T2
ÿ

i“q

YiuYiv ě 0 (A5)

Thus, f pp1, p2, ..., pnq is a type of super modular function
Thus, f pp1, p2, ..., pnq has a unique Nash equilibrium solution.
Given the reconstruction criterion presented in Subsection 4.5, the range of Ykx is [0, 10¨ lg3], that

is, Ykx P r0, 10lg3s. In Equation (A2), the value of Zkx is larger than 0, that is, Zkx ě 0. Under this
condition, that is, Zkx ě 0 and Ykx P r0, 10lg3s, there is one and only one solution

`

p˚1 , p˚2 , ..., p˚n
˘

that
satisfies the Nash equilibrium condition, that is:

f
`

p˚1 , ..., p˚i´1, p˚i , p˚i`1, ..., p˚n
˘

ě f
`

p˚1 , ..., p˚i´1, pi, p˚i`1, ..., p˚n
˘

, pi P P (A6)

Appendix B. Solution to Nash equilibrium

According to [35], we can obtain the Nash equilibrium solution using equations
B f pp1, p2, ..., pnq

Bp1
“ 0, . . . ,

B f pp1, p2, ..., pnq

Bpn
“ 0, that is:

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

τ

n
ZT21 `

2 pτ´ 1q p1

n pT2 ´ q` 1q

T2
ř

i“q
Y2

i1 `
2 p1´ τq

n2 pT2 ´ q` 1q

T2
ř

i“q

n
ř

j“1
pjYi1Yij “ 0

τ

n
ZT22 `

2 pτ´ 1q p2

n pT2 ´ q` 1q

T2
ř

i“q
Y2

i2 `
2 p1´ τq

n2 pT2 ´ q` 1q

T2
ř

i“q

n
ř

j“1
pjYi2Yij “ 0

...
τ

n
ZT2n `

2 pτ´ 1q pn

n pT2 ´ q` 1q

T2
ř

i“q
Y2

in `
2 p1´ τq

n2 pT2 ´ q` 1q

T2
ř

i“q

n
ř

j“1
pjYinYij “ 0

(B1)

In a certain sample instance, the values of Y and Z are known. Thus, the Nash equilibrium
solution

`

p˚1 , p˚2 , ..., p˚n
˘

is available.
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